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Abstract

In this paper, we investigate the generalized Hyers-Ulam stability of the functional equation
f(2x + y) + f(2x − y) = 4(f(x + y) + f(x − y)) − 3

7 (f(2y) − 2f(y)) + 2f(2x) − 8f(x) in a
2-Banach space.
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1 Introduction

Stability of a functional equation for a function from a normed space X to a Banach space Y has been

studied by Hyers [3]. He proved that for a function f : X −→ Y , satisfying ‖f(x+y)−f(x)−f(y)‖ ≤
δ for each x, y ∈ X and δ > 0, there exists a unique additive function T : X −→ Y such that

‖f(x) − T (x)‖ ≤ δ for each x ∈ X . It is a positive answer to a problem raised by Ulam [8] for a

functional equation on metric group. In fact several authors have studied the problem for different types

of functional equations for functions from a normed space to a Banach space.

Our aim is to study the stability of the functional equation

f(2x+ y) + f(2x− y) =4(f(x+ y) + f(x− y))

− 3

7
(f(2y)− 2f(y)) + 2f(2x)− 8f(x). (1.1)

introduced in [2] for a function on a 2-normed space (normed space) to a 2-Banach space. It is easy

to see that the function f(x) = ax4 + bx is a solution of the functional equation (1.1). In the present

paper, we investigate the generalized Hyers-Ulam stability of the functional equation (1.1) in a 2-Banach

space. We use the following definitions and theorems in the subsequent sections.

Theorem 1.1. [2] Let X and Y be vector spaces, and let f : X −→ Y be a function satisfying (1.1).

Then

1. if f is an even function, then f is quartic.
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2. if f is an odd function, then f is additive.

In the 1960s, S. Gähler [1] introduced the concept of a 2-normed space.

Definition 1.2. [1] Let X be a linear space over R with dimX > 1 and let ‖·, ·‖ : X ×X −→ R be a

function satisfying the following properties:

1. ‖x, y‖ = 0 if and only if x and y are linearly dependent,

2. ‖x, y‖ = ‖y, x‖,

3. ‖ax, y‖ = |a|‖x, y‖,

4. ‖x, y + z‖ ≤ ‖x, y‖+ ‖x, z‖

for each x, y, z ∈ X and a ∈ R. Then the function ‖·, ·‖ is called a 2-norm on X and (X, ‖·, ·‖) is

called a 2-normed space.

We introduce a basic property of a 2-normed space as follows. Let (X, ‖·, ·‖) be a linear 2-normed

space, x ∈ X and ‖x, y‖ = 0 for each y ∈ X . Suppose x 6= 0. Since dimX > 1, choose y ∈ X such

that {x, y} is linearly independent so we have ‖x, y‖ 6= 0, which is a contradiction. Therefore, we have

the following lemma.

Lemma 1.3. Let (X, ‖·, ·‖) be a 2-normed space. If x ∈ X and ‖x, y‖ = 0, for each y ∈ X , then

x = 0.

Let (X, ‖·, ·‖) be a 2-normed space. For x, z ∈ X , let pz(x) = ‖x, z‖, x ∈ X . Then for each z ∈ X ,

pz is a real-valued function on X such that pz(x) = ‖x, z‖ ≥ 0, pz(αx) = |α|‖x, z‖ = |α|pz(x) and

pz(x+ y) = ‖x+ y, z‖ = ‖z, x+ y‖ ≤ ‖z, x‖+ ‖z, y‖ = ‖x, z‖+ ‖y, z‖ = pz(x) + pz(y), for each

α ∈ R and all x, y ∈ X . Thus pz is a semi-norm for each z ∈ X .

For x ∈ X , let ‖x, z‖ = 0, for each z ∈ X . By Lemma 1.3, x = 0. Thus for 0 6= x ∈ X , there

is z ∈ X such that pz(x) = ‖x, z‖ 6= 0. Hence the family {pz(·) : z ∈ X} is a separating family of

semi-norms.

