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Abstract

A bijection f from vertex set V of a graph G to {1, 2, . . . , |V |} is called a prime cordial labeling
of G if each edge uv is assigned the label 1 if gcd(f(u), f(v)) = 1 and 0 if gcd(f(u), f(v)) > 1,
where the number of edges labeled with 0 and the number of edges labeled with 1 differ by at most
1. In this paper we exhibit some new constructions on prime cordial graphs.
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1 Introduction

Graph labeling is a strong relation between numbers and structure of graphs. A useful survey

to know about the numerous graph labeling methods is given by J. A. Gallian[5]. By combining the

relatively prime concept in number theory and cordial labeling concept[4] in graph labeling, Sundaram

et al.[10] introduced the concept called prime cordial labeling. A bijection f from vertex set V (G) to

{1, 2, . . . , |V (G)|} of a graph G is called a prime cordial labeling of G if for each edge e = uv ∈ E,

f∗(e = uv) = 1; if gcd(f(u), f(v)) = 1

= 0; if gcd(f(u), f(v)) > 1

then |ef (0) − ef (1)| ≤ 1, where ef (0) is the number of edges labeled with 0 and ef (1) is the number

of edges labeled with 1.

In [1],[2],[9], the following graphs are proved to have prime cordial labeling: Cn if and only if n ≥ 6;

Pn if and only if n 6= 3 or 5; K1,n(n odd); the graph obtained by subdividing each edge of K1,n if and

only if n ≥ 3.

S. K. Vaidya et al.[11],[12],[13] proved that the square graph of path Pn is a prime cordial graph for

n = 6 and n ≥ 8 while the square graph of cycle Cn is a prime cordial graph for n ≥ 10. They also

proved that the shadow graph of K1,n for n ≥ 4, the shadow graph of Bn,n for all n, certain cycle related

graphs, the graphs obtained by mutual duplication of a pair of edges as well as mutual duplication of
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a pair of vertices from each of two copies of cycle Cn admit prime cordial labeling. Haque et al.[7]

proved that the generalized Petersen graph is prime cordial. S. Babitha and J. Baskar Babujee[3] exhibit

some characterization results and new constructions on prime cordial graphs. G. V. Ghodasara and J. P.

Jena[6] discussed prime cordial labeling for the graph related to cycle with one chord, cycle with twin

chord and cycle with triangle.

Definition 1.1. The Petersen graph is 3−regular undirected graph with 10 vertices and 15 edges.

Definition 1.2. The fan graph is denoted by Fn and described as Fn = Pn + K1, where Pn indicates

the path graph with n vertices.

Definition 1.3. The helm Hn is the graph obtained from a wheel graph Wn by attaching a pendant

vertex through an edge to each rim vertex of Wn.

Definition 1.4. The flower Fln is the graph obtained from a helm Hn by joining each pendant vertex

of the helm to the apex vertex. Here the pendant vertices of helm Hn are referred as external vertices of

Fln.

Definition 1.5. A cycle with triangle is a cycle with three chords which by themselves form a triangle.

For positive integers p, q, r and n ≥ 6 with p + q + r + 3 = n, Cn(p, q, r) denotes a cycle with

triangle whose edges form the edges of cycles Cp+2, Cq+2 and Cr+2 without chords.

Notation 1.6. The floor and ceiling functions map a real number to the largest previous or the smallest

following integer respectively. More precisely, floor(x) = bxc is the largest integer not greater than x

and ceiling(x) = dxe is the smallest integer not less than x.

2 Main Results

Theorem 2.1. The graph G obtained by joining two copies of Petersen graph by a path of arbitrary

length is prime cordial.

Proof: Let G be the graph obtained by joining two copies of Petersen graph by a path Pk of length

k − 1. Let u1, u2, . . . u5 and u6, u7, . . . u10 be external and internal vertices of first copy of petersen

graph respectively. Here each ui is adjacent to ui+5, i = 1, 2, 3, 4, 5. Similarly let w1, w2, . . . w5 and

w6, w7, . . . w10 be external and internal vertices of second copy of petersen graph respectively. Here

each wi is adjacent to wi+5, si = 1, 2, 3, 4, 5. Let v1, v2, . . . vk be successive vertices of path Pk with

v1 = u1 and vk = w1.

