On skolem difference mean labeling of some trees

M. Selvi, D. Ramya
Department of Mathematics
Dr.Sivanthi Aditanar College of Engineering
Tiruchendur- 628 215, India.
Email: selvm80@yahoo.in, aymar_padma@yahoo.co.in

Abstract

A graph $G=(V, E)$ with p vertices and q edges is said to have skolem difference mean labeling if it is possible to label the vertices $x \in V$ with distinct elements $f(x)$ from $1,2,3, \ldots, p+q$ in such a way that for each edge $e=u v$, let $f^{*}(e)=\left\lceil\left.\frac{|f(u)-f(v)|}{2} \right\rvert\,\right.$ and the resulting labels of the edges are distinct and are from $1,2,3, \ldots, q$. A graph that admits a skolem difference mean labeling is called a skolem difference mean graph. In this paper, we prove that Tp-tree $T, T \odot \overline{K_{n}}, T @ P_{n}$ and $T @ 2 P_{n}$ where T is a Tp-tree are extra skolem difference mean graphs.

Keywords: Skolem difference mean labeling, extra skolem difference mean labeling.
AMS Subject Classification (2010): 05C78.

1 Introduction

By a graph we mean a finite, simple and undirected one. The vertex set and the edge set of a graph G are denoted by $V(G)$ and $E(G)$ respectively. The disjoint union of m copies of the graph G is denoted by $m G$. The union of two graphs G_{1} and G_{2} is the graph $G_{1} \cup G_{2}$ with $V\left(G_{1} \cup G_{2}\right)=V\left(G_{1}\right) \cup V\left(G_{2}\right)$ and $E\left(G_{1} \cup G_{2}\right)=E\left(G_{1}\right) \cup E\left(G_{2}\right)$. A vertex of degree one is called a pendant vertex. The corona $G_{1} \odot G_{2}$ of the graphs G_{1} and G_{2} is obtained by taking one copy of G_{1} (with p vertices) and p copies of G_{2} and then joining the $i^{\text {th }}$ vertex of G_{1} to every vertex of the $i^{\text {th }}$ copy of G_{2}.

Let T be a tree and u_{0} and v_{0} be two adjacent vertices in $V(T)$. Let there be two pendant vertices u and v in T such that the length of $u_{0}-u$ path is equal to the length of $v_{0}-v$ path. If the edge $u_{0} v_{0}$ is deleted from T and u, v are joined by an edge $u v$, then such a transformation of T is called an elementary parallel transformation (or an ept) and the edge $u_{0} v_{0}$ is called a transformable edge. If by a sequence of ept's T can be reduced to a path, then T is called a Tp-tree (transformed tree) and any such sequence regarded as a composition of mappings (ept's) denoted by P, is called a parallel transformation of T. The path, the image of T under P is denoted as $P(T)$. Let T be a Tp- tree with m
vertices. Let $T @ P_{n}$ be the graph obtained from T and m copies of P_{n} by identifying one pendant vertex of $i^{\text {th }}$ copy of P_{n} with $i^{\text {th }}$ vertex of T, where P_{n} is a path of length $n-1$. Let $T @ 2 P_{n}$ be the graph obtained from T by identifying the pendant vertices of two vertex disjoint paths of equal lengths $n-1$ at each vertex of the Tp- tree T. Terms and notations not defined here are used in the sense of Harary [1].

A graph $G=(V, E)$ with p vertices and q edges is said to have skolem difference mean labeling if it is possible to label the vertices $x \in V$ with distinct elements $f(x)$ from $1,2,3, \ldots, p+q$ in such a way that for each edge $e=u v$, let $f^{*}(e)=\frac{|f(u)-f(v)|}{2}$ if $|f(u)-f(v)|$ is even and $\frac{|f(u)-f(v)|+1}{2}$ if $|f(u)-f(v)|$ is odd and the resulting labels of the edges are distinct and are from $1,2,3, \ldots, q$. A graph that admits a skolem difference mean labeling is called a skolem difference mean graph.

The concept of skolem difference mean labeling is introduced by K. Murugan and A. Subramanian [2] in 2011. They studied the skolem difference mean labeling of H - graphs. In [3], some standard results on skolem difference mean labeling were proved.

Definition 1.1. Let $G=(V, E)$ be a skolem difference mean graph with p vertices and q edges. Let one of the skolem difference mean labeling of G satisfies the condition that all the labels of the vertices are odd, and then we call this skolem difference mean labeling an extra skolem difference mean labeling and the graph G as extra skolem difference mean graph.

