International Journal of Mathematics and Soft Computing Vol.4, No.2 (2014), 59 - 69.

On (2, k)-regular and totally (2, k)-regular fuzzy graphs

C. Sekar

Department of Mathematics Aditanar College of Arts and Science Tiruchendur, Tamil Nadu, India. E-mail: sekar.acas@gmail.com

N.R. Santhimaheswari

Department of Mathematics G. Venkataswamy Naidu College Kovilpatti-628502, Tamil Nadu, India. E-mail: nrsmaths@yahoo.com

Abstract

In this paper, we define d_2 -degree and total d_2 -degree of a vertex in fuzzy graphs. Further we study (2, k)-regularity and totally (2, k)-regularity of fuzzy graphs and the relation between (2, k)-regularity and totally (2, k)-regularity. Also we study (2, k)-regularity on path on four vertices, barbell graph $B_{n,n}$, n > 1 and cycle C_n with some specific membership functions.

Keywords: Regular fuzzy graphs, total degree, totally regular fuzzy graph, d_2 degree of a vertex in graphs, semiregular graphs.

AMS Subject Classification(2010): 05C12, 03E72, 05C72.

1 Introduction

In 1965, Lofti A.Zadeh[12] introduced the concept of a fuzzy subset of a set as a method for representing the phenomena of uncertainty in real life situation. Azriel Rosenfeld introduced fuzzy graphs in 1975[12], which is growing fast and has numerous applications in various fields. Nagoor Gani and Radha [11] introduced regular fuzzy graphs, total degree and totally regular fuzzy graphs. Alison Northup [2] studied some properties on (2,k)-regular graphs in her bachelor thesis. N.R. Santhi Maheswari and C. Sekar introduced d_2 of a vertex in graphs[13] and also discussed some properties on d_2 of a vertex in graphs[14]. Further they introduced (r, 2, k)-regular graphs and studied some properties on (r, 2, k)-regular graphs[15]. In this paper, we define d_2 -degree and total d_2 -degree of a vertex in fuzzy graphs. Further we study (2, k)-regularity and totally (2, k)-regularity of fuzzy graphs and the relation between (2, k)-regularity and totally (2, k)-regularity. Also we study (2, k)-regularity on path on four vertices, barbell graph $B_{n,n}$, n > 1 and cycle C_n with some specific membership functions.

2 Some Definitions

We give some known definitions as a ready reference for the present study.

Definition 2.1. For a given graph G, the d_2 -degree of a vertex v in G, denoted by $d_2(v)$ means number of vertices at a distance two away from v.

Definition 2.2. A graph G is said to be (2, k)-regular $(d_2$ -regular) if $d_2(v) = k$, for all v in G. We observe that (2, k)-regular graphs and semiregular graphs and d_2 -regular graphs are the same.

Definition 2.3. A graph G is said to be (r, 2, k)-regular if d(v) = r and $d_2(v) = k$, for all v in G.

Definition 2.4. A Fuzzy graph denoted by $G : (\sigma, \mu)$ on graph $G^* : (V, E)$ is a pair of functions (σ, μ) where $\sigma : V \to [0, 1]$ is a fuzzy subset of a non empty set V and $\mu : V \times V \to [0, 1]$ is a symmetric fuzzy relation on σ such that for all u, v in V the relation $\mu(u, v) = \mu(uv) \leq \sigma(u) \wedge \sigma(v)$ is satisfied. A fuzzy graph G is complete if $\mu(u, v) = \mu(uv) = \sigma(u) \wedge \sigma(v)$ for all $u, v \in V$ where uv denotes the edge between u and v. $G^* : (V, E)$ is called the underlying crisp graph of the fuzzy graph $G : (\sigma, \mu)$. σ and μ are called membership function.