We define a labeling function f : V (G)→ {1, 2, . . . , k + 18} as follows.

f(ui) = 4i− 3; 1 ≤ i ≤ 5,

= 4(i− 5)− 1; 6 ≤ i ≤ 10,

f(vj) = 2i+ 17; 2 ≤ j ≤ dk2e,
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= 2i− dk2e+ 20; (dk2e+ 1) ≤ i ≤ k − 1,

f(wi) = 4i− 2; 1 ≤ i ≤ 5,

= 4(i− 5); 6 ≤ i ≤ 10.

The labeling defined above satisfies the conditions of prime cordial labeling and hence the graph

under consideration is a prime cordial graph.

Illustration 2.2. A prime cordial labeling of the graph obtained by joining two copies of the Petersen

graph by a path P8 is shown in Figure 1.
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Figure 1: Prime cordial labeling of graph obtained by joining two copies of
petersen graph by a path P8.

Theorem 2.3. The graph G obtained by joining two copies of fan graph Fn by a path of arbitrary length

is prime cordial.

Proof: Let G be the graph obtained by joining two copies of fan graph Fn by a path Pk of length k− 1.

Let us denote the successive vertices of first copy of fan graph by u1, u2, . . . , un+1 and the successive

vertices of second copy of fan graph by w1, w2, . . . , wn+1. Let v1, v2, . . . , vk be the vertices of path Pk

with v1 = u1 and vk = w1. Note that for n = 2, F2 is a cycle C3 and it is already proved in [11] that

the graph obtained by joining two copies of cycles by a path of arbitrary length is prime cordial. Hence

we consider the case for n ≥ 3. We define a labeling function f : V (G) → {1, 2, . . . , 2n + k − 2} as

follows.

Case 1: k is even.

In this case define f as:

f(u1) = f(v1) = 2, f(w1) = f(vk) = 1,

f(u2) = 4, f(v k
2
) = 6,

f(ui) = k + 2(i− 1); 3 ≤ i ≤ n,

f(vj) = 6 + 2(j − 1); 2 ≤ j ≤ k
2 − 1

= 2j − k + 1; k
2 + 1 ≤ j ≤ k − 1,
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f(wi) = k + 2i− 3; 1 ≤ i ≤ n.

Case 2: k is odd.

In this case define f as:

f(u1) = f(v1) = 2, f(w1) = f(vk) = 1,

f(u2) = 4, f(v k−1
2
) = 6,

f(ui) = k + 2i− 3; 3 ≤ i ≤ n,

f(vj) = 6 + 2(j − 1); 2 ≤ j ≤ k−3
2

= 2(j + 1)− k; k+1
2 ≤ j ≤ k − 1,

f(wi) = k + 2(i− 1); 1 ≤ i ≤ n.

In each case f satisfies the conditions of prime cordial labeling and hence the graph under consider-

ation is a prime cordial graph.

Illustration 2.4. Prime cordial labeling of the graph obtained by joining two copies of F8 by a path P7

is shown in Figure 2.

2 8 6 3 5 7 1

4 10 12 14 16 18 20 9 11 13 15 17 19 21

Figure 2: Prime cordial labeling of graph obtained by joining two copies of F8 by path P7.

Theorem 2.5. The graph G obtained by joining two copies of flower graph Fln by a path of arbitrary

length is prime cordial.

Proof: Let G be the graph obtained by joining two copies of flower graph Fln by a path Pk of length

k − 1. Let u0 be the apex vertex, u1, u2, . . . , un be the rim vertices and u′1, u
′
2, . . . , u

′
n be the external

vertices of first copy of flower Fln. Let w0 be the apex vertex, w1, w2, . . . , wn be the rim vertices and

w′1, w
′
2, . . . , w

′
n be the external vertices of second copy of flower Fln. Let v1, v2, . . . , vk be the vertices

of path Pk with v1 = u1 and vk = w1.

We define a labeling function f : V (G)→ {1, 2, . . . , 2n+ k − 2} as follows.

Case 1: k = 2.

In this case define f as:

f(u1) = f(v1) = 4,

f(w1) = f(v2) = 3,

f(u0) = 2, f(w0) = 1,
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f(w′1) = 7,

f(ui) = 2(i+ 1); 1 ≤ i ≤ n,

f(u′i) = 2(n+ i+ 1); 1 ≤ i ≤ n,

f(wi) = 8i− 1; 2 ≤ i ≤ dn2 e

= 8(n− i) + 9; (dn2 e+ 1) ≤ i ≤ n,

f(w′i) = 8i− 5; 2 ≤ i ≤ dn2 e

= 8(n− i) + 5; (dn2 e+ 1) ≤ i ≤ n.