The extra skolem difference mean labeling of P_{6} is given in Figure 1.

Figure 1: extra skolem difference mean labeling of P_{6}.

2 Extra Skolem Difference Mean Labeling

In this paper we prove that that Tp-tree $\mathrm{T}, \mathrm{T} \odot \overline{K_{n}}, \mathrm{~T} @ P_{n}$ and $\mathrm{T} @ 2 P_{n}$ where T is a $T p$-tree are extra skolem difference mean graphs.

Theorem 2.1. Every T_{p} - tree T is an extra skolem difference mean graph.
Proof: Let T be a T_{P} - tree with n vertices. By the definition of a T_{P} - tree there exists a parallel transformation P of T such that for the path $P(T)$ we have (i) $V(P(T))=V(T)$ and (ii) $E(P(T))=(E(T) \backslash$ $\left.E_{d}\right) \cup E_{P}$, where E_{d} is the set of edges deleted from T and E_{P} is the set of edges newly added through the sequence $P=\left(P_{1}, P_{2}, \ldots, P_{k}\right)$ of the epts P used to arrive at the path $P(T)$. Clearly E_{d} and E_{P} have the same number of edges.

Now, denote the vertices of $P(T)$ successively as $v_{1}, v_{2}, v_{3}, \ldots, v_{n}$ starting from one pendant vertex of $P(T)$ right up to the other.

Define $f: V(T) \rightarrow\{1,2,3, \ldots, p+q=2 n-1\}$ as follows:

$$
f\left(v_{i}\right)= \begin{cases}i & \text { if } i \text { is odd, } 1 \leq i \leq n \\ 2 n+1-i & \text { if } i \text { is even, } 1 \leq i \leq n\end{cases}
$$

is the skolem difference mean labeling of the path $P(T)$.
Let $v_{i} v_{j}$ be an edge of T for some indices i and $j, 1 \leq i<j \leq n$ and let P_{1} be the ept that deletes this edge and adds the edge $v_{i+t} v_{j-t}$ where t is the distance from v_{i} to v_{i+t} and also the distance from v_{j} to v_{j-t}. Let P be a parallel transformation of T that contains P_{1} as one of the constituent epts. Since $v_{i+t} v_{j-t}$ is an edge of the path $P(T)$, it follows that $i+t+1=j-t$ which implies $j=i+2 t+1$. The induced label of the edge $v_{i} v_{j}$ is given by,

$$
\begin{equation*}
f^{*}\left(v_{i} v_{j}\right)=f^{*}\left(v_{i} v_{i+2 t+1}\right)=\left\lceil\frac{\left|f\left(v_{i}\right)-f\left(v_{i+2 t+1}\right)\right|}{2}\right\rceil=|i+t-n| \tag{1}
\end{equation*}
$$

and $f^{*}\left(v_{i+t} v_{j-t}\right)=f *\left(v_{i+t} v_{i+t+1}\right)=\left\lceil\frac{\left|f\left(v_{i+t}\right)-f\left(v_{i+t+1}\right)\right|}{2}\right\rceil=|i+t-n|$
Therefore, from (1) and (2), $f^{*}\left(v_{i} v_{j}\right)=f^{*}\left(v_{i+t} v_{j-t}\right)$. Hence, f is an extra skolem difference mean labeling of T_{P}-tree T.

The extra skolem difference mean labeling of a T_{P}-tree with 14 vertices is given in Figure 2.

Figure 2: Extra skolem difference mean labeling of a T_{P}-tree with 14 vertices.

Theorem 2.2. Let T be a T_{P} - tree. Then the graph $T \odot \overline{K_{n}}$ is an extra skolem difference mean graph for all $n \geq 1$.