Let x0 ∈ X , for ε > 0, z ∈ X , letUz,ε(x0) := {x ∈ X : pz(x−x0) < ε} = {x ∈ X : ‖x−x0, z‖ <
ε}. Let S(x0) := {Uz,ε(x0) : ε > 0, z ∈ X} and β(x0) := {∩F : F is a finite subcollection of S(x0)}.
Define a topology τ on X by saying that a set U is open if for every x ∈ U , there is some N ∈ β(x)
such that N ⊂ U . That is, τ is the topology on X that has subbase {Uz,ε(x0) : ε > 0, x0 ∈ X, z ∈ X}.
The topology τ on X makes X a topological vector space. Since for x ∈ X , the collection β(x) is a

local base whose members are convex, X is locally convex.

Definition 1.4. [9] A sequence {xn} in a 2-normed space X is called a 2-Cauchy sequence if

lim
m,n→∞

‖xn − xm, x‖ = 0

for each x ∈ X .
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Definition 1.5. A sequence {xn} in a 2-normed space X is called a 2-convergent sequence if there is

an x ∈ X such that limn→∞ ‖xn − x, y‖ = 0 for each y ∈ X . If {xn} converges to x, we write

limn→∞ xn = x.

Definition 1.6. We say that a 2-normed space (X, ‖·, ·‖) is a 2-Banach space if every 2-Cauchy sequence

in X is 2-convergent in X .

By using (2) and (4) of Definition 1.2 one can see that ‖·, ·‖ is continuous in each component. More

precisely for a convergent sequence {xn} in a 2-normed space X, limn→∞ ‖xn, y‖ = ‖ limn→∞ xn, y‖
for each y ∈ X .

2 Stability of a functional equation

Throughout this section, (X, ‖·, ·‖) a 2-Banach space. For a function

f : X −→ X , define Df : X ×X −→ X by

Df (x, y) = 7[f(2x+ y) + f(2x− y)]− 28[f(x+ y) + f(x− y)]

+ 3[f(2y)− 2f(y)]− 14[f(2x)− 4f(x)]

for each x, y ∈ X .

Definition 2.1. The equation f(2x+ y) + f(2x− y) = 4f(x+ y) + 4f(x− y) + 24f(x)− 6f(y) is

called a quartic functional equation and every solution of the quartic functional equation is said to be a

quartic function.

Definition 2.2. The equation f(x + y) = f(x) + f(y) is called an additive functional equation and

every solution of the additive functional equation is said to be an additive function.

Theorem 2.3. Let ε ≥ 0, 0 < p, q < 4. If f : (X, ‖·, ·‖) −→ (X, ‖·, ·‖) is an even function such that

‖Df (x, y), z‖ ≤ ε(‖x, z‖p + ‖y, z‖q) (2.1)

for each x, y, z ∈ X . Then there exists a unique quartic function Q : X −→ X satisfying (1.1) and

‖f(x)−Q(x), z‖ ≤ ε‖x, z‖q

3(16− 2q)
(2.2)

for each x, z ∈ X .

Proof: Let x = y = 0 in (2.1). We get, ‖3f(0), z‖ = 0 for each z ∈ X . Hence, f(0) = 0. Also

substituting x = 0 in (2.1), we have

‖3f(2y)− 48f(y), z‖ ≤ ε‖y, z‖q (2.3)
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for each y, z ∈ X . Replacing y by x in (2.3), we have∥∥∥f(2x)
16

− f(x), z
∥∥∥ ≤ ε

48
‖x, z‖q (2.4)

for each x, z ∈ X . Replacing x by 2x in (2.4), we get∥∥∥f(4x)
16

− f(2x), z
∥∥∥ ≤ ε

48
2q‖x, z‖q (2.5)

for each x, z ∈ X . By (2.4) and (2.5), we have∥∥∥f(4x)
162

− f(x), z
∥∥∥ ≤ ∥∥∥f(4x)

162
− f(2x)

16
, z
∥∥∥+ ∥∥∥f(2x)

16
− f(x), z

∥∥∥
≤ 1

16

ε

48
2q‖x, z‖q + ε

48
‖x, z‖q

=
ε

48
‖x, z‖q

[
1 +

2q

24
]

