Stability of a Quartic and Additive functional equation in a 2-Banach space

B. M. Patel
Department of Mathematics Government Science College
Gandginagar-382016, Gujarat, India.
E-mail: bhavinramani@yahoo.com

Abstract

In this paper, we investigate the generalized Hyers-Ulam stability of the functional equation $f(2 x+y)+f(2 x-y)=4(f(x+y)+f(x-y))-\frac{3}{7}(f(2 y)-2 f(y))+2 f(2 x)-8 f(x)$ in a 2-Banach space.

Keywords: Hyers-Ulam stability, 2-Banach space, quartic functional equation.
AMS Subject Classification(2010): 05C38, 05C69, 05C76.

1 Introduction

Stability of a functional equation for a function from a normed space X to a Banach space Y has been studied by Hyers [3]. He proved that for a function $f: X \longrightarrow Y$, satisfying $\|f(x+y)-f(x)-f(y)\| \leq$ δ for each $x, y \in X$ and $\delta>0$, there exists a unique additive function $T: X \longrightarrow Y$ such that $\|f(x)-T(x)\| \leq \delta$ for each $x \in X$. It is a positive answer to a problem raised by Ulam [8] for a functional equation on metric group. In fact several authors have studied the problem for different types of functional equations for functions from a normed space to a Banach space.

Our aim is to study the stability of the functional equation

$$
\begin{align*}
f(2 x+y)+f(2 x-y)= & 4(f(x+y)+f(x-y)) \\
& -\frac{3}{7}(f(2 y)-2 f(y))+2 f(2 x)-8 f(x) \tag{1.1}
\end{align*}
$$

introduced in [2] for a function on a 2 -normed space (normed space) to a 2 -Banach space. It is easy to see that the function $f(x)=a x^{4}+b x$ is a solution of the functional equation (1.1). In the present paper, we investigate the generalized Hyers-Ulam stability of the functional equation (1.1) in a 2-Banach space. We use the following definitions and theorems in the subsequent sections.

Theorem 1.1. [2] Let X and Y be vector spaces, and let $f: X \longrightarrow Y$ be a function satisfying (1.1). Then

1. if f is an even function, then f is quartic.
2. if f is an odd function, then f is additive.

In the 1960s, S. Gähler [1] introduced the concept of a 2-normed space.
Definition 1.2. [1] Let X be a linear space over \mathbb{R} with $\operatorname{dim} X>1$ and let $\|\cdot, \cdot\|: X \times X \longrightarrow \mathbb{R}$ be a function satisfying the following properties:

1. $\|x, y\|=0$ if and only if x and y are linearly dependent,
2. $\|x, y\|=\|y, x\|$,
3. $\|a x, y\|=|a|\|x, y\|$,
4. $\|x, y+z\| \leq\|x, y\|+\|x, z\|$
for each $x, y, z \in X$ and $a \in \mathbb{R}$. Then the function $\|\cdot, \cdot\|$ is called a 2 -norm on X and $(X,\|\cdot, \cdot\|)$ is called a 2-normed space.

We introduce a basic property of a 2 -normed space as follows. Let $(X,\|\cdot, \cdot\|)$ be a linear 2-normed space, $x \in X$ and $\|x, y\|=0$ for each $y \in X$. Suppose $x \neq 0$. Since $\operatorname{dim} X>1$, choose $y \in X$ such that $\{x, y\}$ is linearly independent so we have $\|x, y\| \neq 0$, which is a contradiction. Therefore, we have the following lemma.

Lemma 1.3. Let $(X,\|\cdot, \cdot\|)$ be a 2 -normed space. If $x \in X$ and $\|x, y\|=0$, for each $y \in X$, then $x=0$.

Let $(X,\|\cdot, \cdot\|)$ be a 2 -normed space. For $x, z \in X$, let $p_{z}(x)=\|x, z\|, x \in X$. Then for each $z \in X$, p_{z} is a real-valued function on X such that $p_{z}(x)=\|x, z\| \geq 0, p_{z}(\alpha x)=|\alpha|\|x, z\|=|\alpha| p_{z}(x)$ and $p_{z}(x+y)=\|x+y, z\|=\|z, x+y\| \leq\|z, x\|+\|z, y\|=\|x, z\|+\|y, z\|=p_{z}(x)+p_{z}(y)$, for each $\alpha \in \mathbb{R}$ and all $x, y \in X$. Thus p_{z} is a semi-norm for each $z \in X$.

For $x \in X$, let $\|x, z\|=0$, for each $z \in X$. By Lemma $1.3, x=0$. Thus for $0 \neq x \in X$, there is $z \in X$ such that $p_{z}(x)=\|x, z\| \neq 0$. Hence the family $\left\{p_{z}(\cdot): z \in X\right\}$ is a separating family of semi-norms.