Proof: Let T be a T_{P} - tree with m vertices with the vertex set $V(T)=\left\{v_{1}, v_{2}, v_{3}, \ldots, v_{m}\right\}$. Let $u_{1}^{j}, u_{2}^{j}, \ldots, u_{n}^{j}$ be the pendant vertices joined with $v_{j}(1 \leq j \leq m)$ by an edge. Then, $V\left(T \odot \overline{K_{n}}\right)=$ $\left\{v_{j}, u_{i}^{j}: 1 \leq i \leq n, 1 \leq j \leq m\right\}$. By the definition of a T_{P} - tree there exists a parallel transformation P of T such that for the path $P(T)$ we have (i) $V(P(T))=V(T)$ and (ii) $E(P(T))=\left(E(T) \backslash E_{d}\right) \cup E_{P}$, where E_{d} is the set of edges deleted from T and E_{P} is the set of edges newly added through the sequence $P=\left(P_{1}\right.$, P_{2}, \ldots, P_{k}) of the epts P used to arrive at the path $P(T)$. Clearly E_{d} and E_{P} have the same number of edges. Now denote the vertices of $P(T)$ successively as $v_{1}, v_{2}, v_{3}, \ldots, v_{m}$ starting from one pendant vertex of $P(T)$ right up to the other.

We define $f: V\left(T \odot \overline{K_{n}}\right) \rightarrow\{1,2,3, \ldots, p+q=2 m(n+1)-1\}$ as follows:

$$
\begin{array}{lll}
f\left(v_{j}\right)=(n+1)(2 m+1-j)-1 & \text { for } & j \text { is odd, } 1 \leq j \leq m \\
f\left(v_{j}\right)=(n+1) j-1 & \text { for } & j \text { is even, } 1 \leq j \leq m \\
f\left(u_{i}^{j}\right)=(n+1) j-n-2+2 i & \text { for } & j \text { is odd, } 1 \leq j \leq m, 1 \leq i \leq n \\
f\left(u_{i}^{j}\right)=(n+1)(2 m+2-j)-1-2 i & \text { for } & j \text { is even, } 1 \leq j \leq m, 1 \leq i \leq n .
\end{array}
$$

Let $v_{i} v_{j}$ be an edge of T for some indices i and $j, 1 \leq i<j \leq n$ and let $\quad P_{1}$ be the ept that deletes this edge and adds the edge $v_{i+t} v_{j-t}$ where t is the distance from v_{i} to v_{i+t} and also the distance from v_{j} to v_{j-t}. Let P be a parallel transformation of T that contains P_{1} as one of the constituent epts. Since $v_{i+t} v_{j-t}$ is an edge in the path $P(T)$, it follows that $i+t+1=j-t$ which implies $j=i+2 t+1$. The induced label of the edge $v_{i} v_{j}$ is given by,

$$
\begin{array}{ll}
& f *\left(v_{i} v_{j}\right)=f *\left(v_{i} v_{i+2 t+1}\right)=\left\lceil\frac{\left|f\left(v_{i}\right)-f\left(v_{i+2 t+1}\right)\right|}{2}\right\rceil=|(n+1)(m-i-t)| \\
\text { and } & f^{*}\left(v_{i+t} v_{j-t}\right)=f^{*}\left(v_{i+t} v_{i+t+1}\right)=\left\lceil\frac{\left|f\left(v_{i+t}\right)-f\left(v_{i+t+1}\right)\right|}{2}\right\rceil=|(n+1)(m-i-t)| \tag{4}
\end{array}
$$

Therefore, from (3) and (4), $f *\left(v_{i} v_{j}\right)=f *\left(v_{i+t} v_{j-t}\right)$.
Let $e_{i}^{j}=v_{j} u_{i}^{j}(1 \leq j \leq m, 1 \leq i \leq n), e_{j}=v_{j} v_{j+1}(1 \leq j \leq m-1)$ be the edges of $T \odot \overline{K_{n}}$.
For each vertex label f the induced edge label $f *$ is defined as follows:

$$
\begin{array}{llll}
f^{*}\left(e_{i}^{j}\right)=(n+1)(m-j+1)-i & \text { for } & 1 \leq j \leq m, 1 \leq i \leq n, \\
f^{*}\left(e_{j}\right)=(n+1)(m-j) & \text { for } & 1 \leq j \leq m-1 .
\end{array}
$$

It can be verified that f is a mean labeling of $T \odot \overline{K_{n}}$. Hence, $T \odot \overline{K_{n}}$ is an extra skolem difference mean graph.

The example for an extra skolem difference mean labeling of $T \odot \overline{K_{n}}$, where T is a Tp-tree with 10 vertices, is given in Figure 3.

Figure 3: Extra skolem difference mean labeling of $T \odot \overline{K_{n}}$.
Theorem 2.3. Let T be a Tp- tree on m vertices. Then the graph $T @ P_{n}$ is an extra skolem difference mean graph.

