Some new even harmonious graphs

R. Binthiya, P. B. Sarasija
Department of Mathematics, Noorul Islam Centre For Higher Education Kumaracoil-629175, India.
E-mail: binthiya_r@yahoo.co.in, sijavk@gmail.com

Abstract

Let $G(V, E)$ be a graph with p vertices and q edges. A function f is called even harmonious labeling of a graph $G(V, E)$ if $f: V \rightarrow\{0,1,2, \ldots, 2 q\}$ is injective and the induced function $f^{*}: E \rightarrow\{0,2,4, \ldots, 2(q-1)\}$ defined as $f^{*}(u v)=(f(u)+f(v))(\bmod 2 q)$ is bijective. In this paper we establish an even harmonious labeling for the graphs $C_{n} \odot m K_{1}\left(n\right.$ is odd), $P_{n} \odot m K_{1}(n$ is odd), $C_{n} @ K_{1}$ (n is even), P_{n} (n is even) with $n-1$ copies of $m K_{1}$, the shadow graph $D_{2}\left(K_{1}, n\right)$ and the splitting graph $\operatorname{spl}\left(K_{1}, n\right)$.

Keywords: Even harmonious labeling, even harmonious graphs, corona graph, shadow graph, splitting graph.
AMS Subject Classification(2010): 05C78.

1 Introduction

Graph labeling is an assignment of integers to the vertices or edges or both subject to certain conditions. Labeled graphs serves as useful mathematical models for a broad range of applications including coding theory. Throughout this paper we use modular arithmetic which has been used in cryptography.

A finite undirected simple graph will be considered in this paper. The notations and terminology are taken from Bondy and Murthy [1]. Let $G(V, E)$ be a (p, q) graph with $p=|V|$ vertices and $q=|E|$ edges. Harmonious graphs arose in the study by Graham and Sloane [3] of modular versions of additive base problems stemming from error - correcting codes. Zhi - He Liang, Zhan - Li Bai [4] and S.K.Vaidya, N H Shah [6] discussed odd harmonious graphs with applications. The results about graph labeling are collected and updated regularly in a survey by Gallian [2].

A function f is called even harmonious labeling [5] of a graph $G(V, E)$ if $f: V \rightarrow\{0,1,2, \ldots, 2 q\}$ is injective and the induced function $f^{*}: E \rightarrow\{0,2,4, \ldots, 2(q-1)\}$ defined as $f^{*}(u v)=(f(u)+$ $f(v))(\bmod 2 q)$ is bijective, the resulting edge labels are distinct. A graph which admits even harmonious labeling is called an even harmonious graph. A corona graph $G \odot H$ is obtained from two graphs G and H taking one copy of G, which is supposed to have p vertices and p copied of the graph H and joining by an edge the $k^{t h}$ vertex of G to every vertex in the $k^{t h}$ copy of H. In other words, given two graphs G and H, the corona of G with H denoted by $G \odot H$ is the graph with vertex set $V(G) \cup\left\{\cup_{i \in G} V\left(H_{i}\right)\right\}$ and the edge set $E(G) \cup_{(i \in V(G))}\left\{\left(i, u_{i}\right): i \in V(G)\right.$ and $\left.u_{i} \in V\left(H_{i}\right)\right\}$. The
shadow graph $D_{2}(G)$ of a connected graph G is constructed by taking two copies of G say G_{1} and G_{2} and join each vertex v_{i} in G_{1} to the adjacent vertices of the corresponding vertex u_{i} in G_{2}. The splitting graph $\operatorname{Spl}(G)$ is obtained from the graph G by adding to each vertex v of G a new vertex u such that u is adjacent to every vertex that is adjacent to v in G. The graph $G_{1} @ G_{2}$ is nothing but one point union of G_{1} and G_{2}, that is any two graphs G_{1} and G_{2} are connected by a single edge between any one of the vertex of G_{1} and any one of the vertex of G_{2}.

In this paper we establish an even harmonious labeling for the graphs $C_{n} \odot m K_{1}\left(n\right.$ is odd), $P_{n} \odot$ $m K_{1}(n$ is odd $), C_{n} @ K_{1}$ (n is even), P_{n} (n is even) with $n-1$ copies of $m K_{1}$, the shadow graph $D_{2}\left(K_{1, n}\right)$ and the splitting graph $\operatorname{Spl}\left(K_{1, n}\right)$.

2 Main results

Theorem 2.1. The corona graph $C_{n} \odot m K_{1}$ is an even harmonious graph, where n is an odd integer and m is any positive integer.

Proof: Let n be an odd number and $G(V, E)$ be the corona graph $C_{n} \odot m K_{1}$ (Figure 1) with $p=q=$ $n(m+1)$.

