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Abstract

In this paper, we propose a new graph namely Sierpiński Gasket Rhombus SRn based on trian-
gular graph like Sierpiński Gasket graph. Sierpiński Gasket Rhombus SRn is obtained by identi-
fying two copies of Sierpiński Gasket graph along their side edges. Further we study some basic
properties of Sierpiński Gasket Rhombus SRn and find hamiltonicity, pancyclicity and chromatic
number of SRn.
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1 Introduction

Sierpiński Gasket graphs are strongly related to the well known fractal called the Sierpiński Gas-

ket. Sierpiński Gasket graphs appear in different areas of graph theory, topology, probability [2, 4],

pscychology [5]. Sierpiński Gasket graphs Sn are the graphs naturally defined by the finite number of

iterations. Grundy, Scorer and Smith introduced this connection in [10]. Teguia and Godbole [11] stud-

ied several properties of these graphs, in particular the chromatic number, the domination number and

the pebbling number. Sn is uniquely 3−colorable and the chromatic index of Sn is 4 [9]. Sn contains

1−perfect code only for n = 1 and n = 3. The distribution of Euclidean and geodesic distances on

the Sierpiński Gasket were studied by Band and Mubarak [1]. Total chromatic number of Sn is studied

in [3]. The graph presented in this paper are stimulated from the fractal structure given by Marcelo

Epstein and Samer M. Adeeb [6]. The graph is obtained by identifying two copies of Sierpiński Gasket

graphs along their side edges leading to Rhombus like structure. Hamiltonicity is one of the most im-

portant, areas of graph theory. Several papers have been published seeking more sufficient conditions

for a graph to contain a Hamilton cycle. In this paper, we establish some basic properties, chromatic

number, quotient labeling, hamiltonicity and pancyclicity of Sierpiński Gasket Rhombus SRn.

Definition 1.1. A Path − Sum is a way of combining two graphs by gluing them together along a path.

If two graphs G and H , each contains a path of equal length, the Path − Sum of G and H is formed

from their disjoint union by identifying pair of vertices in these two paths to form a single shared path.
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Figure 1: Path − Sum of two graphs.

The graphs are formed by taking the Path − Sum of two triangular graphs, where the path along one of

their sides is considered.

Figure 2: Path − Sum of two triangular graphs.

Definition 1.2. A Sierpiński Gasket Rhombus of level n [denoted by SRn], is obtained by identifying

the edges in two Sierpiński Gasket graphs Sn along one of their sides.

Figure 3: Sierpiński Gasket Rhombus, SR3 and SR5.

2 Sierpiński Gasket Rhombus SRn

Sierpiński Gasket Rhombus SRn consists of two copies of Sierpiński Gasket Sn. The four corner

vertices of SRn is denoted by SRn,T,T , SRn,R,R, SRn,B,B and SRn,L,L. SRn can be decomposed

into four parts: The top Sierpiński Gasket triangle of level n−1 [denoted by (Sn,T )], the left Sierpiński
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Gasket Rhombus of level n−1 [denoted by (SRn,L)], the right Sierpiński Gasket Rhombus of level n−1

[denoted by (SRn,R)] and the bottom Sierpiński Gasket triangle of level n−1 [denoted by (Sn,B)].

Figure 4: Sierpiński Gasket Rhombus SRn.

Theorem 2.1. Sierpiński Gasket Rhombus SRn has 3n−2n−1+2 vertices and 2·3n−2n−1 edges.

Proof: To construct, SRn+1 from SRn, we add 2·3n points and eliminate 2n−1 points.

|Vn+1| = |Vn| + 2.3n − 2n−1

= |V1| + 2
∑

3i −
∑

2j

= 4 + 2[32 (3n−1)] − (2n−1)

= 3n+1 − 2n + 2

as asserted. The number of edges in SRn may now be easily determined using the fact that the sum of

the vertex degrees equals twice the number of edges:

|En| = 1
2

∑
deg (vj)

= 1
2 [2·2 + 3·2 + 6(2n−1−1) + 4(3n−2n−1)]

= 2·3n − 2n−1

completing the proof.