Definition 2.5. Let $G : (\sigma, \mu)$ be a fuzzy graph. The degree of a vertex u is $d_G(u) = \sum_{u \neq v} \mu(uv)$ for $uv \in E$ and $\mu(uv) = 0$ for uv not in E; this is equivalent to $d_G(u) = \sum_{uv \in E} \mu(uv)$.

Definition 2.6. The strength of connectedness between two vertices u and v is $\mu^{\infty}(u, v) = \sup\{\mu^k(u, v) | k = 1, 2, ...\}$ where $\mu^k(u, v) = \sup\{\mu(uu_1) \land \mu(u_1u_2) \land \ldots \land \land \mu(u_{k-1}v)/u, u_1, u_2, \ldots, u_{k-1}, v$ is a path connecting u and v of length $k\}$.

Definition 2.7. Let $G : (\sigma, \mu)$ be a fuzzy graph on $G^* : (V, E)$. If d(v) = k for all $v \in V$, then G is said to be regular fuzzy graph of degree k.

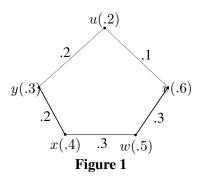
Definition 2.8. Let $G : (\sigma, \mu)$ be a fuzzy graph on $G^* : (V, E)$. The total degree of a vertex u is defined as $td(u) = \sum \mu(u, v) + \sigma(u) = d(u) + \sigma(u), uv \in E$. If each vertex of G has the same total degree k, then G is said to be totally regular fuzzy graph of degree k or k-totally regular fuzzy graph.

Remark 2.9. Let $G_1 : (\sigma_1, \mu_1)$ and $G_2 : (\sigma_2, \mu_2)$ denote two fuzzy graphs. Let $G_1^* : (V_1, E_1)$ and $G_2^* : (V_2, E_2)$ be respectively the underlying crisp graph such that $|V_i| = p_i, i = 1, 2$. Also $d_{Gi}^*(u_i)$ denotes degree of u_i in G_i^* .

3 d_2 -degree of a vertex in fuzzy graphs

Definition 3.1. Let $G : (\sigma, \mu)$ be a fuzzy graph. The d_2 -degree of a vertex u in G is $d_2(u) = \sum \mu^2(u, v)$, where $\mu^2(u, v) = \sup\{\mu(u, u_1) \land \mu(u_1, v)\}$. Also $\mu(uv) = 0$, for uv not in E. The minimum d_2 -degree of G is $\delta_2(G) = \land \{d_2(v) : v \in V\}$. The maximum d_2 -degree of G is $\Delta_2(G) = V\{d_2(v) : v \in V\}$.

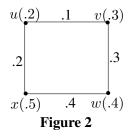
Example 3.2. Consider $G^* : (V, E)$ where $V = \{u, v, w, x, y\}$ and $E = \{uv, vw, wx, xy, yu\}$. Define $G : (\sigma, \mu)$ by $\sigma(u) = .2, \sigma(v) = .6, \sigma(w) = .5, \sigma(x) = .4, \sigma(y) = .3$ and $\mu(uv) = .1, \mu(vw) = .3, \mu(wx) = .3, \mu(xy) = .2, \mu(yu) = .2$



Here,
$$d_2(u) = \{.1 \land .3\} + \{.2 \land .2\} = .1 + .2 = .3.$$

 $d_2(v) = \{.1 \land .2\} + \{.3 \land .3\} = .1 + .3 = .4.$
 $d_2(w) = \{.3 \land .2\} + \{.3 \land .1\} = .2 + .1 = .3.$
 $d_2(x) = \{.2 \land .2\} + \{.3 \land .3\} = .2 + .3 = .5.$
 $d_2(y) = \{.1 \land .2\} + \{.2 \land .3\} = .1 + .2 = .3.$

Example 3.3. Consider G^* : (V, E) where $V = \{u, v, w, x\}$ and $E = \{uv, vw, wx, xu\}$. Define G: (σ, μ) by $\sigma(u) = .2, \sigma(v) = .3, \sigma(w) = .4, \sigma(x) = .5$ and $\mu(uv) = .1, \mu(vw) = .3, \mu(wx) = .4, \mu(xu) = .2$.