Figure 1: The corona graph $C_{n} \odot m K_{1}$.
Let $v_{1}, v_{2}, \ldots, v_{n}$ be the vertices of the cycle C_{n} and $v_{i 1}, v_{i 2}, \ldots, v_{i m}$ be the vertices of the $i^{\text {th }}$ copy of $m K_{1}$ incident with the vertex v_{i}, where $1 \leq i \leq n$. Then the edges of the corona graph $C_{n} \odot m K_{1}$ are given by $v_{1} v_{2}, v_{2} v_{3}, \ldots, v_{i} v_{i+1}, \ldots, v_{n 1} v_{n}, v_{n} v_{1}$ and $v_{i} v_{i j}$, where $1 \leq i \leq n, 1 \leq j \leq m$.

We define the function f from V to $\{0,1,2, \ldots, 2 q\}$ and assign the numbers $0,2,4, \ldots, 2(n-1)$ to the vertices $v_{1}, v_{2}, \ldots, v_{n}$ of the cycle C_{n}, the numbers $2(2 n-1), 2(3 n-1), \ldots, 2[n(m+1)-1]$ to the vertices $v_{11}, v_{12}, \ldots, v_{1 m}$ of the first copy of $m K_{1}$ incident with v_{1} and the numbers $2(n+i-$ 2), $2(2 n+i-2), \ldots, 2(m n+i-2)$ to the vertices $v_{i 1}, v_{i 2}, \ldots, v_{i m}$ of the $i^{t h}$ copy of $m K_{1}$, where $2 \leq i \leq n$.

Then f induces a bijection $f^{*}: E \rightarrow\{0,2,4, \ldots, 2(n m+n-1)\}$. That is f admits an even harmonious labeling for the corona graph $C_{n} \odot m K_{1}$. Hence the corona graph $C_{n} \odot m K_{1}$ is an even harmonious graph.

Example 2.2. An even harmonious labeling for the corona graph $C_{3} \odot 6 K_{1}$ is given in Figure 2.

Figure 2: An even harmonious labeling of the corona graph $C_{3} \odot 6 K_{1}$.

Theorem 2.3. The corona graph $P_{n} \odot m K_{1}$ is an even harmonious graph where $n \geq 3$ is an odd integer and m is any positive integer.

Proof: Let $G(V, E)$ be the corona graph $P_{n} \odot m K_{1}$ with $p=n(m+1)$ vertices and $q=n(m+1)-1$ edges. Let $v_{1}, v_{2}, \ldots, v_{n}$ be the vertices of the path $P_{n}\left(n\right.$ is odd)and $v_{i 1}, v_{i 2}, \ldots, v_{i m}$ be the vertices of the $i^{t h}$ copy of $m K_{1}$ incident with the vertex v_{i}, where $1 \leq i \leq n$. Then the edges of the corona graph $P_{n} \odot m K_{1}$ are given by $v_{i} v_{i+1}$ for $1 \leq i \leq n$ and $v_{i} v_{i j}$ for $1 \leq i \leq n, 1 \leq j \leq m$.

We define the function f from V to $\{0,1,2, \ldots, 2 q\}$ and assign the numbers $0,2,4, \ldots, n-1$ to the vertices $v_{1}, v_{3}, \ldots, v_{n}$ of the path P_{n}, the numbers $n+1, n+3, \ldots, 2(n-1)$ to the vertices $v_{2}, v_{4}, \ldots, v_{n-1}$ and the numbers $2(2 n-i), 2(3 n-i), \ldots, 2[n(m+1)-i]$ to the vertices $v_{i 1}, v_{i 2}, \ldots, v_{i m}$ of the $i^{t h}$ copy of $m K_{1}$, where $1 \leq i \leq n$.

From the above construction pattern f induces a bijection $f^{*}: E \rightarrow\{0,2,4, \ldots, 2(n m+n-2)\}$. Hence f admits an even harmonious labeling for the corona graph $P_{n} \odot m K_{1}$. Hence the corona graph $P_{n} \odot m K_{1}$ is an even harmonious graph.

Example 2.4. Figure 3 illustrates the even harmonious labeling for the corona graph $P_{5} \odot 6 K_{1}$.

Figure 3: An even harmonious labeling of $P_{5} \odot 5 K_{1}$.
Theorem 2.5. The shadow graph $D_{2}\left(K_{1}, n\right)$ is an even harmonious graph.

