Prime cordial labeling of some special graph families

G. V. Ghodasara
H. \& H. B. Kotak Institute of Science
Rajkot, Gujarat, India.
E-mail: gaurang_enjoy@yahoo.co.in
\section*{J. P. Jena}
L. E. College, Morbi
Gujarat, India.
E-mail: jasminjena.bls@gmail.com

Abstract

A bijection f from vertex set V of a graph G to $\{1,2, \ldots,|V|\}$ is called a prime cordial labeling of G if each edge $u v$ is assigned the label 1 if $\operatorname{gcd}(f(u), f(v))=1$ and 0 if $\operatorname{gcd}(f(u), f(v))>1$, where the number of edges labeled with 0 and the number of edges labeled with 1 differ by at most 1. In this paper we exhibit some new constructions on prime cordial graphs.

Keywords: Petersen graph, fan, flower, cycle with triangle, prime cordial graph.
AMS Subject Classification(2010): 05C78.

1 Introduction

Graph labeling is a strong relation between numbers and structure of graphs. A useful survey to know about the numerous graph labeling methods is given by J. A. Gallian[5]. By combining the relatively prime concept in number theory and cordial labeling concept[4] in graph labeling, Sundaram et al.[10] introduced the concept called prime cordial labeling. A bijection f from vertex set $V(G)$ to $\{1,2, \ldots,|V(G)|\}$ of a graph G is called a prime cordial labeling of G if for each edge $e=u v \in E$,

$$
\begin{aligned}
f^{*}(e=u v) & =1 ; \text { if } \operatorname{gcd}(f(u), f(v))=1 \\
& =0 ; \text { if } \operatorname{gcd}(f(u), f(v))>1
\end{aligned}
$$

then $\left|e_{f}(0)-e_{f}(1)\right| \leq 1$, where $e_{f}(0)$ is the number of edges labeled with 0 and $e_{f}(1)$ is the number of edges labeled with 1.

In [1],[2],[9], the following graphs are proved to have prime cordial labeling: C_{n} if and only if $n \geq 6$; P_{n} if and only if $n \neq 3$ or $5 ; K_{1, n}(n$ odd $)$; the graph obtained by subdividing each edge of $K_{1, n}$ if and only if $n \geq 3$.
S. K. Vaidya et al.[11],[12],[13] proved that the square graph of path P_{n} is a prime cordial graph for $n=6$ and $n \geq 8$ while the square graph of cycle C_{n} is a prime cordial graph for $n \geq 10$. They also proved that the shadow graph of $K_{1, n}$ for $n \geq 4$, the shadow graph of $B_{n, n}$ for all n, certain cycle related graphs, the graphs obtained by mutual duplication of a pair of edges as well as mutual duplication of
a pair of vertices from each of two copies of cycle C_{n} admit prime cordial labeling. Haque et al.[7] proved that the generalized Petersen graph is prime cordial. S. Babitha and J. Baskar Babujee[3] exhibit some characterization results and new constructions on prime cordial graphs. G. V. Ghodasara and J. P. Jena[6] discussed prime cordial labeling for the graph related to cycle with one chord, cycle with twin chord and cycle with triangle.

Definition 1.1. The Petersen graph is 3 -regular undirected graph with 10 vertices and 15 edges.
Definition 1.2. The fan graph is denoted by F_{n} and described as $F_{n}=P_{n}+K_{1}$, where P_{n} indicates the path graph with n vertices.

Definition 1.3. The helm H_{n} is the graph obtained from a wheel graph W_{n} by attaching a pendant vertex through an edge to each rim vertex of W_{n}.

Definition 1.4. The flower $F l_{n}$ is the graph obtained from a helm H_{n} by joining each pendant vertex of the helm to the apex vertex. Here the pendant vertices of helm H_{n} are referred as external vertices of $F l_{n}$.

Definition 1.5. A cycle with triangle is a cycle with three chords which by themselves form a triangle.
For positive integers p, q, r and $n \geq 6$ with $p+q+r+3=n, C_{n}(p, q, r)$ denotes a cycle with triangle whose edges form the edges of cycles C_{p+2}, C_{q+2} and C_{r+2} without chords.

