On skolem difference mean labeling of some trees

M. Selvi, D. Ramya Department of Mathematics Dr.Sivanthi Aditanar College of Engineering Tiruchendur- 628 215, India. Email: selvm80@yahoo.in, aymar_padma@yahoo.co.in

Abstract

A graph G = (V, E) with p vertices and q edges is said to have skolem difference mean labeling if it is possible to label the vertices $x \in V$ with distinct elements f(x) from 1,2,3, ..., p + q in such a way that for each edge e = uv, let $f^*(e) = \left\lceil \frac{|f(u) - f(v)|}{2} \right\rceil$ and the resulting labels of the

edges are distinct and are from 1, 2, 3,..., q. A graph that admits a skolem difference mean labeling is called a skolem difference mean graph. In this paper, we prove that Tp-tree T, $T \odot \overline{K_n}$, $T @ P_n$ and $T @ 2 P_n$ where T is a Tp-tree are extra skolem difference mean graphs.

Keywords: Skolem difference mean labeling, extra skolem difference mean labeling.

AMS Subject Classification (2010): 05C78.

1 Introduction

By a graph we mean a finite, simple and undirected one. The vertex set and the edge set of a graph G are denoted by V(G) and E(G) respectively. The disjoint union of m copies of the graph G is denoted by mG. The union of two graphs G_1 and G_2 is the graph $G_1 \cup G_2$ with $V(G_1 \cup G_2) = V(G_1) \cup V(G_2)$ and $E(G_1 \cup G_2) = E(G_1) \cup E(G_2)$. A vertex of degree one is called a pendant vertex. The corona $G_1 \odot G_2$ of the graphs G_1 and G_2 is obtained by taking one copy of G_1 (with p vertices) and p copies of G_2 and then joining the ith vertex of G_1 to every vertex of the i^{th} copy of G_2 .

Let *T* be a tree and u_0 and v_0 be two adjacent vertices in V(T). Let there be two pendant vertices u and v in *T* such that the length of $u_0 - u$ path is equal to the length of $v_0 - v$ path. If the edge u_0v_0 is deleted from *T* and u, v are joined by an edge uv, then such a transformation of *T* is called an elementary parallel transformation (or an ept) and the edge u_0v_0 is called a transformable edge. If by a sequence of ept's *T* can be reduced to a path, then *T* is called a Tp-tree (transformed tree) and any such sequence regarded as a composition of mappings (ept's) denoted by *P*, is called a parallel transformation of *T*. The path, the image of *T* under *P* is denoted as P(T). Let *T* be a Tp- tree with *m*

vertices. Let $T @ P_n$ be the graph obtained from T and m copies of P_n by identifying one pendant vertex of i^{th} copy of P_n with i^{th} vertex of T, where P_n is a path of length n-1. Let $T @ 2 P_n$ be the graph obtained from T by identifying the pendant vertices of two vertex disjoint paths of equal lengths n-1 at each vertex of the Tp- tree T. Terms and notations not defined here are used in the sense of Harary [1].

A graph G = (V, E) with p vertices and q edges is said to have skolem difference mean labeling if it is possible to label the vertices $x \in V$ with distinct elements f(x) from 1,2,3,..., p + q in such a way that for each edge e = uv, let $f^*(e) = \frac{|f(u) - f(v)|}{2}$ if |f(u) - f(v)| is even and $\frac{|f(u) - f(v)| + 1}{2}$ if |f(u) - f(v)| is odd and the resulting labels of the edges are distinct and are from 1, 2, 3,..., q. A graph that admits a skolem difference mean labeling is called a skolem difference mean graph.

The concept of skolem difference mean labeling is introduced by K. Murugan and A. Subramanian [2] in 2011. They studied the skolem difference mean labeling of H- graphs. In [3], some standard results on skolem difference mean labeling were proved.

Definition 1.1. Let G = (V, E) be a skolem difference mean graph with p vertices and q edges. Let one of the skolem difference mean labeling of G satisfies the condition that all the labels of the vertices are odd, and then we call this skolem difference mean labeling an extra skolem difference mean labeling and the graph G as extra skolem difference mean graph.

The extra skolem difference mean labeling of P_6 is given in Figure 1.

Figure 1: extra skolem difference mean labeling of P_6 .

2 Extra Skolem Difference Mean Labeling

In this paper we prove that that Tp-tree T, $T \odot \overline{K_n}$, $T @ P_n$ and $T @ 2 P_n$ where T is a *Tp*-tree are extra skolem difference mean graphs.