Here,
$$d_2(u) = Sup\{.1 \land .3, .2 \land .4\} = Sup\{.1, .2\} = .2,$$

 $d_2(v) = Sup\{.1 \land .2, .3 \land .4\} = Sup\{.1, .3\} = .3,$
 $d_2(w) = Sup\{.4 \land .2, .3 \land .1\} = Sup\{.2, .1\} = .2,$
 $d_2(x) = Sup\{.2 \land .1, .4 \land .3\} = Sup\{.1, .3\} = .3.$

4 (2, k)-regular and totally (2, k)-regular graphs

Definition 4.1. Let $G : (\sigma, \mu)$ be a fuzzy graph on $G^* : (V, E)$. If $d_2(v) = k$ for all $v \in V$, then G is said to be (2, k)-regular fuzzy graph.

Example 4.2. Consider G^* : (V, E) where $V = \{u, v, w, x, y\}$ and $E = \{uv, vw, wx\}$. Define G: (σ, μ) by $\sigma(u) = .2, \sigma(v) = .3, \sigma(w) = .4, \sigma(x) = .5$, and $\mu(uv) = .2, \mu(vw) = .2, \mu(wx) = .2$.

C. Sekar and N.R. Santhimaheswari

$$u(\underline{.2}) \underline{.2} v(\underline{.3}) \underline{.2} w(\underline{.4}) \underline{.2} x(\underline{.5})$$

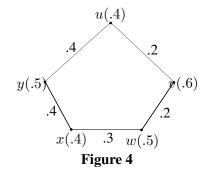
Figure 3

Here $d_2(u) = .2, d_2(v) = .2, d_2(w) = .2, d_2(x) = .2$. This graph is a (2, .2)- regular fuzzy graph.

Definition 4.3. Let $G : (\sigma, \mu)$ be a fuzzy graph on $G^* : (V, E)$. The total d_2 -degree of a vertex $u \in V$ is defined as $td_2(u) = \sum \mu^2(u, v) + \sigma(u) = d_2(u) + \sigma(u)$.

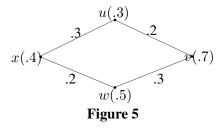
Definition 4.4. If each vertex of G has the same total d_2 - degree k, then G is said to be totally (2, k)-regular fuzzy graph.

Example 4.5. A totally (2, k)-regular fuzzy graph need not be a (2, k)-regular fuzzy graph. Consider $G^* : (V, E)$ where $V = \{u, v, w, x, y\}$ and $E = \{uv, vw, wx, xy, yu\}$.



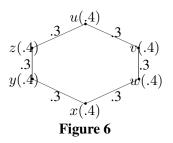
Here $d_2(u) = .6, d_2(v) = .4, d_2(w) = .5, d_2(x) = .6, d_2(y) = .5$ and $td_2(u) = 1, td_2(v) = 1, td_2(w) = 1, td_2(x) = 1, td_2(y) = 1$. Each vertex has same total d_2 -degree 1. So G is totally (2, 1)-regular fuzzy graph. But G is not (2, k)-regular fuzzy graph.

Example 4.6. A (2, k)-regular fuzzy graph need not be a totally (2, k)-regular fuzzy graph. Consider $G^* : (V, E)$ where $V = \{u, v, w, x\}$ and $E = \{uv, vw, wx, xu\}$.



Here $d_2(u) = .2, d_2(v) = .2, d_2(w) = .2, d_2(x) = .2$ and $td_2(u) = .5, td_2(v) = .9, td_2(w) = .7, td_2(x) = .6$. Each vertex has the same d_2 -degree .2. So G is (2, .2)-regular fuzzy graph. But G is not a totally (2, k)-regular fuzzy graph.