Proof: Let $G(V, E)$ be the shadow graph $D_{2}\left(K_{1, n}\right)$ (Figure 4) with two copies of the star graph $K_{1, n}$. Let v be the apex vertex and $v_{1}, v_{2}, v_{3}, \ldots, v_{n}$ be the pendant vertices of the first copy of the star graph $K_{1, n}, u$ be the apex vertex and $u_{1}, u_{2}, u_{3}, \ldots, u_{n}$ be the pendant vertices of the second copy of the star graph $K_{1, n}$. Hence the edges of the shadow graph $D_{2}\left(K_{1, n}\right)$ are $v v_{1}, v v_{2}, v v_{3}, \ldots, v v_{n}, v u_{1}, v u_{2}, v u_{3}$, $\ldots, v u_{n}, u v_{1}, u v_{2}, u v_{3}, \ldots, u v_{n}$ and $u u_{1}, u u_{2}, u u_{3}, \ldots, u u_{n}$. Therefore $p=2 n+2$ and $q=4 n$.

Figure 4: The shadow graph $D_{2}\left(K_{1, n}\right)$.
Define the mapping f from the vertex set V of G to the integer set $\{0,1,2, \ldots, 2 q\}$ as follows. Assign 0 to the apex vertex v and the numbers $4,8,12, \ldots, 4 n$ to the vertices $v_{1}, v_{2}, \ldots, v_{n}$ of the first copy of the star graph $K_{1, n}$, assign the number 2 to the apex vertex u and the numbers $4(n+1), 4(n+$ 2), $\ldots, 8 n$ to the vertices $u_{1}, u_{2}, \ldots, u_{n}$ of the second copy of the star graph $K_{1, n}$.

That is $f(v)=0, f\left(v_{i}\right)=4 i$ for $1 \leq i \leq n, f(u)=2$ and $f\left(u_{i}\right)=4(n+i)$ for $1 \leq i \leq n$. From the above construction pattern f induces a bijection $f^{*}: E \rightarrow\{0,2,4, \ldots, 2(4 n-1)\}$. Thus f admits an even harmonious labeling for the shadow graph $D_{2}\left(K_{1, n}\right)$. Hence the shadow graph $D_{2}\left(K_{1, n}\right)$ is an even harmonious graph. Even harmonious labeling of the shadow graph is $D_{2}\left(K_{1,3}\right)$ given in Figure 5.

Figure 5: An even harmonious labeling of the shadow graph $D_{2}\left(K_{1,3}\right)$.
Theorem 2.6. The splitting graph $\operatorname{Spl}\left(K_{1, n}\right)$ is an even harmonious graph.
Proof: Let $G(V, E)$ be the splitting graph $S p l\left(K_{1, n}\right)$ (Figure 6) and v be the apex vertex and $v_{1}, v_{2}, v_{3}, \ldots, v_{n}$ be the pendant vertices of the star graph $K_{1, n}$ then $u, u_{1}, u_{2}, u_{3}, \ldots, u_{n}$ are the added vertices corresponding to $v, v_{1}, v_{2}, v_{3}, \ldots, v_{n}$ respectively. Thus the edges of the splitting graph $\operatorname{Spl}\left(K_{1, n}\right)$ are $v v_{i}, v u_{i}, u v_{i}$ where $1 \leq i \leq n$. Hence $p=2 n+2$ and $q=3 n$.

Define the mapping f from the vertex set V of G to the integer set $\{0,1,2, \ldots, 2 q\}$ as follows. Assign 0 to the apex vertex v and the numbers $2(n+2), 2(n+4), \ldots, 6 n$ to the vertices $v_{1}, v_{2}, \ldots, v_{n}$,

Figure 6: The splitting graph $\operatorname{Spl}\left(K_{1, n}\right)$.
assign 2 to the vertex u and $4,6,8, \ldots, 2(n+1)$ to the vertices $u_{1}, u_{2}, \ldots, u_{n}$ respectively of the splitting graph $\operatorname{Spl}\left(K_{1, n}\right)$.

That is $f(v)=0, f(u)=2, f\left(v_{i}\right)=2(n+2 i)$ for $1 \leq i \leq n$ and $f\left(u_{i}\right)=2(i+1)$ for $1 \leq i \leq n$. Then f induces a bijective function $f^{*}: E \rightarrow\{0,2,4, \ldots, 2(3 n-1)\}$. Hence the splitting graph $\operatorname{Spl}\left(K_{1, n}\right)$ is an even harmonious graph. Figure 7 illustrates the even harmonious labeling for the splitting graph $\operatorname{Spl}\left(K_{1,4}\right)$.

Figure 7: An even harmonious labeling of the splitting graph $\operatorname{Spl}\left(K_{1,4}\right)$.

Theorem 2.7. The graph G obtained from the path graph P_{n} (n is even) with $n-1$ copies of $\overline{K_{m}}$ ($m \geq 1$) incident with first $n-1$ vertices of P_{n} is an even harmonious graph

Proof: Let G be a graph obtained from the path graph P_{n} (n is even) with $n-1$ copies of $\overline{K_{m}}$ incident with first $n-1$ vertices of P_{n} and $v_{1}, v_{2}, \ldots, v_{i}, \ldots, v_{n}$ be the vertices of P_{n} and $v_{i 1}, v_{i 2}, \ldots, v_{i j}, \ldots, v_{i m}$ be the vertices of the $i^{\text {th }}$ copy of $\overline{K_{m}}$ incident with v_{i}, where $1 \leq i \leq n-1$.