(2.6)

for each x, z ∈ X . Therefore by using induction on n, we get

∥∥∥f(2nx)
16n

− f(x), z
∥∥∥ ≤ ε

48
‖x, z‖q

n−1∑
j=0

2(q−4)j

=
ε

48
‖x, z‖q 1− 2(q−4)n

1− 2q−4
(2.7)

for each x, z ∈ X . For m,n ∈ N, and x ∈ X∥∥∥f(2mx)
16m

− f(2nx)

16n
, z
∥∥∥ =

∥∥∥f(2m+n−nx)

16m+n−n − f(2nx)

16n
, z
∥∥∥

=
1

16n

∥∥∥f(2m−n · 2nx)
16m−n

− f(2nx), z
∥∥∥

≤ ε

48
‖2nx, z‖q · 1

16n

m−n−1∑
j=0

2(q−4)j

=
ε

48
‖x, z‖q

m−n−1∑
j=0

2(q−4)(n+j)

=
ε

48
‖x, z‖q 2(q−4)n

(1− 2(q−4)(m−n)

1− 2q−4

)
−→ 0 as n→∞

for each z ∈ X . Therefore
{

f(2nx)
16n

}
is a 2-Cauchy sequence in X , for each x ∈ X . Since X is a

2-Banach space, define Q : X −→ X as Q(x) := limn→∞
f(2nx)
16n for each x ∈ X . By (2.7), we
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have ‖Q(x) − f(x), z‖ ≤ ε‖x,z‖q
3(16−2q) for each x, z ∈ X . Now we show that Q satisfies (1.1). That is

DQ(x, y) = 0.

‖DQ(x, y), z‖ = lim
n→∞

1

16n
‖Df (2

nx, 2ny), z‖

≤ lim
n→∞

ε

16n
[
‖2nx, z‖p + ‖2ny, z‖q

]
= lim

n→∞
ε
[
2(p−4)n‖x, z‖p + 2(q−4)n‖y, z‖q

]
= 0

for each x, y, z ∈ X . Therefore, ‖DQ(x, y), z‖ = 0. for each z ∈ X . So DQ(x, y) = 0. Since f is an

even function we have Q is an even function and hence by Theorem 1.1, Q is a quartic function.

Next we show that Q is unique. Let Q′ : X −→ X be another quartic function which satisfies (1.1)

and (2.2). Since Q and Q′ are quartic Q(2nx) = 16nQ(x) and Q′(2nx) = 16nQ′(x), for each x ∈ X .

Then for x ∈ X

‖Q′(x)−Q(x), z‖ = 1

16n
‖Q′(2nx)−Q(2nx), z‖

≤ 1

16n
[
‖Q′(2nx)− f(2nx), z‖+ ‖f(2nx)−Q(2nx), z‖

]
≤ 2

16n
ε‖2nx, z‖q

3(16− 2q)

=
2ε‖x, z‖q · 2(q−4)n

3(16− 2q)

−→ 0 as n −→∞

for each z ∈ X . Therefore for x ∈ X , ‖Q′(x)−Q(x), z‖ = 0 for each z ∈ X . Hence, Q′(x) = Q(x),

for each x ∈ X .

Corollary 2.4. Let ε ≥ 0, 0 < p, q < 4, r > 0, (X, ‖ · ‖) be a real normed space. If f : (X, ‖ · ‖) −→
(X, ‖·, ·‖) is an even function such that

‖Df (x, y), z‖ ≤ ε(‖x‖p + ‖y‖q)‖z‖r (2.8)

for each x, y, z ∈ X . Then there exists a unique quartic function Q : X −→ X satisfying (1.1) and

‖f(x)−Q(x), z‖ ≤ ε‖x‖q‖z‖r

3(16− 2q)
(2.9)

for each x, z ∈ X .

Theorem 2.5. Let ε ≥ 0, p, q > 4. If f : X −→ X is an even function satisfying

‖Df (x, y), z‖ ≤ ε
(
‖x, z‖p + ‖y, z‖q

)
(2.10)
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for each x, y, z ∈ X . Then there exists a unique quartic function Q : X −→ X satisfying (1.1) and

‖f(x)−Q(x), z‖ ≤ ε‖x, z‖q

3(2q − 16)
(2.11)

for each x, z ∈ X .