Proof: Let T be a Tp - tree with m vertices. By the definition of a Tp - tree there exists a parallel transformation P of T such that for the path $P(T)$ we have (i) $V(P(T))=V(T)$ and (ii)E(P(T))=(E(T)\} $\left.E_{d}\right) \cup E_{P}$, where E_{d} is the set of edges deleted from T and E_{P} is the set of edges newly added through the sequence $P=\left(P_{1}, P_{2}, \ldots, P_{k}\right)$ of the epts P used to arrive at the path $P(T)$. Clearly E_{d} and E_{P} have the same number of edges.

Now denote the vertices of $P(T)$ successively as $v_{1}, v_{2}, v_{3}, \ldots, v_{m}$ starting from one pendant vertex of $P(T)$ right up to other. Let $u_{1}^{j}, u_{2}^{j}, u_{3}^{j}, \ldots, u_{n}^{j}(1 \leq j \leq m)$ be the vertices of $j^{\text {th }}$ copy of P_{n}. Then $V\left(T @ P_{n}\right)=\left\{u_{i}^{j}: 1 \leq i \leq n, 1 \leq j \leq m\right.$ with $\left.u_{n}^{j}=v_{j}\right\}$.

Define $f: V\left(T @ P_{n}\right) \rightarrow\{1,2,3, \ldots, p+q=2 m n-1\}$ as follows:

| $f\left(u_{i}^{j}\right)=n(j-1)+i$ | for $\quad i$ is odd, j is odd, $\quad 1 \leq i \leq n, 1 \leq j \leq m$, |
| :--- | :--- | :--- |
| $f\left(u_{i}^{j}\right)=(2 m+1-j) n+1-i$ | for $\quad i$ is even, j is odd, $1 \leq i \leq n, 1 \leq j \leq m$, |
| $f\left(u_{i}^{j}\right)=(2 m-j) n+i$ | for $\quad i$ is odd, j is even, $1 \leq i \leq n, 1 \leq j \leq m$, |
| $f\left(u_{i}^{j}\right)=n j+1-i$ | for $\quad i$ is even, j is even, $\quad 1 \leq i \leq n, 1 \leq j \leq m$. |

Let $v_{i} v_{j}$ be a transformed edge in T for some indices i and $j, 1 \leq i<j \leq m$ and let P_{1} be the ept that deletes the edge $v_{i} v_{j}$ and adds the edge $v_{i+t} v_{j-t}$ where t is the distance of v_{i} from v_{i+t} and also the distance of v_{j} from v_{j-t}. Let P be a parallel transformation of T that contains P_{1} as one of the constituent epts. Since $v_{i+t} v_{j-t}$ is an edge in the path $P(T), i+t+1=j-t$ which implies $j=i+2 t+1$. The induced label of the edge $v_{i} v_{j}$ is given by,

$$
\begin{align*}
& f^{*}\left(v_{i} v_{j}\right)=f^{*}\left(v_{i} v_{i+2 t+1}\right)=\left\lceil\frac{\left|f\left(v_{i}\right)-f\left(v_{i+2 t+1}\right)\right|}{2}\right\rceil=|m-i-t| n \tag{5}\\
& f^{*}\left(v_{i+t} v_{j-t}\right)=f^{*}\left(v_{i+t} v_{i+t+1}\right)=\left\lceil\frac{\left|f\left(v_{i+t}\right)-f\left(v_{i+t+1}\right)\right|}{2}\right\rceil=|m-i-t| n \tag{6}
\end{align*}
$$

Therefore from (5) and (6), $f *\left(v_{i} v_{j}\right)=f *\left(v_{i+t} v_{j-t}\right)$.
Let $e_{i}^{j}=u_{i}^{j} u_{i+1}^{j}$ for $1 \leq i \leq n-1,1 \leq j \leq m$ and $e_{j}=v_{j} v_{j+1}$ for $1 \leq i \leq m-1$.
For each vertex label f, the induced edge label f^{*} is defined as follows:
$f^{*}\left(e_{i}^{j}\right)=n(m-j+1)-i$ for j is odd, $1 \leq i \leq n-1,1 \leq j \leq m$,
$f^{*}\left(e_{i}^{j}\right)=n(m-j)+i \quad$ for $\quad j$ is even, $1 \leq i \leq n-1,1 \leq j \leq m$,
$f^{*}\left(e_{j}\right)=(m-j) n \quad$ for $\quad 1 \leq j \leq m-1$.
It can be verified that f is a skolem difference mean labeling of $T @ P_{n}$.Hence $T @ P_{n}$ is an extra skolem difference mean graph.