Then the edges are $v_{i} v_{i+1}$, where $1 \leq i \leq n-1$ and $v_{i} v_{i j}$, where $1 \leq i \leq n-1,1 \leq j \leq m$. Then the graph G has $n(m+1)-m$ vertices and $(n-1)(m+1)$ edges as shown in Figure 8.

We construct a vertex labeling of G as follows. Define the mapping f from the vertex set $V(G)$ to

Figure 8
the integer set $\{0,1,2, \ldots, 2 q\}$ such that

$$
\begin{aligned}
f\left(v_{2 i-1}\right) & =2(i-1) \text { for } 1 \leq i \leq n / 2 \\
f\left(v_{2 i}\right) & =n+2(i-1) \text { for } 1 \leq i \leq n / 2 \text { and } \\
f\left(v_{i j}\right) & =2[n(j+1)-(i+j)] \text { for } 1 \leq j \leq m, 1 \leq i \leq n-1
\end{aligned}
$$

Therefore f is an injection mapping and f induces a bijective mapping $f^{*}: E \rightarrow\{0,2,4, \ldots, 2[(n-$ $1)(m+1)-1]\}$. From the foregoing discussion, we obtain that the graph G is an even harmonious graph.

Example 2.8. Figure 9 shows an even harmonious labeling for the path graph P_{4} with 3 copies of $\overline{K_{3}}$ incident with first 3 vertices of P_{4}.

Figure 9
Theorem 2.9. The graph $C_{n} @ K_{1}(n$ is even $)$ is an even harmonious graph.
Proof: Let $G(V, E)$ be an one point union of the graphs $C_{n}\left(n\right.$ is even) and K_{1} (Figure 10), that is $C_{n} @ K_{1}(n$ is even $)$. Let $v_{0}, v_{1}, \ldots, v_{n-1}$ be the vertices of C_{n} and v_{n} be the vertex of K_{1}, which is adjacent with the vertex v_{0}.

Define the mapping f from the vertex set $V(G)$ to the integer set $\{0,1,2, \ldots, 2 q\}$ as follows. When $n=4, f\left(v_{i}\right)=2 i$ for $0 \leq i \leq 2, f\left(v_{3}\right)=10$ and $f\left(v_{4}\right)=8$, when $n=6, f\left(v_{0}\right)=14, f\left(v_{1}\right)=0$, $f\left(v_{5}\right)=12, f\left(v_{6}\right)=8$ and $f\left(v_{i}\right)=f\left(v_{i-1}\right)+2$ for $\frac{n-2}{2} \leq i \leq n-2$. When $n>6, f\left(v_{0}\right)=n+8$, $f\left(v_{n}\right)=n+2, f\left(v_{n-1}\right)=n+6, f\left(v_{\frac{n-4}{2}}\right)=0, f\left(v_{i}\right)=f\left(v_{i-1}\right)+2$ for $1 \leq i \leq \frac{n-6}{2}$ and $\frac{n-2}{2} \leq i \leq n-2$. Therefore f is an injection mapping. This implies that f induces the bijective

Figure 10: The graph $C_{n} @ K_{1}$.
function f^{*} from $E(G)$ to $\{0,2,4, \ldots, 2 n\}$. From the foregoing discussion, we obtain that the graph G is an even harmonious graph.

Example 2.10. An even harmonious labeling for the graph $C_{12} @ K_{1}$ is given in Figure 11.

Figure 11: The graph $C_{12} @ K_{1}$.

Acknowledgement

The authors are thankful to the reviewers for the valuable comments and suggestions.

References

[1] J.A. Bondy and U.S.R. Murthy, Graph Theory with Applications, Macmillan, London (1976).
[2] J.A. Gallian, A dynamic survey of graph labeling, The electronics J.of Combinatorics, 16 (2012).
[3] R.L. Graham, and N.J.A. Sloane, On additive bases and harmonious graphs, SIAM J.Algebr.Discrete Methods 1, (1980), 382-404.
[4] Liang Z-H. and Bai Z-L, On the odd harmonious graphs with applications, J.Appl.Math.Comput.,(2009) 29 105-116.
[5] P.B. Sarasija, R. Binthiya, Even Harmonious Graphs with Applications, (IJCSIS) International Journal of Computer Science and Information Security,Vol. 9, No.7(2011), 161-163.
[6] S.K. Vaidya, N. H. Shah, Some new odd harmonious graphs, International Journal of Mathematics and Soft Computing Vol.1, No. 1 (2011), 9-16.