Theorem 2.1. Every T_{p} - tree T is an extra skolem difference mean graph.

Proof: Let *T* be a T_P - tree with *n* vertices. By the definition of a T_P - tree there exists a parallel transformation *P* of *T* such that for the path P(T) we have (i) V(P(T)) = V(T) and (ii) $E(P(T)) = (E(T) \setminus E_d) \cup E_P$, where E_d is the set of edges deleted from *T* and E_P is the set of edges newly added through the sequence $P = (P_1, P_2, ..., P_k)$ of the epts *P* used to arrive at the path P(T). Clearly E_d and E_P have the same number of edges.

Now, denote the vertices of P(T) successively as $v_1, v_2, v_3, ..., v_n$ starting from one pendant vertex of P(T) right up to the other.

Define $f: V(T) \to \{1, 2, 3, ..., p + q = 2n - 1\}$ as follows:

$$f(v_i) = \begin{cases} i & \text{if } i \text{ is odd, } 1 \le i \le n \\ 2n+1-i & \text{if } i \text{ is even, } 1 \le i \le n \end{cases}$$

is the skolem difference mean labeling of the path P(T).

Let $v_i v_j$ be an edge of T for some indices i and j, $1 \le i < j \le n$ and let P_1 be the ept that deletes this edge and adds the edge $v_{i+t} v_{j-t}$ where t is the distance from v_i to v_{i+t} and also the distance from v_j to v_{j-t} . Let P be a parallel transformation of T that contains P_1 as one of the constituent epts. Since $v_{i+t}v_{j-t}$ is an edge of the path P(T), it follows that i + t + 1 = j - t which implies j = i + 2t + 1. The induced label of the edge $v_i v_j$ is given by,

$$f^*(v_i v_j) = f^*(v_i v_{i+2t+1}) = \left\lceil \frac{|f(v_i) - f(v_{i+2t+1})|}{2} \right\rceil = |i + t - n| \qquad \dots (1)$$

and
$$f^{*}(v_{i+t}v_{j-t}) = f^{*}(v_{i+t}v_{i+t+1}) = \left\lceil \frac{\left| f(v_{i+t}) - f(v_{i+t+1}) \right|}{2} \right\rceil = \left| i + t - n \right|$$
...(2)

Therefore, from (1) and (2), $f^{*}(v_iv_j) = f^{*}(v_{i+t}v_{j-t})$. Hence, *f* is an extra skolem difference mean labeling of T_P -tree *T*.

The extra skolem difference mean labeling of a T_P -tree with 14 vertices is given in Figure 2.

Figure 2: Extra skolem difference mean labeling of a *T*_P-tree with 14 vertices.

Theorem 2.2. Let *T* be a T_P – tree. Then the graph $T \odot \overline{K_n}$ is an extra skolem difference mean graph for all $n \ge 1$.

Proof: Let *T* be a T_P - tree with *m* vertices with the vertex set $V(T) = \{v_1, v_2, v_3, ..., v_m\}$. Let $u_1^j, u_2^j, ..., u_n^j$ be the pendant vertices joined with v_j $(1 \le j \le m)$ by an edge. Then, $V(T \odot \overline{K_n}) = \{v_j, u_i^j : 1 \le i \le n, 1 \le j \le m\}$. By the definition of a T_P - tree there exists a parallel transformation *P* of *T* such that for the path P(T) we have (i) V(P(T)) = V(T) and (ii) $E(P(T)) = (E(T) \setminus E_d) \cup E_P$, where E_d is the set of edges deleted from *T* and E_P is the set of edges newly added through the sequence $P = (P_1, P_2, ..., P_k)$ of the epts *P* used to arrive at the path P(T). Clearly E_d and E_P have the same number of edges. Now denote the vertices of P(T) successively as $v_1, v_2, v_3, ..., v_m$ starting from one pendant vertex of P(T) right up to the other.