Notation 1.6. The floor and ceiling functions map a real number to the largest previous or the smallest following integer respectively. More precisely, $\operatorname{floor}(x)=\lfloor x\rfloor$ is the largest integer not greater than x and ceiling $(x)=\lceil x\rceil$ is the smallest integer not less than x.

2 Main Results

Theorem 2.1. The graph G obtained by joining two copies of Petersen graph by a path of arbitrary length is prime cordial.

Proof: Let G be the graph obtained by joining two copies of Petersen graph by a path P_{k} of length $k-1$. Let $u_{1}, u_{2}, \ldots u_{5}$ and $u_{6}, u_{7}, \ldots u_{10}$ be external and internal vertices of first copy of petersen graph respectively. Here each u_{i} is adjacent to $u_{i+5}, i=1,2,3,4,5$. Similarly let $w_{1}, w_{2}, \ldots w_{5}$ and $w_{6}, w_{7}, \ldots w_{10}$ be external and internal vertices of second copy of petersen graph respectively. Here each w_{i} is adjacent to w_{i+5}, si $=1,2,3,4,5$. Let $v_{1}, v_{2}, \ldots v_{k}$ be successive vertices of path P_{k} with $v_{1}=u_{1}$ and $v_{k}=w_{1}$.

We define a labeling function $f: V(G) \rightarrow\{1,2, \ldots, k+18\}$ as follows.

$$
\begin{aligned}
f\left(u_{i}\right) & =4 i-3 ; 1 \leq i \leq 5 \\
& =4(i-5)-1 ; 6 \leq i \leq 10 \\
f\left(v_{j}\right) & =2 i+17 ; 2 \leq j \leq\left\lceil\frac{k}{2}\right\rceil
\end{aligned}
$$

$$
\begin{aligned}
& =2 i-\left\lceil\frac{k}{2}\right\rceil+20 ;\left(\left\lceil\frac{k}{2}\right\rceil+1\right) \leq i \leq k-1, \\
f\left(w_{i}\right) & =4 i-2 ; 1 \leq i \leq 5, \\
& =4(i-5) ; 6 \leq i \leq 10 .
\end{aligned}
$$

The labeling defined above satisfies the conditions of prime cordial labeling and hence the graph under consideration is a prime cordial graph.

Illustration 2.2. A prime cordial labeling of the graph obtained by joining two copies of the Petersen graph by a path P_{8} is shown in Figure 1.

Figure 1: Prime cordial labeling of graph obtained by joining two copies of petersen graph by a path P_{8}.

Theorem 2.3. The graph G obtained by joining two copies of fan graph F_{n} by a path of arbitrary length is prime cordial.

Proof: Let G be the graph obtained by joining two copies of fan graph F_{n} by a path P_{k} of length $k-1$. Let us denote the successive vertices of first copy of fan graph by $u_{1}, u_{2}, \ldots, u_{n+1}$ and the successive vertices of second copy of fan graph by $w_{1}, w_{2}, \ldots, w_{n+1}$. Let $v_{1}, v_{2}, \ldots, v_{k}$ be the vertices of path P_{k} with $v_{1}=u_{1}$ and $v_{k}=w_{1}$. Note that for $n=2, F_{2}$ is a cycle C_{3} and it is already proved in [11] that the graph obtained by joining two copies of cycles by a path of arbitrary length is prime cordial. Hence we consider the case for $n \geq 3$. We define a labeling function $f: V(G) \rightarrow\{1,2, \ldots, 2 n+k-2\}$ as follows.

Case 1: k is even.
In this case define f as:

$$
\begin{aligned}
f\left(u_{1}\right) & =f\left(v_{1}\right)=2, f\left(w_{1}\right)=f\left(v_{k}\right)=1, \\
f\left(u_{2}\right) & =4, f\left(v_{\frac{k}{2}}\right)=6, \\
f\left(u_{i}\right) & =k+2(i-1) ; 3 \leq i \leq n, \\
f\left(v_{j}\right) & =6+2(j-1) ; 2 \leq j \leq \frac{k}{2}-1 \\
& =2 j-k+1 ; \frac{k}{2}+1 \leq j \leq k-1,
\end{aligned}
$$