Case 2: k = 3.

In this case define f as:

f(u1) = f(v1) = 4,

f(v2) = 4n+ 3,

f(w1) = f(v3) = 3,

f(u0) = 2, f(w0) = 1,

f(w′1) = 7,

f(ui) = 2(i+ 1); 1 ≤ i ≤ n,

f(u′i) = 2(n+ i+ 1); 1 ≤ i ≤ n,

f(wi) = 8i− 1; 2 ≤ i ≤ dn2 e

= 8(n− i) + 9; (dn2 e+ 1) ≤ i ≤ n,

f(w′i) = 8i− 5; 2 ≤ i ≤ dn2 e

= 8(n− i) + 5; (dn2 e+ 1) ≤ i ≤ n.

Case 3: k ≥ 3.

In this case define f as:

f(u0) = 2, f(w0) = 1,

f(w1) = f(vk) = 3,

f(w′1) = 7,

f(vb k
2
c) = 4,

f(ui) = 2(i+ 2); 1 ≤ i ≤ n,

f(u′i) = 2(n+ i+ 2); 1 ≤ i ≤ n,

f(wi) = 8i− 1; 2 ≤ i ≤ dn2 e

= 8(n− i) + 9; (dn2 e+ 1) ≤ i ≤ n,

f(w′i) = 8i− 5; 2 ≤ i ≤ dn2 e

= 8(n− i) + 5; (dn2 e+ 1) ≤ i ≤ n,
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f(vj) = 4n+ 2(j + 1); 2 ≤ j ≤ bk2c − 1

= 4n+ 2(j − bk2c) + 1; dk2e ≤ j ≤ k.

One can observe that in each case the labeling defined above satisfies the conditions of prime cordial

labeling and the graph under consideration is a prime cordial graph.

Illustration 2.6. The prime cordial labeling of the graph obtained by joining two copies of Fl6 by s

path P9 is shown in Figure 3.
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Figure 3: Prime cordial labeling of the graph obtained by joining two copies of Fl6 by a path P9.

Theorem 2.7. The graph G obtained by joining two copies of cycle Cn with triangle by a path of

arbitrary length is prime cordial.

Proof: Let G be the graph obtained by joining two copies of cycle Cn with triangle by path Pk of length

k − 1. Let u1, u2, . . . , un be the vertices of first copy of cycle with triangle. Let w1, w2, . . . , wn be the

vertices of second copy of cycle with triangle. Let v1, v2, . . . , vk be the vertices of path Pk with u1 = v1

and vk = w1. Let e1 = u1u3, e2 = u3u5, e3 = u5u1 be the chords in first copy of cycle Cn and

e′1 = w1w3, e′2 = w3w5, e′3 = w5w1 be the chords in second copy of cycle Cn. We define a labeling

function f : V (G)→ {1, 2, . . . , 2n+ k − 2} as follows.

Case 1: k is even.

In this case define f as:

f(u1) = f(v1) = 1,

f(w1) = f(vk) = k,

f(u2) = 3, f(u3) = 9, f(u4) = 5, f(u5) = 7,

f(ui) = 2i− 1; 6 ≤ i ≤ n,

f(vj) = 2n+ 2j − 3; 2 ≤ i ≤ k
2

= 2j − k; k
2 + 1 ≤ i ≤ k,

f(wi) = k + 2(i− 1); 1 ≤ i ≤ n.

Case 2: k is odd.

In this case define f as:

f(u1) = f(v1) = 1,

f(w1) = f(vk) = k − 1,
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f(u2) = 3, f(u3) = 9, f(u4) = 5, f(u5) = 7,

f(ui) = 2i− 1; 6 ≤ i ≤ n,

f(vj) = 2n+ 2j − 3; 2 ≤ i ≤ k+1
2

= 2j − (k + 1); k+3
2 ≤ i ≤ k,

f(wi) = k + 2i− 3; 1 ≤ i ≤ n.

In each case, the labeling defined above satisfies the conditions of prime cordial labeling and hence the

graph under consideration is a prime cordial graph.

Illustration 2.8. The prime cordial labeling of the graph obtained by joining two copies of C7 with

triangle by a path P6 is shown in Figure 4. It is the case related to k is even.
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Figure 4: Prime cordial labeling of graph obtained by joining two copies of C7 with triangle
by a path P6.
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