We define $f: V(T \odot \overline{K_n}) \rightarrow \{1, 2, 3, ..., p + q = 2m(n+1) - 1\}$ as follows:

$$\begin{aligned} f(v_j) &= (n+1)(2m+1-j) - 1 & \text{for} & j \text{ is odd, } 1 \le j \le m, \\ f(v_j) &= (n+1)j - 1 & \text{for} & j \text{ is even, } 1 \le j \le m, \\ f(u_i^j) &= (n+1)j - n - 2 + 2i & \text{for} & j \text{ is odd, } 1 \le j \le m, 1 \le i \le n, \\ f(u_i^j) &= (n+1)(2m+2-j) - 1 - 2i & \text{for} & j \text{ is even, } 1 \le j \le m, 1 \le i \le n. \end{aligned}$$

Let $v_i v_j$ be an edge of T for some indices i and j, $1 \le i < j \le n$ and let P_1 be the ept that deletes this edge and adds the edge $v_{i+t} v_{j-t}$ where t is the distance from v_i to v_{i+t} and also the distance from v_j to v_{j-t} . Let P be a parallel transformation of T that contains P_1 as one of the constituent epts. Since $v_{i+t}v_{j-t}$ is an edge in the path P(T), it follows that i + t + 1 = j - t which implies j = i + 2t + 1. The induced label of the edge $v_i v_j$ is given by,

$$f^*(v_i v_j) = f^*(v_i v_{i+2t+1}) = \left\lceil \frac{\left| f(v_i) - f(v_{i+2t+1}) \right|}{2} \right\rceil = \left| (n+1)(m-i-t) \right| \qquad \dots (3)$$

and
$$f^{*}(v_{i+t}v_{j-t}) = f^{*}(v_{i+t}v_{i+t+1}) = \left[\frac{\left|f(v_{i+t}) - f(v_{i+t+1})\right|}{2}\right] = \left|(n+1)(m-i-t)\right| \dots (4)$$

Therefore, from (3) and (4), $f^{*}(v_{i}v_{j}) = f^{*}(v_{i+t}v_{j-t})$.

Let $e_i^j = v_j u_i^j (1 \le j \le m, 1 \le i \le n), e_j = v_j v_{j+1} (1 \le j \le m-1)$ be the edges of $T \odot \overline{K_n}$. For each vertex label f the induced edge label f^* is defined as follows:

$$f^*(z^{j})$$
 $(z+1)(zz-z+1)$ i for $1 \le i \le z - 1$

$$f^{*}(e_{j}) = (n+1)(m-j+1) - l \quad \text{for} \quad 1 \le j \le m, \ 1 \le l \le n$$
$$f^{*}(e_{j}) = (n+1)(m-j) \quad \text{for} \quad 1 \le j \le m-1.$$

It can be verified that f is a mean labeling of $T \odot \overline{K_n}$. Hence, $T \odot \overline{K_n}$ is an extra skolem difference mean graph.

The example for an extra skolem difference mean labeling of $T \odot \overline{K_n}$, where *T* is a Tp-tree with 10 vertices, is given in Figure 3.

Figure 3: Extra skolem difference mean labeling of $T \odot \overline{K_n}$.

Theorem 2.3. Let T be a Tp- tree on m vertices. Then the graph $T @ P_n$ is an extra skolem difference mean graph.

Proof: Let *T* be a Tp - tree with *m* vertices. By the definition of a Tp - tree there exists a parallel transformation *P* of *T* such that for the path P(T) we have (i) V(P(T)) = V(T) and (ii) $E(P(T)) = (E(T) \setminus E_d) \cup E_P$, where E_d is the set of edges deleted from *T* and E_P is the set of edges newly added through the sequence $P = (P_1, P_2, ..., P_k)$ of the epts *P* used to arrive at the path P(T). Clearly E_d and E_P have the same number of edges.

Now denote the vertices of P(T) successively as $v_1, v_2, v_3, ..., v_m$ starting from one pendant vertex of P(T) right up to other. Let $u_1^j, u_2^j, u_3^j, ..., u_n^j$ $(1 \le j \le m)$ be the vertices of j^{th} copy of P_n . Then $V(T @ P_n) = \{u_i^j : 1 \le i \le n, 1 \le j \le m \text{ with } u_n^j = v_j\}.$

Define $f: V(T @ P_n) \to \{1, 2, 3, ..., p + q = 2mn - 1\}$ as follows:

$f(u_i^j) = n(j-1) + i$	for	<i>i</i> is odd, <i>j</i> is odd,	$1 \leq i \leq n, 1 \leq j \leq m$,
$f\left(u_{i}^{j}\right) = (2m+1-j)n+1-i$	for	i is even, j is odd,	$1 \leq i \leq n, 1 \leq j \leq m$,
$f\left(u_{i}^{j}\right) = (2m - j)n + i$	for	i is odd, j is even,	$1 \leq i \leq n, 1 \leq j \leq m$,
$f(u_i^j) = nj + 1 - i$	for	<i>i</i> is even, <i>j</i> is even,	$1 \leq i \leq n, 1 \leq j \leq m$.