Proof: Let x = y = 0 in (2.10). Then we get, ‖3f(0), z‖ = 0 for each z ∈ X . Hence, f(0) = 0. By

(2.3) of Theorem 2.3, we have

‖3f(2y)− 48f(y), z‖ ≤ ε‖y, z‖q (2.12)

for each y, z ∈ X . Replacing y by x
2 in (2.12), we have∥∥∥f(x)− 16f

(x
2

)
, z
∥∥∥ ≤ ε

3
2−q‖x, z‖q (2.13)

for each x, z ∈ X . Replacing x by x
2 in (2.13), we have∥∥∥f(x
2

)
− 16f

( x
22

)
, z
∥∥∥ ≤ ε

3
2−2q‖x, z‖q (2.14)

for each x, z ∈ X . By (2.13) and (2.14), we obtain∥∥∥162f(x
4

)
− f(x), z

∥∥∥ ≤ ∥∥∥162f(x
4

)
− 16f

(x
2

)
, z
∥∥∥+ ∥∥∥16f(x

2

)
− f(x), z

∥∥∥
≤ 16 · ε

3
2−2q‖x, z‖q + ε

3
2−q‖x, z‖q

=
ε

3
‖x, z‖q

[
2−q + 16 · 2−2q

]
(2.15)

for each x, z ∈ X . By using induction on n, we have

∥∥∥16nf( x
2n

)
− f(x), z

∥∥∥ ≤ ε

3
‖x, z‖q

n−1∑
j=0

2(−q+j) · 16j

=
ε

3
‖x, z‖q

n−1∑
j=0

2(−q+4)j−q

=
ε

3
‖x, z‖q

2−q
(
1− 2(−q+4)n

)
1− 2−q+4

(2.16)

for each x, z ∈ X . For m,n ∈ N, for x ∈ X∥∥∥16mf( x

2m

)
− 16nf

( x
2n

)
, z
∥∥∥ =

∥∥∥16m+n−nf
( x

2m+n−n

)
− 16nf

( x
2n

)
, z
∥∥∥

= 16n
∥∥∥16m−nf( x

2m−n · 2n
)
− f

( x
2n

)
, z
∥∥∥
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≤ 16n
ε

3

∥∥∥ x
2n
, z
∥∥∥q m−n−1∑

j=0

2(−q+4)j−q

=
ε

3
‖x, z‖q

m−n−1∑
j=0

2(−q+4)(n+j)−q

=
ε

3
‖x, z‖q

2(−q+4)n
(
1− 2(−q+4)(m−n))
1− 2−q+4

−→ 0 as n→∞

for each z ∈ X . Therefore
{
16nf

(
x
2n

)}
is a 2-Cauchy sequence in X , for each x ∈ X . Since X is a

2-Banach space. Define Q : X −→ X as Q(x) := limn→∞ 16nf
(

x
2n

)
for each x ∈ X . By (2.16), we

have ‖Q(x)− f(x), z‖ ≤ ε‖x,z‖q
3(2q−16) for each x, z ∈ X .

Corollary 2.6. Let ε ≥ 0, r > 0, p, q > 4, (X, ‖ · ‖) be a real normed space. If f : (X, ‖ · ‖) −→
(X, ‖·, ·‖) is an even function such that

‖Df (x, y), z‖ ≤ ε(‖x‖p + ‖y‖q)‖z‖r (2.17)

for each x, y, z ∈ X . Then there exists a unique quartic function Q : X −→ X satisfying (1.1) and

‖f(x)−Q(x), z‖ ≤ ε‖x‖q‖z‖r

3(2q − 16)
(2.18)

for each x, z ∈ X .

Theorem 2.7. Let ε ≥ 0, 0 < p, q < 1, f : (X, ‖·, ·‖) −→ (X, ‖·, ·‖) be an odd function satisfying

‖Df (x, y), z‖ ≤ ε
(
‖x, z‖p + ‖y, z‖q

)
(2.19)

for each x, y, z ∈ X . Then there exists a unique additive function A : X −→ X satisfying (1.1) and

the inequality

‖f(x)−A(x), z‖ ≤ ε‖x, z‖q

3(2− 2q)
(2.20)

for each x, z ∈ X .