$$
f\left(w_{i}\right)=k+2 i-3 ; 1 \leq i \leq n
$$

Case 2: k is odd.
In this case define f as:

$$
\begin{aligned}
f\left(u_{1}\right) & =f\left(v_{1}\right)=2, f\left(w_{1}\right)=f\left(v_{k}\right)=1 \\
f\left(u_{2}\right) & =4, f\left(v_{\frac{k-1}{2}}\right)=6 \\
f\left(u_{i}\right) & =k+2 i-3 ; 3 \leq i \leq n \\
f\left(v_{j}\right) & =6+2(j-1) ; 2 \leq j \leq \frac{k-3}{2} \\
& =2(j+1)-k ; \frac{k+1}{2} \leq j \leq k-1 \\
f\left(w_{i}\right) & =k+2(i-1) ; 1 \leq i \leq n
\end{aligned}
$$

In each case f satisfies the conditions of prime cordial labeling and hence the graph under consideration is a prime cordial graph.

Illustration 2.4. Prime cordial labeling of the graph obtained by joining two copies of F_{8} by a path P_{7} is shown in Figure 2.

Figure 2: Prime cordial labeling of graph obtained by joining two copies of F_{8} by path P_{7}.

Theorem 2.5. The graph G obtained by joining two copies of flower graph $F l_{n}$ by a path of arbitrary length is prime cordial.

Proof: Let G be the graph obtained by joining two copies of flower graph $F l_{n}$ by a path P_{k} of length $k-1$. Let u_{0} be the apex vertex, $u_{1}, u_{2}, \ldots, u_{n}$ be the rim vertices and $u_{1}^{\prime}, u_{2}^{\prime}, \ldots, u_{n}^{\prime}$ be the external vertices of first copy of flower $F l_{n}$. Let w_{0} be the apex vertex, $w_{1}, w_{2}, \ldots, w_{n}$ be the rim vertices and $w_{1}^{\prime}, w_{2}^{\prime}, \ldots, w_{n}^{\prime}$ be the external vertices of second copy of flower $F l_{n}$. Let $v_{1}, v_{2}, \ldots, v_{k}$ be the vertices of path P_{k} with $v_{1}=u_{1}$ and $v_{k}=w_{1}$.

We define a labeling function $f: V(G) \rightarrow\{1,2, \ldots, 2 n+k-2\}$ as follows.
Case 1: $k=2$.
In this case define f as:

$$
\begin{aligned}
& f\left(u_{1}\right)=f\left(v_{1}\right)=4 \\
& f\left(w_{1}\right)=f\left(v_{2}\right)=3 \\
& f\left(u_{0}\right)=2, f\left(w_{0}\right)=1
\end{aligned}
$$

$$
\begin{aligned}
f\left(w_{1}^{\prime}\right) & =7 \\
f\left(u_{i}\right) & =2(i+1) ; 1 \leq i \leq n \\
f\left(u_{i}^{\prime}\right) & =2(n+i+1) ; 1 \leq i \leq n, \\
f\left(w_{i}\right) & =8 i-1 ; 2 \leq i \leq\left\lceil\frac{n}{2}\right\rceil \\
& =8(n-i)+9 ;\left(\left\lceil\frac{n}{2}\right\rceil+1\right) \leq i \leq n, \\
f\left(w_{i}^{\prime}\right) & =8 i-5 ; 2 \leq i \leq\left\lceil\frac{n}{2}\right\rceil \\
& =8(n-i)+5 ;\left(\left\lceil\frac{n}{2}\right\rceil+1\right) \leq i \leq n .
\end{aligned}
$$