Properties:

From the construction of SRn, we observe the following,

1. The vertex connectivity is 2 and the edge connectivity is also 2.

2. SRn is not Eulerian, since it has odd degree vertices.

3. Edge disjoint cycle cover does not exist for SRn, since it has odd degree.

In order to improve or increase the efficiency of message transmission we need to minimize diameter

of the graph. The distance between two vertices x, y in a connected graph G is the length of the shortest

path (x, y) − path and is denoted by d(x, y). The diameter d(G) of a connected graph G is defined as

max {d(x,y):x,y ∈ V(G)} [7].

Theorem 2.2. The diameter of Sierpiński Gasket Rhombus SRn is 2n, for n≥1.
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Quotient labeling of SRn is defined as the graph with four special vertices (1. . .1),(2. . .2), (3. . .3)

and (4. . .4) called the extreme vertices of SRn, together with vertices of the form (u0, u1,. . . , ur){i, j},
1≤r≤n−2, i < j where all u′ks, i and j are from {1, 2, 3, 4} and (u0,u1,. . .,ur) is called the prefix of

(u0,. . .,ur){i, j}. (See Figure 5)

Figure 5: Quotient Labeling of SR4.

A k−vertex coloring of G is an assignment of k colors to the vertices of G. The coloring is proper if no

two distinct adjacent vertices have the same color. G is k−vertex colorable if G has a proper k−vertex

coloring abbreviated as k−colorable. The chromatic number, χ(G) of G is the minimum k for which G

is k−colorable. If χ(G) = k, then G is said to be k−chromatic.

Theorem 2.3. The chromatic number of SRn is 3, for all n≥1.

Proof: Clearly, χ(SR1) = 3. Suppose, χ(SRn−1) = 3. The upper half of SRn can be colored with

exactly three colors. The remaining vertices in lower half of SRn, are colored as follows: The vertex

(4. . .4) will have the same color as (1...1). Other vertices of the lower half of SRn will be of the form,

(u0,u1,. . .,ur) {i, j}, 0≤r≤n− 2, i < j, where

(u0,u1,. . .,ur,i,j) ∈ {2, 3, 4} · · · (i)

Replacing the digit ”4” by ”1” we get, (u0,u1,. . .,ur) {i, j}, 0≤r≤n− 2, i < j where

(u0,u1,. . .,ur,i,j) ∈ {1, 2, 3} · · · (ii)

Now the remaining vertices in (i) should take up the same color as in (ii). For instance, replace 4 by 1

in vertex 4{4, 2} we get the vertex 1{1, 2}.
Therefore, 4{4, 2} will have the same color as 1{1, 2}.

A path that contains every vertex ofG is called a hamiltonian path. A cycle that contains every vertex

of G is called a Hamiltonian cycle. G is said to be Hamiltonian if it contains a Hamiltonian cycle. G is

Hamiltonian − connected, if a Hamiltonian path exists between every pair of vertices in G [8].
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Lemma 2.4. SRn has two Hamiltonian paths between the top most vertex SRn,T,T to the bottom most

vertex SRn,B,B . Also, there exists Hamiltonian paths from the top/bottom most vertex SRn,T,T /SRn,B,B

to the left/right most vertex SRn,L,L/SRn,R,R.

Proof: The lemma is true for SR1 in both the cases (that is, from SRn,T,T to SRn,B,B and from

SRn,T,T /SRn,B,B to SRn,L,L/SRn,R,R).

Figure 6: Hamiltonian paths in Sierpiński Gasket Rhombus, SR1.

Suppose it is true for SRn. Consider SRn+1, which consists of Sn,T , SRn,L, SRn,R and Sn,B as men-

tioned in Section 2.