Proof: Let x = 0 in (2.19). Then we get

‖f(2y)− 2f(y), z‖ ≤ ε

3
‖y, z‖q (2.21)
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for each y, z ∈ X . Replacing y by x in (2.21), we get

‖f(2x)− 2f(x), z‖ ≤ ε

3
‖x, z‖q (2.22)

for each x, z ∈ X . Therefore ∥∥∥f(2x)
2
− f(x), z

∥∥∥ ≤ ε

6
‖x, z‖q (2.23)

for each x, z ∈ X . Replacing x by 2x in (2.23), we get∥∥∥f(4x)
2
− f(2x), z

∥∥∥ ≤ ε

6
· 2q‖x, z‖q (2.24)

for each x, z ∈ X . Now by (2.23) and (2.24), we have∥∥∥f(4x)
4
− f(x), z

∥∥∥ ≤ ∥∥∥f(4x)
4
− f(2x)

2
, z
∥∥∥+ ∥∥∥f(2x)

2
− f(x), z

∥∥∥
≤ ε

6
‖x, z‖q[1 + 2q

2
]

for each x, z ∈ X . Therefore by using induction on n, we get

∥∥∥f(2nx)
2n

− f(x), z
∥∥∥ ≤ ε

6
‖x, z‖q

n−1∑
j=0

2aj

2j

=
ε

6
‖x, z‖q

n−1∑
j=0

2(q−1)j

=
ε

6
‖x, z‖q

(1− 2(q−1)n

1− 2q−1

)
(2.25)

for each x, z ∈ X . Now for m,n ∈ N, for x ∈ X∥∥∥f(2mx)
2m

− f(2nx)

2n
, z
∥∥∥ =

1

2n

∥∥∥f(2m−n · 2nx)
2m−n

− f(2nx), z
∥∥∥

≤ 1

2n
ε

6
‖2nx, z‖q

m−n−1∑
j=o

2(q−1)j

=
ε

6
‖x, z‖q

m−n−1∑
j=0

2(q−1)(n+j)

=
ε

6
‖x, z‖q 2(q−1)n

(1− 2(q−1)(m−n)

1− 2q − 1

)
−→ 0 as n→∞
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for each z ∈ X . Therefore
{

f(2nx)
2n

}
is a 2-Cauchy sequence in X , for each x ∈ X . Since X is a

2-Banach space.
{

f(2nx)
2n

}
2-converges in X , for each x ∈ X . Define A : X −→ X as

A(x) := lim
n−→∞

f(2nx)

2n

for each x ∈ X . By (2.25), we have

‖f(x)−A(x), z‖ ≤ ε‖x, z‖q

3(2− 2q)

for each x ∈ X . The rest of the proof is similar to the proof of Theorem 2.3.

Corollary 2.8. Let ε ≥ 0, r > 0, 0 < p, q < 1, (X, ‖ · ‖) be a real normed space. If f : (X, ‖ · ‖) −→
(X, ‖·, ·‖) is an odd function satisfying the inequality

‖Df (x, y), z‖ ≤ ε(‖x‖p + ‖y‖q)‖z‖r (2.26)

for each x, y, z ∈ X . Then there exists a unique additive function A : X −→ X satisfying (1.1) and

‖f(x)−A(x), z‖ ≤ ε‖x‖q‖z‖r

3(2− 2q)

for each x, z ∈ X .

Theorem 2.9. Let ε ≥ 0, p, q > 1. f : X −→ X be an odd function satisfying

‖Df (x, y), z‖ ≤ ε(‖x, z‖p + ‖y, z‖q) (2.27)

for each x, y, z ∈ X . Then there exists a unique additive function A : X −→ X satisfying (1.1) and

‖f(x)−A(x), z‖ ≤ ε‖x, z‖q

3(2q − 2)
(2.28)

for each x, z ∈ X .