Let $x_{0} \in X$, for $\varepsilon>0, z \in X$, let $U_{z, \varepsilon}\left(x_{0}\right):=\left\{x \in X: p_{z}\left(x-x_{0}\right)<\varepsilon\right\}=\left\{x \in X:\left\|x-x_{0}, z\right\|<\right.$ $\varepsilon\}$. Let $S\left(x_{0}\right):=\left\{U_{z, \varepsilon}\left(x_{0}\right): \varepsilon>0, z \in X\right\}$ and $\beta\left(x_{0}\right):=\left\{\cap \mathcal{F}: \mathcal{F}\right.$ is a finite subcollection of $\left.S\left(x_{0}\right)\right\}$. Define a topology τ on X by saying that a set U is open if for every $x \in U$, there is some $N \in \beta(x)$ such that $N \subset U$. That is, τ is the topology on X that has subbase $\left\{U_{z, \varepsilon}\left(x_{0}\right): \varepsilon>0, x_{0} \in X, z \in X\right\}$. The topology τ on X makes X a topological vector space. Since for $x \in X$, the collection $\beta(x)$ is a local base whose members are convex, X is locally convex.

Definition 1.4. [9] A sequence $\left\{x_{n}\right\}$ in a 2 -normed space X is called a 2-Cauchy sequence if

$$
\lim _{m, n \rightarrow \infty}\left\|x_{n}-x_{m}, x\right\|=0
$$

for each $x \in X$.

Definition 1.5. A sequence $\left\{x_{n}\right\}$ in a 2-normed space X is called a 2-convergent sequence if there is an $x \in X$ such that $\lim _{n \rightarrow \infty}\left\|x_{n}-x, y\right\|=0$ for each $y \in X$. If $\left\{x_{n}\right\}$ converges to x , we write $\lim _{n \rightarrow \infty} x_{n}=x$.

Definition 1.6. We say that a 2 -normed space $(X,\|\cdot, \cdot\|)$ is a 2 -Banach space if every 2 -Cauchy sequence in X is 2-convergent in X.

By using (2) and (4) of Definition 1.2 one can see that $\|\cdot, \cdot\|$ is continuous in each component. More precisely for a convergent sequence $\left\{x_{n}\right\}$ in a 2 -normed space $\mathrm{X}, \lim _{n \rightarrow \infty}\left\|x_{n}, y\right\|=\left\|\lim _{n \rightarrow \infty} x_{n}, y\right\|$ for each $y \in X$.

2 Stability of a functional equation

Throughout this section, $(X,\|\cdot, \cdot\|)$ a 2-Banach space. For a function
$f: X \longrightarrow X$, define $D_{f}: X \times X \longrightarrow X$ by

$$
\begin{aligned}
D_{f}(x, y) & =7[f(2 x+y)+f(2 x-y)]-28[f(x+y)+f(x-y)] \\
& +3[f(2 y)-2 f(y)]-14[f(2 x)-4 f(x)]
\end{aligned}
$$

for each $x, y \in X$.
Definition 2.1. The equation $f(2 x+y)+f(2 x-y)=4 f(x+y)+4 f(x-y)+24 f(x)-6 f(y)$ is called a quartic functional equation and every solution of the quartic functional equation is said to be a quartic function.

Definition 2.2. The equation $f(x+y)=f(x)+f(y)$ is called an additive functional equation and every solution of the additive functional equation is said to be an additive function.

Theorem 2.3. Let $\varepsilon \geq 0,0<p, q<4$. If $f:(X,\|\cdot, \cdot\|) \longrightarrow(X,\|\cdot, \cdot\|)$ is an even function such that

$$
\begin{equation*}
\left\|D_{f}(x, y), z\right\| \leq \varepsilon\left(\|x, z\|^{p}+\|y, z\|^{q}\right) \tag{2.1}
\end{equation*}
$$

for each $x, y, z \in X$. Then there exists a unique quartic function $Q: X \longrightarrow X$ satisfying (1.1) and

$$
\begin{equation*}
\|f(x)-Q(x), z\| \leq \frac{\varepsilon\|x, z\|^{q}}{3\left(16-2^{q}\right)} \tag{2.2}
\end{equation*}
$$

for each $x, z \in X$.
Proof: Let $x=y=0$ in (2.1). We get, $\|3 f(0), z\|=0$ for each $z \in X$. Hence, $f(0)=0$. Also substituting $x=0$ in (2.1), we have

$$
\begin{equation*}
\|3 f(2 y)-48 f(y), z\| \leq \varepsilon\|y, z\|^{q} \tag{2.3}
\end{equation*}
$$

for each $y, z \in X$. Replacing y by x in (2.3), we have

$$
\begin{equation*}
\left\|\frac{f(2 x)}{16}-f(x), z\right\| \leq \frac{\varepsilon}{48}\|x, z\|^{q} \tag{2.4}
\end{equation*}
$$

for each $x, z \in X$. Replacing x by $2 x$ in (2.4), we get

$$
\begin{equation*}
\left\|\frac{f(4 x)}{16}-f(2 x), z\right\| \leq \frac{\varepsilon}{48} 2^{q}\|x, z\|^{q} \tag{2.5}
\end{equation*}
$$

for each $x, z \in X$. By (2.4) and (2.5), we have

$$
\begin{align*}
\left\|\frac{f(4 x)}{16^{2}}-f(x), z\right\| & \leq\left\|\frac{f(4 x)}{16^{2}}-\frac{f(2 x)}{16}, z\right\|+\left\|\frac{f(2 x)}{16}-f(x), z\right\| \\
& \leq \frac{1}{16} \frac{\varepsilon}{48} 2^{q}\|x, z\|^{q}+\frac{\varepsilon}{48}\|x, z\|^{q} \\
& =\frac{\varepsilon}{48}\|x, z\|^{q}\left[1+\frac{2^{q}}{2^{4}}\right] \tag{2.6}
\end{align*}
$$