Example 4.7. A (2, k)-regular fuzzy graph which is totally (2, k)-regular fuzzy graph. Consider G^* : (V, E) where $V = \{u, v, w, x, y, z\}$ and $E = \{uv, vw, wx, xy, yz, zu\}$.



Here $d_2(u) = .6, d_2(v) = .6, d_2(w) = .6, d_2(x) = .6, d_2(y) = .6, d_2(z) = .6$ and $td_2(u) = .1, td_2(v) = 1, td_2(w) = 1, td_2(x) = 1, td_2(y) = 1, td_2(z) = 1$. Each vertex has the same d_2 -degree 6. So G is a (2, .6)-regular fuzzy graph. Each vertex has the same total d_2 -degree 1. So G is a totally (2, 1)-regular fuzzy graph.

Theorem 4.8. Let $G : (\sigma, \mu)$ be fuzzy graph on $G^* : (V, E)$. Then $\sigma(u) = c$, for all $u \in V$ if and only if the following conditions are equivalent.

- 1. $G: (\sigma, \mu)$ is a (2, k)-regular fuzzy graph.
- 2. $G: (\sigma, \mu)$ is a totally (2, k + c)-regular fuzzy graph.

Proof: Suppose that $\sigma(u) = c$, for all $u \in V$.

Assume that $G: (\sigma, \mu)$ is a (2, k)-regular fuzzy graph. Then $d_2(u) = k$, for all $u \in V$.

Hence, $td_2(u) = d_2(u) + \sigma(u)$, for all $u \in V \Rightarrow td_2(u) = k + c$, for all $u \in V$. Hence, $G : (\sigma, \mu)$ is a totally (2, k + c)-regular fuzzy graph.

Thus $(1) \Rightarrow (2)$ is proved.

Suppose $G: (\sigma, \mu)$ is a totally (2, k + c)-regular fuzzy graph.

$$\Rightarrow td_2(u) = k + c, \quad \text{for all } u \in V.$$

$$\Rightarrow d_2(u) + \sigma(u) = k + c, \quad \text{for all } u \in V.$$

$$\Rightarrow d_2(u) + c = k + c, \quad \text{for all } u \in V.$$

$$\Rightarrow d_2(u) = k, \quad \text{for all } u \in V.$$

Hence $G : (\sigma, \mu)$ is a (2, k)-regular fuzzy graphs. Hence (1) and (2) are equivalent. Conversely assume that (1) and (2) are equivalent. Let $G : (\sigma, \mu)$ is a totally (2, k+c)-regular fuzzy graph and (2, k)-regular fuzzy graph.

$$\Rightarrow td_2(u) = k + c \text{ and } d_2(u) = k, \quad \text{for all } u \in V.$$

$$\Rightarrow d_2(u) + \sigma(u) = k + c \text{ and } d_2(u) = k, \quad \text{for all } u \in V.$$

$$\Rightarrow d_2(u) + \sigma(u) = k + c \text{ and } d_2(u) = k, \quad \text{for all } u \in V.$$

$$\Rightarrow \sigma(u) = c, \quad \text{for all } u \in V.$$

Hence $\sigma(u) = c$, for all $u \in V$.

5 (2, k)-regularity on a path on four vertices with some specific membership functions

In this section, (2, k)-regularity on a path on four vertices is studied with some specific membership functions.

Theorem 5.1. Let $G : (\sigma, \mu)$ be a fuzzy graph such that $G^* : (V, E)$ is a path on four vertices. Then, $G : (\sigma, \mu)$ is a (2, k)-regular fuzzy graph if $\mu(uv) = k$ for all $uv \in E$.

Proof: Suppose that μ is a constant function say $\mu(uv) = k$ for all $uv \in E$, then $d_2(v) = k$, for all $v \in V$. Hence, G is a (2, k)-regular fuzzy graph.