Case (i): Consider a Hamiltonian path of Sn,T moving from the top vertex of Sn,T to the top vertex

of SRn,L. Followed by the Hamiltonian path (guaranteed by the induction hypothesis) we move from

the top vertex of SRn,L to the right vertex SRn,L,R. Followed by the Hamiltonian path (guaranteed by

the induction hypothesis) we move from that vertex to the bottom vertex SRn,B,R of SRn,R, but with

a critical modification, by avoiding the vertex SRn,T,R of SRn,R. Finally, we consider the hamiltonian

path of Sn,B starting at its right vertex SRn,B,R and ending at its bottom vertex SRn,B,B (with a critical

modification, by avoiding the left vertex SRn,B,L) of Sn,B . Thus, we have constructed a Hamiltonian

path of SRn+1 from its top most vertex SRn,T,T to its bottom most vertex SRn,B,B .

Figure 7: Hamiltonian path from SRn,T,T to SRn,B,B .

By considering the vertical reflection of the path obtained in Case (i), we get another Hamiltonian path

from the top vertex of SRn+1 to the bottom vertex.

Case (ii): Consider a Hamiltonian path of Sn,T moving from the top vertex of Sn,T to the top vertex of

SRn,L. Followed by the Hamiltonian path (guaranteed by the induction hypothesis) we move from that

vertex to the bottom vertex of SRn,L. Followed by the Hamiltonian path (guaranteed by the induction

hypothesis) we move from the vertex SRn,B,L to the right vertex SRn,B,R of Sn,B . Finally, we take the

hamiltonian path of SRn,R starting at the vertex SRn,B,R and ending at the vertex SRn,R,R but with
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a critical modification, by avoiding the vertices SRn,L,R and SRn,T,R of SRn,R. In this method, we

have constructed a Hamiltonian path of SRn+1 from its top most vertex SRn,T,T to its right most vertex

SRn,R,R.

Figure 8: Hamiltonian path from SRn,T,T to SRn,R,R.

By similar argument, we can obtain the Hamiltonian paths

• from SRn,T,T to SRn,L,L,

• from SRn,L,L to SRn,B,B and

• from SRn,R,R to SRn,B,B .
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Figure 9: Hamiltonian paths in Sierpiński Gasket Rhombus, SR3 and SR4.

Theorem 2.5. SRn is Hamiltonian for each n.

Proof: We take the Hamiltonian path of Sn+1,T that moves from SRn+1,T,L to SRn+1,T,R. Next,

we take the Hamiltonian path of SRn+1,R that moves from SRn+1,T,R to SRn+1,B,R. Next, we take

the Hamiltonian path of Sn+1,B that moves from SRn+1,B,R to SRn+1,B,L. And finally, we take the

Hamiltonian path of SRn+1,L that moves from SRn+1,B,L to SRn+1,T,L. This gives the Hamiltonian

cycle for SRn.

Figure 10: Hamiltonian cycle of SRn.

Lemma 2.6. [11] Each Hamiltonian path of Sn say, from Sn,L,L to Sn,R,R, can be sequentially reduced

in length by one at each step, while maintaining the starting and ending vertices, with the process ending

in a path from Sn,L,L to Sn,R,R along the base of Sn.

Figure 11: Hamiltonian path of S1.

Lemma 2.7. The Hamiltonian path of SRn as defined in Lemma 2.4, from SRn,T,T to SRn,B,B and

SRn,T,T to SRn,L,L can be sequentially reduced in length by one at each step, while maintaining the

starting and ending vertices, with the process ending in a path from Sn,T,T to Sn,B,B and Sn,T,T to

Sn,L,L along the left side of SRn.
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Proof: We prove this lemma by induction. We note that the result is clearly true for n = 1. Assume

that the result is true for SRn−1. Now we prove the result for SRn.

Case(i): There exists a hamiltonian path from SRn,T,T to SRn,B,B via SRn,T,R, SRn,L,R and SRn,B,L.