for each $x, z \in X$. Therefore by using induction on n, we get

$$
\begin{align*}
\left\|\frac{f\left(2^{n} x\right)}{16^{n}}-f(x), z\right\| & \leq \frac{\varepsilon}{48}\|x, z\|^{q} \sum_{j=0}^{n-1} 2^{(q-4) j} \\
& =\frac{\varepsilon}{48}\|x, z\|^{q} \frac{1-2^{(q-4) n}}{1-2^{q-4}} \tag{2.7}
\end{align*}
$$

for each $x, z \in X$. For $m, n \in \mathbb{N}$, and $x \in X$

$$
\begin{aligned}
\left\|\frac{f\left(2^{m} x\right)}{16^{m}}-\frac{f\left(2^{n} x\right)}{16^{n}}, z\right\| & =\left\|\frac{f\left(2^{m+n-n} x\right)}{16^{m+n-n}}-\frac{f\left(2^{n} x\right)}{16^{n}}, z\right\| \\
& =\frac{1}{16^{n}}\left\|\frac{f\left(2^{m-n} \cdot 2^{n} x\right)}{16^{m-n}}-f\left(2^{n} x\right), z\right\| \\
& \leq \frac{\varepsilon}{48}\left\|2^{n} x, z\right\|^{q} \cdot \frac{1}{16^{n}} \sum_{j=0}^{m-n-1} 2^{(q-4) j} \\
& =\frac{\varepsilon}{48}\|x, z\|^{q} \sum_{j=0}^{m-n-1} 2^{(q-4)(n+j)} \\
& =\frac{\varepsilon}{48}\|x, z\|^{q} 2^{(q-4) n}\left(\frac{1-2^{(q-4)(m-n)}}{1-2^{q-4}}\right) \\
& \longrightarrow 0 \text { as } n \rightarrow \infty
\end{aligned}
$$

for each $z \in X$. Therefore $\left\{\frac{f\left(2^{n} x\right)}{16^{n}}\right\}$ is a 2-Cauchy sequence in X, for each $x \in X$. Since X is a 2-Banach space, define $Q: X \longrightarrow X$ as $Q(x):=\lim _{n \rightarrow \infty} \frac{f\left(2^{n} x\right)}{16^{n}}$ for each $x \in X$. By (2.7), we
have $\|Q(x)-f(x), z\| \leq \frac{\varepsilon\|x, z\|^{q}}{3\left(16-2^{q}\right)}$ for each $x, z \in X$. Now we show that Q satisfies (1.1). That is $D_{Q}(x, y)=0$.

$$
\begin{aligned}
\left\|D_{Q}(x, y), z\right\| & =\lim _{n \rightarrow \infty} \frac{1}{16^{n}}\left\|D_{f}\left(2^{n} x, 2^{n} y\right), z\right\| \\
& \leq \lim _{n \rightarrow \infty} \frac{\varepsilon}{16^{n}}\left[\left\|2^{n} x, z\right\|^{p}+\left\|2^{n} y, z\right\|^{q}\right] \\
& =\lim _{n \rightarrow \infty} \varepsilon\left[2^{(p-4) n}\|x, z\|^{p}+2^{(q-4) n}\|y, z\|^{q}\right]=0
\end{aligned}
$$

for each $x, y, z \in X$. Therefore, $\left\|D_{Q}(x, y), z\right\|=0$. for each $z \in X$. So $D_{Q}(x, y)=0$. Since f is an even function we have Q is an even function and hence by Theorem 1.1, Q is a quartic function.

Next we show that Q is unique. Let $Q^{\prime}: X \longrightarrow X$ be another quartic function which satisfies (1.1) and (2.2). Since Q and Q^{\prime} are quartic $Q\left(2^{n} x\right)=16^{n} Q(x)$ and $Q^{\prime}\left(2^{n} x\right)=16^{n} Q^{\prime}(x)$, for each $x \in X$. Then for $x \in X$

$$
\begin{aligned}
\left\|Q^{\prime}(x)-Q(x), z\right\| & =\frac{1}{16^{n}}\left\|Q^{\prime}\left(2^{n} x\right)-Q\left(2^{n} x\right), z\right\| \\
& \leq \frac{1}{16^{n}}\left[\left\|Q^{\prime}\left(2^{n} x\right)-f\left(2^{n} x\right), z\right\|+\left\|f\left(2^{n} x\right)-Q\left(2^{n} x\right), z\right\|\right] \\
& \leq \frac{2}{16^{n}} \frac{\varepsilon\left\|2^{n} x, z\right\|^{q}}{3\left(16-2^{q}\right)} \\
& =\frac{2 \varepsilon\|x, z\|^{q} \cdot 2^{(q-4) n}}{3\left(16-2^{q}\right)} \\
& \longrightarrow 0 \text { as } n \longrightarrow \infty
\end{aligned}
$$

for each $z \in X$. Therefore for $x \in X,\left\|Q^{\prime}(x)-Q(x), z\right\|=0$ for each $z \in X$. Hence, $Q^{\prime}(x)=Q(x)$, for each $x \in X$.