Case 2: $k=3$.
In this case define f as:

$$
\begin{aligned}
f\left(u_{1}\right) & =f\left(v_{1}\right)=4 \\
f\left(v_{2}\right) & =4 n+3 \\
f\left(w_{1}\right) & =f\left(v_{3}\right)=3, \\
f\left(u_{0}\right) & =2, f\left(w_{0}\right)=1, \\
f\left(w_{1}^{\prime}\right) & =7 \\
f\left(u_{i}\right) & =2(i+1) ; 1 \leq i \leq n, \\
f\left(u_{i}^{\prime}\right) & =2(n+i+1) ; 1 \leq i \leq n, \\
f\left(w_{i}\right) & =8 i-1 ; 2 \leq i \leq\left\lceil\frac{n}{2}\right\rceil \\
& =8(n-i)+9 ;\left(\left\lceil\frac{n}{2}\right\rceil+1\right) \leq i \leq n, \\
f\left(w_{i}^{\prime}\right) & =8 i-5 ; 2 \leq i \leq\left\lceil\frac{n}{2}\right\rceil \\
& =8(n-i)+5 ;\left(\left\lceil\frac{n}{2}\right\rceil+1\right) \leq i \leq n .
\end{aligned}
$$

Case 3: $k \geq 3$.
In this case define f as:

$$
\begin{aligned}
& f\left(u_{0}\right)=2, f\left(w_{0}\right)=1, \\
& f\left(w_{1}\right)=f\left(v_{k}\right)=3 \\
& f\left(w_{1}^{\prime}\right)=7 \\
& f\left(v_{\left\lfloor\frac{k}{2}\right\rfloor}\right)=4, \\
& f\left(u_{i}\right)
\end{aligned}=2(i+2) ; 1 \leq i \leq n, ~ \begin{aligned}
f\left(u_{i}^{\prime}\right) & =2(n+i+2) ; 1 \leq i \leq n, \\
f\left(w_{i}\right) & =8 i-1 ; 2 \leq i \leq\left\lceil\frac{n}{2}\right\rceil \\
& =8(n-i)+9 ;\left(\left\lceil\frac{n}{2}\right\rceil+1\right) \leq i \leq n, \\
f\left(w_{i}^{\prime}\right) & =8 i-5 ; 2 \leq i \leq\left\lceil\frac{n}{2}\right\rceil \\
& =8(n-i)+5 ;\left(\left\lceil\frac{n}{2}\right\rceil+1\right) \leq i \leq n,
\end{aligned}
$$

$$
\begin{aligned}
f\left(v_{j}\right) & =4 n+2(j+1) ; 2 \leq j \leq\left\lfloor\frac{k}{2}\right\rfloor-1 \\
& =4 n+2\left(j-\left\lfloor\frac{k}{2}\right\rfloor\right)+1 ;\left\lceil\frac{k}{2}\right\rceil \leq j \leq k
\end{aligned}
$$

One can observe that in each case the labeling defined above satisfies the conditions of prime cordial labeling and the graph under consideration is a prime cordial graph.

Illustration 2.6. The prime cordial labeling of the graph obtained by joining two copies of $F l_{6}$ by s path P_{9} is shown in Figure 3.

Figure 3: Prime cordial labeling of the graph obtained by joining two copies of $F l_{6}$ by a path P_{9}.
Theorem 2.7. The graph G obtained by joining two copies of cycle C_{n} with triangle by a path of arbitrary length is prime cordial.

Proof: Let G be the graph obtained by joining two copies of cycle C_{n} with triangle by path P_{k} of length $k-1$. Let $u_{1}, u_{2}, \ldots, u_{n}$ be the vertices of first copy of cycle with triangle. Let $w_{1}, w_{2}, \ldots, w_{n}$ be the vertices of second copy of cycle with triangle. Let $v_{1}, v_{2}, \ldots, v_{k}$ be the vertices of path P_{k} with $u_{1}=v_{1}$ and $v_{k}=w_{1}$. Let $e_{1}=u_{1} u_{3}, e_{2}=u_{3} u_{5}, e_{3}=u_{5} u_{1}$ be the chords in first copy of cycle C_{n} and $e_{1}^{\prime}=w_{1} w_{3}, e_{2}^{\prime}=w_{3} w_{5}, e_{3}^{\prime}=w_{5} w_{1}$ be the chords in second copy of cycle C_{n}. We define a labeling function $f: V(G) \rightarrow\{1,2, \ldots, 2 n+k-2\}$ as follows.
Case 1: k is even.
In this case define f as:

$$
\begin{aligned}
f\left(u_{1}\right) & =f\left(v_{1}\right)=1 \\
f\left(w_{1}\right) & =f\left(v_{k}\right)=k \\
f\left(u_{2}\right) & =3, f\left(u_{3}\right)=9, f\left(u_{4}\right)=5, f\left(u_{5}\right)=7 \\
f\left(u_{i}\right) & =2 i-1 ; 6 \leq i \leq n \\
f\left(v_{j}\right) & =2 n+2 j-3 ; 2 \leq i \leq \frac{k}{2} \\
& =2 j-k ; \frac{k}{2}+1 \leq i \leq k \\
f\left(w_{i}\right) & =k+2(i-1) ; 1 \leq i \leq n
\end{aligned}
$$