Proof: By (2.22) of Theorem 2.7, we have

‖f(2x)− 2f(x), z‖ ≤ ε

3
‖x, z‖q (2.29)

for each x, z ∈ X . Replacing x by x
2 in (2.29), we get∥∥∥f(x)− 2f

(x
2

)
, z
∥∥∥ ≤ ε

3
2−q‖x, z‖q (2.30)
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for each x, z ∈ X . Replacing x by x
2 in (2.30), we get∥∥∥f(x
2

)
− 2f

(x
4

)
, z
∥∥∥ ≤ ε

3
2−2q‖x, z‖q (2.31)

for each x, z ∈ X . Now by (2.30) and (2.31), we have∥∥∥f(x)− 22f
( x
22

)
, z
∥∥∥ ≤ ∥∥∥f(x)− 2f

(x
2

)
, z
∥∥∥+ ∥∥∥2f(x

2

)
− 4f

(x
4

)
, z
∥∥∥

≤ ε

3
2−q‖x, z‖q + 2

ε

3
2−2q‖x, z‖q

=
ε

3
‖x, z‖q[2−q + 2 · 2−2q]

for each x, z ∈ X . By using induction on n, we get

∥∥∥f(x)− 2nf
( x
2n

)
, z
∥∥∥ ≤ ε

3
‖x, z‖q

n−1∑
j=0

2−q(j+1) · 2j

=
ε

3
‖x, z‖q

n−1∑
j=0

2(−q+1)j−q

=
ε

3
‖x, z‖q

2−q
(
1− 2(−q+1)n

)
1− 2(−q+1)

(2.32)

for each x, z ∈ X . Now for m,n ∈ N, for x ∈ X∥∥∥2mf( x

2m

)
− 2nf

( x
2n

)
, z
∥∥∥ =

∥∥∥2m+n−nf
( x

2m+n−n

)
− 2nf

( x
2n

)
, z
∥∥∥

= 2n
∥∥∥2m−nf( x

2m−n · 2n
)
− f

( x
2n

)
, z
∥∥∥

≤ 2n · ε
3

∥∥∥ x
2n
, z
∥∥∥q m−n−1∑

j=0

2(−q+1)j−q

=
ε

3
‖x, z‖q

m−n−1∑
j=0

2(−q+1)(n+j)−q

=
ε

3
‖x, z‖q

2(−q+1)n−q(1− 2(−q+1)(m−n))
1− 2( − q + 1)

−→ 0 as n→∞

for each z ∈ X . Therefore
{
2nf

(
x
2n

)}
is a 2-Cauchy sequence in X , for each x ∈ X . Since X is a

2-Banach space
{
2nf

(
x
2n

)}
2-converges, for each x ∈ X . Define A : X −→ X as

A(x) := lim
n→∞

2nf
( x
2n

)



Stability of a Quartic and Additive functional equation in a 2-Banach space 29

for each x, z ∈ X . Now by (2.32), we have

‖f(x)−A(x), z‖ ≤ ε‖x, z‖q

3(2q − 2)

for each x, z ∈ X . The rest of the proof is similar to that of the proof of Theorem 2.3.

Corollary 2.10. Let ε ≥ 0, r > 0, p, q > 1, (X, ‖ · ‖) be a real normed space. If f : (X, ‖ · ‖) −→
(X, ‖·, ·‖) is an odd function satisfying

‖Df (x, y), z‖ ≤ ε
(
‖x‖p + ‖y‖q

)
‖z‖r (2.33)

for each x, y, z ∈ X . Then there exists a unique additive function A : X −→ X satisfying (1.1) and

the inequality

‖f(x)−A(x), z‖ ≤ ε‖x‖q‖z‖r

3(2q − 2)
(2.34)

for each x, z ∈ X .