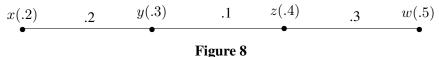
Remark 5.2. Converse of Theorem 5.1 need not be true. For example, consider a fuzzy graph $G : (\sigma, \mu)$ such that $G^* : (V, E)$ is a path on four vertices.

$$x(\underline{.2})$$
 .2 $y(\underline{.3})$.3 $z(\underline{.4})$.2 $w(\underline{.5})$
Figure 7

Here $d_2(x) = .2, d_2(y) = .2, d_2(z) = .2, d_2(w) = .2$. So G is (2, .2)-regular. But μ is not a constant function.

Theorem 5.3. Let $G : (\sigma, \mu)$ be a fuzzy graph such that $G^* : (V, E)$ is a path on four vertices. If the alternate edges have the same membership values, then G is a (2, k)-regular fuzzy graph, where $k = min\{c_1, c_2\}$.

Theorem 5.4. Let $G : (\sigma, \mu)$ be a fuzzy graph such that $G^* : (V, E)$ is a path on four vertices. If middle edge have membership value less than membership value of the remaining edges, then G is a (2, k)-regular fuzzy graph, where k =membership value of the middle edge. For example, Consider a fuzzy graph $G : (\sigma, \mu)$ such that $G^* : (V, E)$ is a path on four vertices.



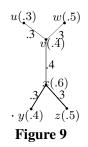
Here $d_2(x) = .1, d_2(y) = .1, d_2(z) = .1, d_2(w) = .1$. So G is (2, .1)-regular.

Remark 5.5. If σ is not a constant function, then the (2, k)-regular fuzzy graphs in Theorems 5.1, 5.3 and 5.4 are not totally (2, k)-regular fuzzy graphs.

6 (2, k)-regularity on Barbell graph $B_{n,n}(n > 1)$ with some specific membership functions

In this section, (2, k)-regularity on barbell graph $B_{n,n}(n > 1)$. is studied with some specific membership functions **Theorem 6.1.** Let $G : (\sigma, \mu)$ be a fuzzy graph such that $G^* : (V, E)$ is a Barbell graph $B_{n,n}$ of order 2*n*. If μ is a constant function, then G is a (2, k)-regular fuzzy graph where $k = n\mu(uv)$.

Remark 6.2. Converse of Theorem 6.1 need not be true. For example, consider a fuzzy graph $G : (\sigma, \mu)$ such that $G^* : (V, E)$ is a barbell graph $B_{2,2}$ of order 6.



Here, $d_2(u) = .6$, $d_2(v) = .6$, $d_2(w) = .6$, $d_2(x) = .6$, $d_2(y) = .6$. This graph is a (2, .6)-regular fuzzy graph. But μ is not a constant function.

Theorem 6.3. Let $G : (\sigma, \mu)$ be a fuzzy graph such that $G^* : (V, E)$ is the barbell graph $B_{n,n}(n > 1)$. If the pendant edges have the same membership values less than or equal to membership value of the middle edge, then G is a (2, nk)-regular fuzzy graph where k = membership value of the pendant edges.

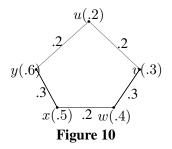
Remark 6.4. If σ is not a constant function, then the (2, k)-regular fuzzy graphs in Theorems 6.1 and 6.3 are not totally (2, k)-regular fuzzy graphs.

7 (2, k)-regularity on a cycle with some specific membership functions

In this section, (2, k)-regularity on cycle C_n is studied with some specific membership functions

Theorem 7.1. Let $G : (\sigma, \mu)$ be a fuzzy graph such that $G^* : (V, E)$ is cycle of length ≥ 4 . If μ is a constant function, then G is a (2, k)-regular fuzzy graph where $k = 2\mu(uv)$.

Remark 7.2. Converse of Theorem 7.1 need not be true. For example, consider a fuzzy graph $G : (\sigma, \mu)$ such that $G^* : (V, E)$ is an odd cycle of length five.