Corollary 2.4. Let $\varepsilon \geq 0,0<p, q<4, r>0,(X,\|\cdot\|)$ be a real normed space. If $f:(X,\|\cdot\|) \longrightarrow$ $(X,\|\cdot, \cdot\|)$ is an even function such that

$$
\begin{equation*}
\left\|D_{f}(x, y), z\right\| \leq \varepsilon\left(\|x\|^{p}+\|y\|^{q}\right)\|z\|^{r} \tag{2.8}
\end{equation*}
$$

for each $x, y, z \in X$. Then there exists a unique quartic function $Q: X \longrightarrow X$ satisfying (1.1) and

$$
\begin{equation*}
\|f(x)-Q(x), z\| \leq \frac{\varepsilon\|x\|^{q}\|z\|^{r}}{3\left(16-2^{q}\right)} \tag{2.9}
\end{equation*}
$$

for each $x, z \in X$.

Theorem 2.5. Let $\varepsilon \geq 0, p, q>4$. If $f: X \longrightarrow X$ is an even function satisfying

$$
\begin{equation*}
\left\|D_{f}(x, y), z\right\| \leq \varepsilon\left(\|x, z\|^{p}+\|y, z\|^{q}\right) \tag{2.10}
\end{equation*}
$$

for each $x, y, z \in X$. Then there exists a unique quartic function $Q: X \longrightarrow X$ satisfying (1.1) and

$$
\begin{equation*}
\|f(x)-Q(x), z\| \leq \frac{\varepsilon\|x, z\|^{q}}{3\left(2^{q}-16\right)} \tag{2.11}
\end{equation*}
$$

for each $x, z \in X$.

Proof: Let $x=y=0$ in (2.10). Then we get, $\|3 f(0), z\|=0$ for each $z \in X$. Hence, $f(0)=0$. By (2.3) of Theorem 2.3, we have

$$
\begin{equation*}
\|3 f(2 y)-48 f(y), z\| \leq \varepsilon\|y, z\|^{q} \tag{2.12}
\end{equation*}
$$

for each $y, z \in X$. Replacing y by $\frac{x}{2}$ in (2.12), we have

$$
\begin{equation*}
\left\|f(x)-16 f\left(\frac{x}{2}\right), z\right\| \leq \frac{\varepsilon}{3} 2^{-q}\|x, z\|^{q} \tag{2.13}
\end{equation*}
$$

for each $x, z \in X$. Replacing x by $\frac{x}{2}$ in (2.13), we have

$$
\begin{equation*}
\left\|f\left(\frac{x}{2}\right)-16 f\left(\frac{x}{2^{2}}\right), z\right\| \leq \frac{\varepsilon}{3} 2^{-2 q}\|x, z\|^{q} \tag{2.14}
\end{equation*}
$$

for each $x, z \in X$. By (2.13) and (2.14), we obtain

$$
\begin{align*}
\left\|16^{2} f\left(\frac{x}{4}\right)-f(x), z\right\| & \leq\left\|16^{2} f\left(\frac{x}{4}\right)-16 f\left(\frac{x}{2}\right), z\right\|+\left\|16 f\left(\frac{x}{2}\right)-f(x), z\right\| \\
& \leq 16 \cdot \frac{\varepsilon}{3} 2^{-2 q}\|x, z\|^{q}+\frac{\varepsilon}{3} 2^{-q}\|x, z\|^{q} \\
& =\frac{\varepsilon}{3}\|x, z\|^{q}\left[2^{-q}+16 \cdot 2^{-2 q}\right] \tag{2.15}
\end{align*}
$$

for each $x, z \in X$. By using induction on n, we have

$$
\begin{align*}
\left\|16^{n} f\left(\frac{x}{2^{n}}\right)-f(x), z\right\| & \leq \frac{\varepsilon}{3}\|x, z\|^{q} \sum_{j=0}^{n-1} 2^{(-q+j)} \cdot 16^{j} \\
& =\frac{\varepsilon}{3}\|x, z\|^{q} \sum_{j=0}^{n-1} 2^{(-q+4) j-q} \\
& =\frac{\varepsilon}{3}\|x, z\|^{q} \frac{2^{-q}\left(1-2^{(-q+4) n}\right)}{1-2^{-q+4}} \tag{2.16}
\end{align*}
$$

for each $x, z \in X$. For $m, n \in \mathbb{N}$, for $x \in X$

$$
\begin{aligned}
\left\|16^{m} f\left(\frac{x}{2^{m}}\right)-16^{n} f\left(\frac{x}{2^{n}}\right), z\right\| & =\left\|16^{m+n-n} f\left(\frac{x}{2^{m+n-n}}\right)-16^{n} f\left(\frac{x}{2^{n}}\right), z\right\| \\
& =16^{n}\left\|16^{m-n} f\left(\frac{x}{2^{m-n} \cdot 2^{n}}\right)-f\left(\frac{x}{2^{n}}\right), z\right\|
\end{aligned}
$$

$$
\begin{aligned}
& \leq 16^{n} \frac{\varepsilon}{3}\left\|\frac{x}{2^{n}}, z\right\|^{q} \sum_{j=0}^{m-n-1} 2^{(-q+4) j-q} \\
& =\frac{\varepsilon}{3}\|x, z\|^{q} \sum_{j=0}^{m-n-1} 2^{(-q+4)(n+j)-q} \\
& =\frac{\varepsilon}{3}\|x, z\|^{q} \frac{2^{(-q+4) n}\left(1-2^{(-q+4)(m-n)}\right)}{1-2^{-q+4}} \\
& \longrightarrow 0 \text { as } n \rightarrow \infty
\end{aligned}
$$

for each $z \in X$. Therefore $\left\{16^{n} f\left(\frac{x}{2^{n}}\right)\right\}$ is a 2-Cauchy sequence in X, for each $x \in X$. Since X is a 2-Banach space. Define $Q: X \longrightarrow X$ as $Q(x):=\lim _{n \rightarrow \infty} 16^{n} f\left(\frac{x}{2^{n}}\right)$ for each $x \in X$. By (2.16), we have $\|Q(x)-f(x), z\| \leq \frac{\varepsilon\|x, z\|^{q}}{3\left(2^{q}-16\right)}$ for each $x, z \in X$.