Case 2: k is odd.
In this case define f as:

$$
\begin{aligned}
& f\left(u_{1}\right)=f\left(v_{1}\right)=1 \\
& f\left(w_{1}\right)=f\left(v_{k}\right)=k-1
\end{aligned}
$$

```
\(f\left(u_{2}\right)=3, f\left(u_{3}\right)=9, f\left(u_{4}\right)=5, f\left(u_{5}\right)=7\),
\(f\left(u_{i}\right)=2 i-1 ; 6 \leq i \leq n\),
\(f\left(v_{j}\right)=2 n+2 j-3 ; 2 \leq i \leq \frac{k+1}{2}\)
    \(=2 j-(k+1) ; \frac{k+3}{2} \leq i \leq k\),
\(f\left(w_{i}\right)=k+2 i-3 ; 1 \leq i \leq n\).
```

In each case, the labeling defined above satisfies the conditions of prime cordial labeling and hence the graph under consideration is a prime cordial graph.

Illustration 2.8. The prime cordial labeling of the graph obtained by joining two copies of C_{7} with triangle by a path P_{6} is shown in Figure 4. It is the case related to k is even.

Figure 4: Prime cordial labeling of graph obtained by joining two copies of C_{7} with triangle by a path P_{6}.

References

[1] J. Baskar Babujee and S. Babitha, Prime Cordial Labeling on Graphs, International Journal Of Mathematical Sciences, 7(1)(2013).
[2] J. Baskar Babujee and L. Shobana, Prime Cordial Labeling, International Review of Pure and Applied Mathematics, 5(2)(2009), $277-282$.
[3] J. Baskar Babujee and L. Shobana, Prime and Prime Cordial Labeling, International Journal Contemp. Math. Sciences, 5(47)(2010), $2347-2356$.
[4] I. Cahit, Cordial graphs: A weaker version of graceful and harmonious graphs, Ars Combinatoria, 23(1987), 201 - 207.
[5] J. A. Gallian, A dynemic survey of graph labeling, The Electronics Journal of Combinatorics, 19(2012), $\sharp D S 6,1-260$.
[6] G. V. Ghodasara and J. P. Jena, Prime Cordial Labeling of the Graphs Related to Cycle With One Chord, Twin Chords and Triangle, International Journal of Pure and Applied Mathematics, Vol. 89, No. 1(2013).
[7] Haque, Kh. Md. Mominul, Xiaohui, Lin, Yuansheng, Yang, Pingzhong, Zhao, On the Prime cordial labeling of generalized Petersen graph, Utilitas Mathematica, 82(2010), 71 - 79.
[8] F. Harary, Graph theory, Addision-wesley, Reading, MA, 1969.
[9] M. A. Seoud and M. A. Salim, Two upper bounds of prime cordial graphs, Journal of Combinatorial Mathematics and Combinatorial Computing, 75(2010), 95 - 103.
[10] M. Sundaram, R. Ponraj, and S. Somasundram, Prime cordial labeling of graphs, Journal of Indian Acadamy of Mathematics, 27(2005), 373-390.
[11] S. K. Vaidya and P. L. Vihol, Prime cordial labeling for some cycle related graphs, International Journal of Open Problems in Computure Science Mathematics, 3(5)(2010), 223-232.
[12] S. K. Vaidya and P. L. Vihol, Prime cordial labeling for some graphs, Modern Applied Science, 4(8)(2010), $119-126$.
[13] S. K. Vaidya and N. H. Shah, Prime cordial labeling of some graphs, Open Journal of Discrete Mathematics, 2(2012), 11 - 16.