Here, $d_2(u) = .4, d_2(v) = .4, d_2(w) = .4, d_2(x) = .4, d_2(y) = .4$. So G is a (2,.4)-regular fuzzy graph. But μ is not a constant function.

Theorem 7.3. Let $G : (\sigma, \mu)$ be a fuzzy graph such that $G^* : (V, E)$ is an even cycle. If the alternate edges have the same membership values, then G is a (2, k)-regular fuzzy graph.

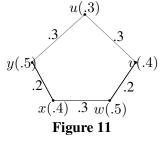
Proof: If the alternate edges have the same membership values, then

 $\mu(e_i) = \begin{cases} c_1, & \text{if } i \text{ is odd} \\ c_2, & \text{if } i \text{ is even.} \end{cases}$ If $c_1 = c_2$, then μ is a constant function. So G is a $(2, 2c_1)$ -regular fuzzy graph. If $c_1 < c_2$, then $d_2(v) = 2c_1$, for all $v \in V$. So G is a $(2, 2c_1)$ -regular fuzzy graph. If $c_1 > c_2$, then $d_2(v) = 2c_2$, for all $v \in V$. So G is a $(2, 2c_2)$ -regular fuzzy graph.

Remark 7.4. Even if the alternate edges of a fuzzy graph whose underlyig graph is an even cycle have the same membership values, G need not be a totally (2, k)-regular fuzzy graph, since if σ is not a constant function then G is not a totally (2, k)-regular fuzzy graph.

Remark 7.5. Let $G : (\sigma, \mu)$ be a fuzzy graph such that $G^* : (V, E)$ is an odd cycle of length ≥ 5 . Even if the alternate edges have the same membership values, G need not be (2, k)-regular fuzzy graph, since if σ is not a constant function then G is not a totally (2, k)-regular fuzzy graphs.

For example, consider a fuzzy graph $G : (\sigma, \mu)$ such that $G^* : (V, E)$ is an odd cycle of length five.



Here $d_2(u) = .4, d_2(v) = .5, d_2(w) = .4, d_2(x) = .4, d_2(y) = .5, d_2(x) \neq d_2(y)$. So G is not a (2, k)-regular fuzzy graph.

Theorem 7.6. Let $G : (\sigma, \mu)$ be a fuzzy graph such that $G^* : (V, E)$ is any cycle of length ≥ 4 . Let $\mu(e_i) = \begin{cases} c_1, & \text{if } i \text{ is odd} \\ c_2 \geq c_1 & \text{if } i \text{ is even.} \end{cases}$ Then G is a (2, k)-regular fuzzy graph.

 $\begin{array}{l} \mbox{Proof: Let } \mu(e_i) = \left\{ \begin{array}{ll} c_1, & \mbox{if i is odd} \\ c_2 \geq c_1, & \mbox{if i is even} \end{array} \right. \\ \mbox{Case 1. Let } G \ : \ (\sigma, \mu) \ \mbox{be a fuzzy graph such that } G^* \ : \ (V, E) \ \mbox{is an even cycle of length} \leq \ 4. \end{array} \right.$

Case 1. Let $G : (\sigma, \mu)$ be a fuzzy graph such that $G^* : (V, E)$ is an even cycle of length ≤ 4 . $d_2(v_i) = \{c_1 \land c_2\} + \{c_2 \land c_1\} = c_1 + c_1 = 2c_1$, for all $v \in V$. So G is a $(2, 2c_1)$ -regular fuzzy graph. **Case 2.** Let $G : (\sigma, \mu)$ be a fuzzy graph such that $G^* : (V, E)$ is an odd cycle of length ≥ 5 . Let $e_1, e_2, e_3, \ldots, e_{2n+1}$ be the edges of an odd cycle of G^* in that order.