Corollary 2.6. Let $\varepsilon \geq 0, r>0, p, q>4,(X,\|\cdot\|)$ be a real normed space. If $f:(X,\|\cdot\|) \longrightarrow$ $(X,\|\cdot, \cdot\|)$ is an even function such that

$$
\begin{equation*}
\left\|D_{f}(x, y), z\right\| \leq \varepsilon\left(\|x\|^{p}+\|y\|^{q}\right)\|z\|^{r} \tag{2.17}
\end{equation*}
$$

for each $x, y, z \in X$. Then there exists a unique quartic function $Q: X \longrightarrow X$ satisfying (1.1) and

$$
\begin{equation*}
\|f(x)-Q(x), z\| \leq \frac{\varepsilon\|x\|^{q}\|z\|^{r}}{3\left(2^{q}-16\right)} \tag{2.18}
\end{equation*}
$$

for each $x, z \in X$.

Theorem 2.7. Let $\varepsilon \geq 0,0<p, q<1, f:(X,\|\cdot, \cdot\|) \longrightarrow(X,\|\cdot, \cdot\|)$ be an odd function satisfying

$$
\begin{equation*}
\left\|D_{f}(x, y), z\right\| \leq \varepsilon\left(\|x, z\|^{p}+\|y, z\|^{q}\right) \tag{2.19}
\end{equation*}
$$

for each $x, y, z \in X$. Then there exists a unique additive function $A: X \longrightarrow X$ satisfying (1.1) and the inequality

$$
\begin{equation*}
\|f(x)-A(x), z\| \leq \frac{\varepsilon\|x, z\|^{q}}{3\left(2-2^{q}\right)} \tag{2.20}
\end{equation*}
$$

for each $x, z \in X$.

Proof: Let $x=0$ in (2.19). Then we get

$$
\begin{equation*}
\|f(2 y)-2 f(y), z\| \leq \frac{\varepsilon}{3}\|y, z\|^{q} \tag{2.21}
\end{equation*}
$$

for each $y, z \in X$. Replacing y by x in (2.21), we get

$$
\begin{equation*}
\|f(2 x)-2 f(x), z\| \leq \frac{\varepsilon}{3}\|x, z\|^{q} \tag{2.22}
\end{equation*}
$$

for each $x, z \in X$. Therefore

$$
\begin{equation*}
\left\|\frac{f(2 x)}{2}-f(x), z\right\| \leq \frac{\varepsilon}{6}\|x, z\|^{q} \tag{2.23}
\end{equation*}
$$

for each $x, z \in X$. Replacing x by $2 x$ in (2.23), we get

$$
\begin{equation*}
\left\|\frac{f(4 x)}{2}-f(2 x), z\right\| \leq \frac{\varepsilon}{6} \cdot 2^{q}\|x, z\|^{q} \tag{2.24}
\end{equation*}
$$

for each $x, z \in X$. Now by (2.23) and (2.24), we have

$$
\begin{aligned}
\left\|\frac{f(4 x)}{4}-f(x), z\right\| & \leq\left\|\frac{f(4 x)}{4}-\frac{f(2 x)}{2}, z\right\|+\left\|\frac{f(2 x)}{2}-f(x), z\right\| \\
& \leq \frac{\varepsilon}{6}\|x, z\|^{q}\left[1+\frac{2^{q}}{2}\right]
\end{aligned}
$$

for each $x, z \in X$. Therefore by using induction on n, we get

$$
\begin{align*}
\left\|\frac{f\left(2^{n} x\right)}{2^{n}}-f(x), z\right\| & \leq \frac{\varepsilon}{6}\|x, z\|^{q} \sum_{j=0}^{n-1} \frac{2^{a j}}{2^{j}} \\
& =\frac{\varepsilon}{6}\|x, z\|^{q} \sum_{j=0}^{n-1} 2^{(q-1) j} \\
& =\frac{\varepsilon}{6}\|x, z\|^{q}\left(\frac{1-2^{(q-1) n}}{1-2^{q-1}}\right) \tag{2.25}
\end{align*}
$$