Let v_iv_j be a transformed edge in T for some indices i and j, $1 \le i < j \le m$ and let P_1 be the ept that deletes the edge v_iv_j and adds the edge v_{i+t} v_{j-t} where t is the distance of v_i from v_{i+t} and also the distance of v_j from v_{j-t} . Let P be a parallel transformation of T that contains P_1 as one of the constituent epts. Since $v_{i+t}v_{j-t}$ is an edge in the path P(T), i + t + 1 = j - t which implies j = i + 2t + 1. The induced label of the edge v_iv_j is given by,

$$f^{*}(v_{i}v_{j}) = f^{*}(v_{i}v_{i+2t+1}) = \left[\frac{|f(v_{i})-f(v_{i+2t+1})|}{2}\right] = |m-i-t|n \qquad \dots (5)$$
$$f^{*}(v_{i+t}v_{j-t}) = f^{*}(v_{i+t}v_{i+t+1}) = \left[\frac{|f(v_{i+t})-f(v_{i+t+1})|}{2}\right] = |m-i-t|n \qquad \dots (6)$$

Therefore from (5) and (6), $f^{*}(v_{i}v_{j}) = f^{*}(v_{i+t}v_{j-t})$.

Let $e_i^j = u_i^j u_{i+1}^j$ for $1 \le i \le n - 1, 1 \le j \le m$ and $e_j = v_j v_{j+1}$ for $1 \le i \le m - 1$. For each vertex label f, the induced edge label f^* is defined as follows: $f^*(e_i^j) = n(m - j + 1) - i$ for j is odd, $1 \le i \le n - 1, 1 \le j \le m$, $f^*(e_i^j) = n(m - j) + i$ for j is even, $1 \le i \le n - 1, 1 \le j \le m$, $f^*(e_j) = (m - j)n$ for $1 \le j \le m - 1$.

It can be verified that f is a skolem difference mean labeling of $T @ P_n$. Hence $T @ P_n$ is an extra skolem difference mean graph.

The example for an extra skolem difference mean labeling of $T @ P_4$, where T is a Tp-tree with 8 vertices, is given in Figure 4.

Figure 4: extra skolem difference mean labeling of $T @ P_4$.

Theorem 2.4: Let T be a Tp - tree on m vertices. Then the graph $T @2 P_n$ is an extra skolem difference mean graph.

Proof: Let *T* be a Tp- tree with *m* vertices. By the definition of Tp – tree, there exists a parallel transformation *P* of *T* such that for the path *P*(*T*) we have (i) V(P(T)) = V(T) and (ii) $E(P(T)) = (E(T) \setminus E_d) \cup E_P$, where E_d is the set of edges deleted from *T* and E_P is the set of edges newly added through the sequence $P = (P_1, P_2, ..., P_k)$ of the epts *P* used to arrive at the path *P*(*T*). Clearly E_d and E_P have the same number of edges.

Now denote the vertices of P(T) successively as $v_1, v_2, v_3, ..., v_m$ starting from one pendant vertex of P(T) right up to other. Let $u_{1,1}^j, u_{1,2}^j, u_{1,3}^j, ..., u_{1,n}^j$ and $u_{2,1}^j, u_{2,2}^j, u_{2,3}^j, ..., u_{2,n}^j$ $(1 \le j \le m)$ be the vertices of the two vertex disjoint paths joined with j^{th} vertex of T such that $v_j = u_{1,n}^j = u_{2,n}^j$. Then $V(T @2 P_n) = \{v_j, u_{1,i}^j, u_{2,i}^j : 1 \le i \le n, 1 \le j \le m$ with $v_j = u_{1,n}^j = u_{2,n}^j\}$.

Define $f: V(T @2 P_n) \rightarrow \{1, 2, 3, ..., p + q = 2m(2n-1) - 1\}$ as follows:

$$\begin{split} f(u_{1,i}^{j}) &= (j-1)(2n-1) + i & \text{f or } i \text{ is odd, } j \text{ is odd, } 1 \leq i \leq n, \ 1 \leq j \leq m, \\ f(u_{2,i}^{j}) &= (j-1)(2n-1) + 2n - i & \text{for } i \text{ is odd, } j \text{ is odd, } 1 \leq i \leq n, \ 1 \leq j \leq m, \\ f(u_{1,i}^{j}) &= (2m-j+1)(2n-1) - (i-1) & \text{for } i \text{ is even, } j \text{ is odd, } 1 \leq i \leq n, \ 1 \leq j \leq m, \\ f(u_{2,i}^{j}) &= (2m-j)(2n-1) + i & \text{for } i \text{ is even, } j \text{ is odd, } 1 \leq i \leq n, \ 1 \leq j \leq m, \\ f(u_{1,i}^{j}) &= (j-1)(2n-1) + i & \text{for } i \text{ is even, } j \text{ is even, } 1 \leq i \leq n, \ 1 \leq j \leq m, \\ f(u_{2,i}^{j}) &= j(2n-1) - (i-1) & \text{for } i \text{ is even, } j \text{ is even, } 1 \leq i \leq n, \ 1 \leq j \leq m, \\ f(u_{1,i}^{j}) &= (2m+1-j)(2n-1) - (i-1) & \text{for } i \text{ is odd, } j \text{ is even, } 1 \leq i \leq n, \ 1 \leq j \leq m, \\ f(u_{1,i}^{j}) &= (2m-j)(2n-1) - (i-1) & \text{for } i \text{ is odd, } j \text{ is even, } 1 \leq i \leq n, \ 1 \leq j \leq m, \\ f(u_{2,i}^{j}) &= (2m-j)(2n-1) + i & \text{for } i \text{ is odd, } j \text{ is even, } 1 \leq i \leq n, \ 1 \leq j \leq m, \\ f(u_{2,i}^{j}) &= (2m-j)(2n-1) + i & \text{for } i \text{ is odd, } j \text{ is even, } 1 \leq i \leq n, \ 1 \leq j \leq m. \\ \end{split}$$

Let v_iv_j be a transformed edge in *T* for some indices *i* and *j*, $1 \le i < j \le m$ and let P_1 be the ept that deletes the edge v_iv_j and adds the edge v_{i+t} v_{j-t} where *t* is the distance of v_i from v_{i+t} and also the distance of v_j from v_{j-t} . Let *P* be a parallel transformation of *T* that contains P_1 as one of the constituent epts. Since $v_{i+t}v_{j-t}$ is an edge in the path P(T), i + t + 1 = j - t which implies j = i + 2t + 1. The induced label of the edge v_iv_j is given by,

$$f^*(v_i v_j) = f^*(v_i v_{i+2t+1}) = \left\lceil \frac{|f(v_i) - f(v_{i+2t+1})|}{2} \right\rceil = (2n-1)|m-i-t| \qquad \dots (7)$$

and
$$f^{*}(v_{i+t}v_{j-t}) = f^{*}(v_{i+t}v_{i+t+1}) = \left\lceil \frac{|f(v_{i+t}) - f(v_{i+t+1})|}{2} \right\rceil = (2n-1)|m-i-t| \dots (8)$$

Therefore, from (7) and (8),
$$f^{*}(v_{i}v_{j}) = f^{*}(v_{i+1}v_{j-1})$$
.
 $e_{1,i}^{j} = u_{1,i}^{j}u_{1,i+1}^{j}$ for $1 \le i \le n-1$, $1 \le j \le m$,
 $e_{2,i}^{j} = u_{2,i}^{j}u_{2,i+1}^{j}$ for $1 \le i \le n-1$, $1 \le j \le m$ and $e_{j} = v_{j}v_{j+1}$ for $1 \le j \le m-1$.
For each vertex label f , the induced edge label f^{*} is defined as follows:
 $f^{*}(v_{i}v_{i+1}) = (2n-1)(m-i)$ for $1 \le i \le m-1$,
 $f^{*}(e_{1,i}^{j}) = (m-j+1)(2n-1)-i$ for $1 \le i \le n-1$, $1 \le j \le m$,

 $f^*(e_{2,i}^j) = (m-j)(2n-1) + i$ for $1 \le i \le n-1, \ 1 \le j \le m$.

It can be verified that f is an extra skolem difference mean labeling of $T @2 P_n$. Hence, $T @2 P_n$ is an extra skolem difference mean graph.

The example for an extra skolem difference mean labeling of $T @2P_3$, where T is a Tp-tree with 9 vertices is given in Figure 5.

Figure 5: Extra skolem difference mean labeling of $T @2 P_3$.

References

- [1] F. Harary, *Graph theory*, Addison Wesley, Massachusetts, (1972).
- [2] K. Murugan and A. Subramanian, Skolem difference mean labeling of H- graphs, International Journal of Mathematics and Soft Computing, Vol.1, No.1(2011),115-129.
- [3] D. Ramya, M. Selvi and R. Kalaiyarasi, *On skolem difference mean labeling of graphs*, IJMA, 4(12)(2013), 73-79.