The four hamiltonian paths in Sn,T , SRn,R, SRn,L and Sn,B are reduced to paths along their sides by

using induction and Lemma 2.6, resulting to a path as in Figure 12(b). We modify the reduced path

SRn,T,T → SRn,T,R → SRn,L,R → SRn,B,L → SRn,B,B as follows to achieve the further required

reduction: (i) In Figure 12(b), SRn,T,T → SRn,T,R → SRn,L,R of length 2s (where s is the length of

side in Sn) is replaced by the path, SRn,T,T → SRn,T,L → SRn,L,R is also of length 2s (See Figure

12(c)). (ii) In Figure 12(c), SRn,T,L → SRn,L,R → SRn,B,L of length 2s is replaced by the path

SRn,T,L → SRn,L,L → SRn,B,L is also of length 2s (See Figure 12(d)). This yields the required path

from SRn,T,T to SRn,B,B of length 4s.

Figure 12

Case (ii): There exists a hamiltonian path from SRn,T,T to SRn,L,L via SRn,T,R, SRn,B,R and SRn,B,L.

The four hamiltonian paths in Sn,T , SRn,R, SRn,L and Sn,B are reduced to paths along their sides by

using induction and Lemma 2.6 resulting to a path as in Figure 13(b). We modify the reduced path

SRn,T,T → SRn,T,R → SRn,R,R → SRn,B,R → SRn,B,L → SRn,L,L as follows to achieve the fur-

ther required reduction: (i) In Figure 13(b), the path SRn,R,R → SRn,B,R → SRn,B,L of length 2s is

replaced by the path SRn,R,R → SRn,L,R → SRn,B,L is also of length 2s (See Figure 13(c)). (ii) In

Figure 13(c), the path SRn,L,L → SRn,B,L → SRn,L,R of length 2s is reduced using Lemma 2.6 to

the path SRn,L,L → SRn,L,R of length 2s (See Figure 13(d)). Also the path SRn,T,R → SRn,R,R →
SRn,L,R of length 2s is reduced using Lemma 2.6 to the path SRn,T,R → SRn,L,R of length s (See

Figure 13(d)). (iii) In Figure 13(d), the path SRn,T,R → SRn,L,R → SRn,L,L of length 2s is replaced

by the path SRn,T,R→ SRn,T,L→ SRn,L,L is also of length 2s. (iv) In Figure 13(e), the path SRn,T,R

→ SRn,T,L → SRn,L,L of length 2s is reduced using Lemma 2.6 by the path SRn,T,L → SRn,L,L of

length s. This yields the required path from SRn,T,T to SRn,L,L of length 2s.
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Figure 13

Theorem 2.8. SRn is pancyclic for each n.

Proof: The proof is by induction. Assume that the result is true for all m≤n. The Hamiltonian cycle

SRn,T,L→ SRn,T,R→ SRn,B,R→ SRn,B,L→ SRn,T,L of SRn consists of four Hamiltonian paths in

Sn,T , SRn,R, Sn,B and SRn,L respectively. By Lemma 2.6, applied to Sn,T and Sn,B; also by Lemma

2.7, applied to SRn,R and SRn,L, we reduce these as necessary to get cycles of all sizes ≥ 6s [See

Figure 14]. Cycles of smaller sizes are obtained by invoking the induction hypothesis on SRn−1, noting

that |SRn−1|≥6s.

Figure 14

Conclusion
In this paper, we introduced Sierpiński Gasket Rhombus graph based on Sierpiński Gasket graph.

The chromatic number, hamiltonicity and pancyclicity of SRn are discussed. Further determining other

graph theory problems of Sierpiński Gasket Rhombus SRn are under investigation.

Acknowledgement
This work is supported by Maulana Azad National Fellowship F1−17.1/2013−14/MANF−2013−14

−CHR−TAM−29053 of the University Grants Commission, New Delhi, India.

References

[1] C. Bandt, M. Mubarak, Distribution of distances and interior distances for certain self-similar

measures, Arab. J. Sci. Eng; 29, Number 2C(2004).

[2] A.M. Hinz and A. Schief, The average distance on the Sierpiński gasket, Probab. Theory Related
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Discrete Mathematics, 309(6)(2009), 1548−1556.
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