for each $x, z \in X$. Now for $m, n \in \mathbb{N}$, for $x \in X$

$$
\begin{aligned}
\left\|\frac{f\left(2^{m} x\right)}{2^{m}}-\frac{f\left(2^{n} x\right)}{2^{n}}, z\right\| & =\frac{1}{2^{n}}\left\|\frac{f\left(2^{m-n} \cdot 2^{n} x\right)}{2^{m-n}}-f\left(2^{n} x\right), z\right\| \\
& \leq \frac{1}{2^{n}} \frac{\varepsilon}{6}\left\|2^{n} x, z\right\|^{q} \sum_{j=o}^{m-n-1} 2^{(q-1) j} \\
& =\frac{\varepsilon}{6}\|x, z\|^{q} \sum_{j=0}^{m-n-1} 2^{(q-1)(n+j)} \\
& =\frac{\varepsilon}{6}\|x, z\|^{q} 2^{(q-1) n}\left(\frac{1-2^{(q-1)(m-n)}}{1-2^{q}-1}\right) \\
& \longrightarrow 0 \text { as } n \rightarrow \infty
\end{aligned}
$$

for each $z \in X$. Therefore $\left\{\frac{f\left(2^{n} x\right)}{2^{n}}\right\}$ is a 2-Cauchy sequence in X, for each $x \in X$. Since X is a 2-Banach space. $\left\{\frac{f\left(2^{n} x\right)}{2^{n}}\right\}$ 2-converges in X, for each $x \in X$. Define $A: X \longrightarrow X$ as

$$
A(x):=\lim _{n \longrightarrow \infty} \frac{f\left(2^{n} x\right)}{2^{n}}
$$

for each $x \in X$. By (2.25), we have

$$
\|f(x)-A(x), z\| \leq \frac{\varepsilon\|x, z\|^{q}}{3\left(2-2^{q}\right)}
$$

for each $x \in X$. The rest of the proof is similar to the proof of Theorem 2.3.

Corollary 2.8. Let $\varepsilon \geq 0, r>0,0<p, q<1,(X,\|\cdot\|)$ be a real normed space. If $f:(X,\|\cdot\|) \longrightarrow$ $(X,\|\cdot, \cdot\|)$ is an odd function satisfying the inequality

$$
\begin{equation*}
\left\|D_{f}(x, y), z\right\| \leq \varepsilon\left(\|x\|^{p}+\|y\|^{q}\right)\|z\|^{r} \tag{2.26}
\end{equation*}
$$

for each $x, y, z \in X$. Then there exists a unique additive function $A: X \longrightarrow X$ satisfying (1.1) and

$$
\|f(x)-A(x), z\| \leq \frac{\varepsilon\|x\|^{q}\|z\|^{r}}{3\left(2-2^{q}\right)}
$$

for each $x, z \in X$.
Theorem 2.9. Let $\varepsilon \geq 0, p, q>1$. $f: X \longrightarrow X$ be an odd function satisfying

$$
\begin{equation*}
\left\|D_{f}(x, y), z\right\| \leq \varepsilon\left(\|x, z\|^{p}+\|y, z\|^{q}\right) \tag{2.27}
\end{equation*}
$$

for each $x, y, z \in X$. Then there exists a unique additive function $A: X \longrightarrow X$ satisfying (1.1) and

$$
\begin{equation*}
\|f(x)-A(x), z\| \leq \frac{\varepsilon\|x, z\|^{q}}{3\left(2^{q}-2\right)} \tag{2.28}
\end{equation*}
$$

for each $x, z \in X$.

Proof: By (2.22) of Theorem 2.7, we have

$$
\begin{equation*}
\|f(2 x)-2 f(x), z\| \leq \frac{\varepsilon}{3}\|x, z\|^{q} \tag{2.29}
\end{equation*}
$$

for each $x, z \in X$. Replacing x by $\frac{x}{2}$ in (2.29), we get

$$
\begin{equation*}
\left\|f(x)-2 f\left(\frac{x}{2}\right), z\right\| \leq \frac{\varepsilon}{3} 2^{-q}\|x, z\|^{q} \tag{2.30}
\end{equation*}
$$

for each $x, z \in X$. Replacing x by $\frac{x}{2}$ in (2.30), we get

$$
\begin{equation*}
\left\|f\left(\frac{x}{2}\right)-2 f\left(\frac{x}{4}\right), z\right\| \leq \frac{\varepsilon}{3} 2^{-2 q}\|x, z\|^{q} \tag{2.31}
\end{equation*}
$$

for each $x, z \in X$. Now by (2.30) and (2.31), we have

$$
\begin{aligned}
\left\|f(x)-2^{2} f\left(\frac{x}{2^{2}}\right), z\right\| & \leq\left\|f(x)-2 f\left(\frac{x}{2}\right), z\right\|+\left\|2 f\left(\frac{x}{2}\right)-4 f\left(\frac{x}{4}\right), z\right\| \\
& \leq \frac{\varepsilon}{3} 2^{-q}\|x, z\|^{q}+2 \frac{\varepsilon}{3} 2^{-2 q}\|x, z\|^{q} \\
& =\frac{\varepsilon}{3}\|x, z\|^{q}\left[2^{-q}+2 \cdot 2^{-2 q}\right]
\end{aligned}
$$

for each $x, z \in X$. By using induction on n, we get

$$
\begin{align*}
\left\|f(x)-2^{n} f\left(\frac{x}{2^{n}}\right), z\right\| & \leq \frac{\varepsilon}{3}\|x, z\|^{q} \sum_{j=0}^{n-1} 2^{-q(j+1)} \cdot 2^{j} \\
& =\frac{\varepsilon}{3}\|x, z\|^{q} \sum_{j=0}^{n-1} 2^{(-q+1) j-q} \\
& =\frac{\varepsilon}{3}\|x, z\|^{q} \frac{2^{-q}\left(1-2^{(-q+1) n}\right)}{1-2^{(-q+1)}} \tag{2.32}
\end{align*}
$$