$$d_2(v_1) = \{\mu(e_1) \land \mu(e_2)\} + \{\mu(e_{2n}) \land \mu(e_{2n+1})\}$$

$$= \{c_1 \land c_2\} + \{c_2 \land c_1\} = c_1 + c_1 = 2c_1.$$

$$d_2(v_2) = \{\mu(e_1) \land \mu(e_{2n+1})\} + \{\mu(e_2) \land \mu(e_3)\}$$

$$= \{c_1 \land c_1\} + \{c_2 \land c_1\} = c_1 + c_1 = 2c_1.$$

For $i = 3, 4, 5, \dots, 2n$

$$d_2(v_i) = \{\mu(e_{i-1}) \land \mu(e_{i-2})\} + \{\mu(e_{i+1}) \land \mu(e_{i+2})\}$$

$$= \{c_1 \land c_2\} + \{c_2 \land c_1\} = c_1 + c_1 = 2c_1.$$

$$d_2(v_{2n}) = \{\mu(e_1) \land \mu(e_{2n+1})\} + \{\mu(e_{2n}) \land \mu(e_{2n-1})\}$$

$$= \{c_1 \land c_1\} + \{c_2 \land c_1\} = c_1 + c_1 = 2c_1.$$

$$d_2(v_i) = 2c_1, \text{ for all } v \in V.$$

So G is a $(2, 2c_1)$ -regular fuzzy graph.

Remark 7.7. Let $G: (\sigma, \mu)$ be fuzzy graph such that $G^*: (V, E)$ is any cycle of length ≥ 4 . Even if $\mu(e_i) = \begin{cases} c_1, & \text{if } i \text{ is odd} \\ c_2 \geq c_1, & \text{if } i \text{ is even} \end{cases}$ G need not be a totally (2, k)-regular fuzzy graph, since if σ is not a constant function then G is not a totally (2, k)-regular fuzzy graph.

Theorem 7.8. Let $G : (\sigma, \mu)$ be a fuzzy graph such that $G^* : (V, E)$ is an odd cycle of length ≥ 5 and $\mu(e_i) = \begin{cases} c_1, & \text{if } i \text{ is odd} \\ \text{membership value } x \geq c_1 & \text{if } i \text{ is even.} \\ \text{where } x \text{ is not a constant} \end{cases}$

Then G is a $(2,k)\mbox{-regular}$ fuzzy graph.

Proof: Let $\mu(e_i) = \begin{cases} c_1, & \text{if } i \text{ is odd} \\ \text{membership value } x \ge c_1 & \text{if } i \text{ is even} \\ \text{where } x \text{ is not a constant} \end{cases}$

Case 1: Let $G : (\sigma, \mu)$ be a fuzzy graph such that $G^* : (V, E)$ is an even cycle of length ≥ 4 . $d_2(v_i) = \{c_1 \land x\} + \{x \land c_1\} = c_1 + c_1 = 2c_1$, for all $v \in V$. So G is a $(2, 2c_1)$ -regular fuzzy graph. **Case 2:** Let $G : (\sigma, \mu)$ be a fuzzy graph such that $G^* : (V, E)$ is an odd cycle of length ≥ 5 . Let $e_1, e_2, e_3, \ldots, e_{2n+1}$ be the edges of an odd cycle of G^* in that order.

$$d_2(v_1) = \{\mu(e_1) \land \mu(e_2)\} + \{\mu(e_{2n}) \land \mu(e_{2n+1})\}$$

= $\{c_1 \land x\} + \{x \land c_1\} = c_1 + c_1 = 2c_1.$
$$d_2(v_2) = \{\mu(e_1) \land \mu(e_{2n+1})\} + \{\mu(e_2) \land \mu(e_3)\}$$

= $\{c_1 \land c_1\} + \{x \land c_1\} = c_1 + c_1 = 2c_1.$

For $i = 3, 4, 5, \dots, 2n$

$$d_2(v_i) = \{\mu(e_{i-1}) \land \mu(e_{i-2})\} + \{\mu(e_{i+1}) \land \mu(e_{i+2})\}$$