Theorem 2.11. Let ε ≥ 0, 0 < p < 1, f : X −→ X be a function satisfying the inequality

‖Df (x, y), z‖ ≤ ε(‖x, z‖p + ‖y, z‖p) (2.35)

for each x, y, z ∈ X . Then there exists a unique quartic function Q : X −→ X and unique additive

function A : X −→ X satisfying (1.1) and

‖f(x)−Q(x)−A(x), z‖ ≤ ε‖x, z‖p

3

[ 1

16− 2p
+

1

2− 2p

]
(2.36)

Proof: Let x = y = 0 in (2.35), we have ‖3f(0), z‖ = 0 for each z ∈ X , so we have f(0) = 0. Define

fe : X −→ X , fo : X −→ X as

fe(x) =
1
2 [f(x) + f(−x)], fo(x) =

1
2 [f(x)− f(−x)].

Then fe is an even function and fo is an odd function. Since f(0) = 0, we have fe(0) = 0 = fo(0).

Also

‖Dfe(x, y), z‖ ≤ ε(‖x, z‖p + ‖y, z‖p)

‖Dfo(x, y), z‖ ≤ ε(‖x, z‖p + ‖y, z‖p)

for each x, y, z ∈ X . Therefore by Theorem 2.3, there exists a unique quartic function Q : X −→ X
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satisfying (1.1) and the inequality

‖fe(x)−Q(x), z‖ ≤ ε‖x, z‖p

3(16− 2p)
(2.37)

for each x, z ∈ X . Also by Theorem 2.7, there exists a unique additive functionA : X −→ X satisfying

(1.1) and the inequality

‖fo(x)−A(x), z‖ ≤
ε‖x, z‖p

3(2− 2p)
(2.38)

for each x, z ∈ X . Now by (2.37) and (2.38), we have

‖f(x)−Q(x)−A(x), z‖ ≤ ‖fe(x)−Q(x), z‖+ ‖fo(x)−A(x), z‖

≤ ε‖x, z‖p

3(16− 2p)
+

ε‖x, z‖p

3(2− 2p)

≤ ε‖x, z‖p

3

[ 1

16− 2p
+

1

2− 2p

]
for each x, z ∈ X . So we have

‖f(x)−Q(x)−A(x), z‖ ≤ ε‖x, z‖p

3

[ 1

16− 2p
+

1

2− 2p

]
for each x, z ∈ X .

Corollary 2.12. Let ε ≥ 0, r > 0, 0 < p < 1, (X, ‖ · ‖) be a real normed space. Suppose f :

(X, ‖ · ‖) −→ (X, ‖·, ·‖) be a function satisfying the inequality

‖Df (x, y), z‖ ≤ ε(‖x‖p + ‖y‖p)‖z‖r (2.39)

for each x, y, z ∈ X . Then there exists a unique quartic function Q : X −→ X and a unique additive

function A : X −→ X satisfying (1.1) and

‖f(x)−Q(x)−A(x), z‖ ≤ ε

3

[ 1

16− 2p
+

1

2− 2p

]
‖x‖p‖z‖q

for each x, z ∈ X .

Theorem 2.13. Let ε ≥ 0, p > 4. Let f : X −→ X be a function satisfying the inequality

‖Df (x, y), z‖ ≤ ε(‖x, z‖p + ‖y, z‖p)

for each x, y, z ∈ X . Then there exists a unique quartic function Q : X −→ X and an additive function



Stability of a Quartic and Additive functional equation in a 2-Banach space 31

A : X −→ X satisfying (1.1) and

‖f(x)−Q(x)−A(x), z‖ ≤ ε‖x, z‖p

3

[ 1

2p − 16
+

1

2p − 2

]
for each x, z ∈ X .

Proof: Proof is similar to the proof of Theorem 2.11.

Corollary 2.14. Let ε ≥ 0, p > 4, (X, ‖ · ‖) be a real normed space. Suppose f : (X, ‖ · ‖) −→
(X, ‖·, ·‖) be a function satisfying the inequality ‖Df (x, y), z‖ ≤ ε(‖x‖p+‖y‖q)‖z‖r for each x, y, z ∈
X . Then there exists a unique quartic function Q : X −→ X and an additive function A : X −→ X

satisfying (1.1) and the inequality

‖f(x)−Q(x)−A(x), z‖ ≤ ε

3
‖x‖q‖z‖q

[ 1

2p − 16
+

1

2p − 2

]
for each x, z ∈ X .
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