for each $x, z \in X$. Now for $m, n \in \mathbb{N}$, for $x \in X$

$$
\begin{aligned}
\left\|2^{m} f\left(\frac{x}{2^{m}}\right)-2^{n} f\left(\frac{x}{2^{n}}\right), z\right\| & =\left\|2^{m+n-n} f\left(\frac{x}{2^{m+n-n}}\right)-2^{n} f\left(\frac{x}{2^{n}}\right), z\right\| \\
& =2^{n}\left\|2^{m-n} f\left(\frac{x}{2^{m-n} \cdot 2^{n}}\right)-f\left(\frac{x}{2^{n}}\right), z\right\| \\
& \leq 2^{n} \cdot \frac{\varepsilon}{3}\left\|\frac{x}{2^{n}}, z\right\|^{q} \sum_{j=0}^{m-n-1} 2^{(-q+1) j-q} \\
& =\frac{\varepsilon}{3}\|x, z\|^{q} \sum_{j=0}^{m-n-1} 2^{(-q+1)(n+j)-q} \\
& =\frac{\varepsilon}{3}\|x, z\|^{q} \frac{2^{(-q+1) n-q}\left(1-2^{(-q+1)(m-n)}\right)}{\left.1-2^{(}-q+1\right)} \\
& \longrightarrow 0 \text { as } n \rightarrow \infty
\end{aligned}
$$

for each $z \in X$. Therefore $\left\{2^{n} f\left(\frac{x}{2^{n}}\right)\right\}$ is a 2-Cauchy sequence in X, for each $x \in X$. Since X is a 2-Banach space $\left\{2^{n} f\left(\frac{x}{2^{n}}\right)\right\} 2$-converges, for each $x \in X$. Define $A: X \longrightarrow X$ as

$$
A(x):=\lim _{n \rightarrow \infty} 2^{n} f\left(\frac{x}{2^{n}}\right)
$$

for each $x, z \in X$. Now by (2.32), we have

$$
\|f(x)-A(x), z\| \leq \frac{\varepsilon\|x, z\|^{q}}{3\left(2^{q}-2\right)}
$$

for each $x, z \in X$. The rest of the proof is similar to that of the proof of Theorem 2.3.

Corollary 2.10. Let $\varepsilon \geq 0, r>0, p, q>1,(X,\|\cdot\|)$ be a real normed space. If $f:(X,\|\cdot\|) \longrightarrow$ $(X,\|\cdot, \cdot\|)$ is an odd function satisfying

$$
\begin{equation*}
\left\|D_{f}(x, y), z\right\| \leq \varepsilon\left(\|x\|^{p}+\|y\|^{q}\right)\|z\|^{r} \tag{2.33}
\end{equation*}
$$

for each $x, y, z \in X$. Then there exists a unique additive function $A: X \longrightarrow X$ satisfying (1.1) and the inequality

$$
\begin{equation*}
\|f(x)-A(x), z\| \leq \frac{\varepsilon\|x\|^{q}\|z\|^{r}}{3\left(2^{q}-2\right)} \tag{2.34}
\end{equation*}
$$

for each $x, z \in X$.

Theorem 2.11. Let $\varepsilon \geq 0,0<p<1, f: X \longrightarrow X$ be a function satisfying the inequality

$$
\begin{equation*}
\left\|D_{f}(x, y), z\right\| \leq \varepsilon\left(\|x, z\|^{p}+\|y, z\|^{p}\right) \tag{2.35}
\end{equation*}
$$

for each $x, y, z \in X$. Then there exists a unique quartic function $Q: X \longrightarrow X$ and unique additive function $A: X \longrightarrow X$ satisfying (1.1) and

$$
\begin{equation*}
\|f(x)-Q(x)-A(x), z\| \leq \frac{\varepsilon\|x, z\|^{p}}{3}\left[\frac{1}{16-2^{p}}+\frac{1}{2-2^{p}}\right] \tag{2.36}
\end{equation*}
$$

Proof: Let $x=y=0$ in (2.35), we have $\|3 f(0), z\|=0$ for each $z \in X$, so we have $f(0)=0$. Define $f_{e}: X \longrightarrow X, f_{o}: X \longrightarrow X$ as
$f_{e}(x)=\frac{1}{2}[f(x)+f(-x)], \quad f_{o}(x)=\frac{1}{2}[f(x)-f(-x)]$.
Then f_{e} is an even function and f_{o} is an odd function. Since $f(0)=0$, we have $f_{e}(0)=0=f_{o}(0)$. Also

$$
\begin{array}{r}
\left\|D_{f_{e}}(x, y), z\right\| \leq \varepsilon\left(\|x, z\|^{p}+\|y, z\|^{p}\right) \\
\left\|D_{f_{o}}(x, y), z\right\| \leq \varepsilon\left(\|x, z\|^{p}+\|y, z\|^{p}\right)
\end{array}
$$

for each $x, y, z \in X$. Therefore by Theorem 2.3, there exists a unique quartic function $Q: X \longrightarrow X$
satisfying (1.1) and the inequality

$$
\begin{equation*}
\left\|f_{e}(x)-Q(x), z\right\| \leq \frac{\varepsilon\|x, z\|^{p}}{3\left(16-2^{p}\right)} \tag{2.37}
\end{equation*}
$$