= $\{c_1 \land x\} + \{x \land c_1\} = c_1 + c_1 = 2c_1.$
$$d_2(v_{2n}) = \{\mu(e_1) \land \mu(e_{2n+1})\} + \{\mu(e_{2n}) \land \mu(e_{2n-1})\}$$

= $\{c_1 \land c_1\} + \{x \land c_1\} = c_1 + c_1 = 2c_1.$
$$d_2(v_i) = 2c_1, \text{ for all } v \in V.$$

So G is a $(2, 2c_1)$ -regular fuzzy graph.

Remark 7.9. Let
$$G : (\sigma, \mu)$$
 be a fuzzy graph such that $G^* : (V, E)$ is an odd cycle of length ≥ 5 .
Even if $\mu(e_i) = \begin{cases} c_1, & \text{if } i \text{ is odd} \\ membership \ value \ x \geq c_1 & \text{if } i \text{ is even}, \\ where \ x \ is \ not \ a \ constant \end{cases}$

then G need not be a totally (2, k)-regular fuzzy graph, since if σ is not a constant function then G is not a totally (2, k)-regular fuzzy graph.

Acknowledgement: The authors are thankful to the anonymous refree for his /her valuable suggestions.

References

- Y. Alavi, Gary Chartrand, F. R. K. Chang, Paul Erdos, R. L. Graham and R. Ollermann, *Highly Irregular graphs*, J. Graph Theory, 11(2) (1987), 235-249.
- [2] Alison Northup, A Study of Semi-regular Graphs, Bachelors thesis, Stetson University (2002).
- [3] G. S.Bloom, J. K. Kennedy and L.V. Quintas, *Distance Degree Regular Graphs*, The theory and applications of Graphs, Wiley, New York, (1981) 95-108.
- [4] J. A. Bondy and U.S.R .Murty, Graph Theory with Applications, MacMillan, London (1979).
- [5] P. Bhattachara, Some Remarks on Fuzzy Graphs, Pattern Recognition Lett., 6 (1987), 297-302.
- [6] K. R. Bhutani, On Automorphism of fuzzy Graphs, Pattern Recognition Lett., 12 (1991), 413-420.
- [7] F. Harary, Graph theory, Addition Wesley (1969).
- [8] John N. Mordeson and Premchand S.Nair, *Fuzzy graphs and Fuzzy Hypergraphs*, Physica-Verlag, Heidelberg, (2000).
- [9] A. Nagoor Gani and M. Basheer Ahamed, *Order and Size in Fuzzy Graph*, Bulletin of Pure and Applied Sciences, 22E(1) (2003), 145-148.

- [10] A. Nagoor Gani and S. R. Latha, On Irregular Fuzzy graphs, Applied Mathematics Sciences, 6 (11)(2012), 517-523.
- [11] A. Nagoor Gani and K. Radha, *On Regular Fuzzy graphs*, Journal of Physical Science, 12 (2008), 33-40.
- [12] A. Rosenfeld, Fuzzy Graphs, In:L.A.Zadeh, K.S. Fu, M.Shimura, Eds., Fuzzy Sets and Their Applications, Academic press (1975), 77–95.
- [13] N. R. Santhi Maheswari and C. Sekar, (*r*,2,*r*(*r*-1)-*regular graphs*, International Journal of Mathematics and soft Computing, 2(2) (2012), 25-33.
- [14] N. R. Santhi Maheswari and C. Sekar (r, 2, (r-1) (r-1))-regular graphs, International Journal of Mathematics and Combinatorics, 4 (2012), 25-33.
- [15] N. R. Santhi Maheswari and C. Sekar, On d_2 of a vertex in Product of Graphs, ICODIMA (2013), Periyar Maniammai University, Thanjavur.