for each $x, z \in X$. Also by Theorem 2.7, there exists a unique additive function $A: X \longrightarrow X$ satisfying (1.1) and the inequality

$$
\begin{equation*}
\left\|f_{o}(x)-A(x), z\right\| \leq \frac{\varepsilon\|x, z\|^{p}}{3\left(2-2^{p}\right)} \tag{2.38}
\end{equation*}
$$

for each $x, z \in X$. Now by (2.37) and (2.38), we have

$$
\begin{aligned}
\|f(x)-Q(x)-A(x), z\| & \leq\left\|f_{e}(x)-Q(x), z\right\|+\left\|f_{o}(x)-A(x), z\right\| \\
& \leq \frac{\varepsilon\|x, z\|^{p}}{3\left(16-2^{p}\right)}+\frac{\varepsilon\|x, z\|^{p}}{3\left(2-2^{p}\right)} \\
& \leq \frac{\varepsilon\|x, z\|^{p}}{3}\left[\frac{1}{16-2^{p}}+\frac{1}{2-2^{p}}\right]
\end{aligned}
$$

for each $x, z \in X$. So we have

$$
\|f(x)-Q(x)-A(x), z\| \leq \frac{\varepsilon\|x, z\|^{p}}{3}\left[\frac{1}{16-2^{p}}+\frac{1}{2-2^{p}}\right]
$$

for each $x, z \in X$.

Corollary 2.12. Let $\varepsilon \geq 0, r>0,0<p<1,(X,\|\cdot\|)$ be a real normed space. Suppose f : $(X,\|\cdot\|) \longrightarrow(X,\|\cdot, \cdot\|)$ be a function satisfying the inequality

$$
\begin{equation*}
\left\|D_{f}(x, y), z\right\| \leq \varepsilon\left(\|x\|^{p}+\|y\|^{p}\right)\|z\|^{r} \tag{2.39}
\end{equation*}
$$

for each $x, y, z \in X$. Then there exists a unique quartic function $Q: X \longrightarrow X$ and a unique additive function $A: X \longrightarrow X$ satisfying (1.1) and

$$
\|f(x)-Q(x)-A(x), z\| \leq \frac{\varepsilon}{3}\left[\frac{1}{16-2^{p}}+\frac{1}{2-2^{p}}\right]\|x\|^{p}\|z\|^{q}
$$

for each $x, z \in X$.

Theorem 2.13. Let $\varepsilon \geq 0, p>4$. Let $f: X \longrightarrow X$ be a function satisfying the inequality

$$
\left\|D_{f}(x, y), z\right\| \leq \varepsilon\left(\|x, z\|^{p}+\|y, z\|^{p}\right)
$$

for each $x, y, z \in X$. Then there exists a unique quartic function $Q: X \longrightarrow X$ and an additive function
$A: X \longrightarrow X$ satisfying (1.1) and

$$
\|f(x)-Q(x)-A(x), z\| \leq \frac{\varepsilon\|x, z\|^{p}}{3}\left[\frac{1}{2^{p}-16}+\frac{1}{2^{p}-2}\right]
$$

for each $x, z \in X$.
Proof: Proof is similar to the proof of Theorem 2.11.
Corollary 2.14. Let $\varepsilon \geq 0, p>4,(X,\|\cdot\|)$ be a real normed space. Suppose $f:(X,\|\cdot\|) \longrightarrow$ $(X,\|\cdot, \cdot\|)$ be a function satisfying the inequality $\left\|D_{f}(x, y), z\right\| \leq \varepsilon\left(\|x\|^{p}+\|y\|^{q}\right)\|z\|^{r}$ for each $x, y, z \in$ X. Then there exists a unique quartic function $Q: X \longrightarrow X$ and an additive function $A: X \longrightarrow X$ satisfying (1.1) and the inequality

$$
\|f(x)-Q(x)-A(x), z\| \leq \frac{\varepsilon}{3}\|x\|^{q}\|z\|^{q}\left[\frac{1}{2^{p}-16}+\frac{1}{2^{p}-2}\right]
$$

for each $x, z \in X$.

References

[1] S. Gähler, Lineare 2-normierte Räume, Math. Nachr., 26(1963) 115-148.
[2] M.E. Gordji, Stability of a Functional Equation Deriving from Quatric and Additive Functions, Bull. Korean Math. Soc. 47(2010), 491-502.
[3] D. H. Hyers, On the Stability of the Linear Functional Equation, Proc. Nat. Acad. Sci. U.S.A. 27(1941), 222-224.
[4] S.S. Kim, Y.J. Cho and A. White, Linear operators on linear 2-normed spaces, Glasnik Math. 27(42)(1992),63-70.
[5] Z. Lewandowska, Linear operators on generalized 2-normed spaces, Bull. Math. Soc. Sci. Math. Roumanie, 42(90) No. 4 (1999) 353-368.
[6] Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), No. 2, 297-300.
[7] F. Raymond W and C. Yeol Je., Geometry of linear 2-normed spaces, Nova Science Publishers, New York, 2001.
[8] S. M. Ulam, Problem in Modern Mathematics, Science Editions John Wiley and Sons, Inc., NewYork (1964).
[9] A. White, 2-Banach spaces, Math. Nachr., 42(1969), 43-60.