The example for an extra skolem difference mean labeling of $T @ P_{4}$, where T is a Tp-tree with 8 vertices, is given in Figure 4.

Figure 4: extra skolem difference mean labeling of $T @ P_{4}$.

Theorem 2.4: Let T be a $T p$ - tree on m vertices. Then the graph $T @ 2 P_{n}$ is an extra skolem difference mean graph.

Proof: Let T be a Tp- tree with m vertices. By the definition of Tp - tree, there exists a parallel transformation P of T such that for the path $P(T)$ we have (i) $V(P(T))=V(T)$ and (ii)E(P(T))=(E(T) \} $\left.E_{d}\right) \cup E_{P}$, where E_{d} is the set of edges deleted from T and E_{P} is the set of edges newly added through the sequence $P=\left(P_{1}, P_{2}, \ldots, P_{k}\right)$ of the epts P used to arrive at the path $P(T)$. Clearly E_{d} and E_{P} have the same number of edges.

Now denote the vertices of $P(T)$ successively as $v_{1}, v_{2}, v_{3}, \ldots, v_{m}$ starting from one pendant vertex of $P(T)$ right up to other. Let $u_{1,1}^{j}, u_{1,2}^{j}, u_{1,3}^{j}, \ldots, u_{1, n}^{j}$ and $u_{2,1}^{j}, u_{2,2}^{j}, u_{2,3}^{j}, \ldots, u_{2, n}^{j}$ ($1 \leq j \leq m$) be the vertices of the two vertex disjoint paths joined with $j^{\text {th }}$ vertex of T such that $v_{j}=u_{1, n}^{j}=u_{2, n}^{j}$. Then $V\left(T @ 2 P_{n}\right)=\left\{v_{j}, u_{1, i}^{j}, u_{2, i}^{j}: 1 \leq i \leq n, 1 \leq j \leq m \quad\right.$ with $\left.v_{j}=u_{1, n}^{j}=u_{2, n}^{j}\right\}$.

Define $f: V\left(T @ 2 P_{n}\right) \rightarrow\{1,2,3, \ldots, p+q=2 m(2 n-1)-1\}$ as follows:

$$
\begin{array}{ll}
f\left(u_{1, i}^{j}\right)=(j-1)(2 n-1)+i & \text { f or } i \text { is odd, } j \text { is odd, } 1 \leq i \leq n, 1 \leq j \leq m \\
f\left(u_{2, i}^{j}\right)=(j-1)(2 n-1)+2 n-i & \text { for } \quad i \text { is odd, } j \text { is odd, } 1 \leq i \leq n, 1 \leq j \leq m \\
f\left(u_{1, i}^{j}\right)=(2 m-j+1)(2 n-1)-(i-1) & \text { for } \quad i \text { is even, } j \text { is odd, } 1 \leq i \leq n, 1 \leq j \leq m \\
f\left(u_{2, i}^{j}\right)=(2 m-j)(2 n-1)+i & \text { for } \quad i \text { is even, } j \text { is odd, } 1 \leq i \leq n, 1 \leq j \leq m \\
f\left(u_{1, i}^{j}\right)=(j-1)(2 n-1)+i & \text { for } \quad i \text { is even, } j \text { is even, } 1 \leq i \leq n, 1 \leq j \leq m \\
f\left(u_{2, i}^{j}\right)=j(2 n-1)-(i-1) & \text { for } \quad i \text { is even, } j \text { is even, } 1 \leq i \leq n, 1 \leq j \leq m \\
f\left(u_{1, i}^{j}\right)=(2 m+1-j)(2 n-1)-(i-1) & \text { for } \quad i \text { is odd, } j \text { is even, } 1 \leq i \leq n, 1 \leq j \leq m \\
f\left(u_{2, i}^{j}\right)=(2 m-j)(2 n-1)+i & \text { for } \quad i \text { is odd, } j \text { is even, } 1 \leq i \leq n, 1 \leq j \leq m
\end{array}
$$

Let $v_{i} v_{j}$ be a transformed edge in T for some indices i and $j, 1 \leq i<j \leq m$ and let P_{1} be the ept that deletes the edge $v_{i} v_{j}$ and adds the edge $v_{i+t} v_{j-t}$ where t is the distance of v_{i} from v_{i+t} and also the distance of v_{j} from v_{j-t}. Let P be a parallel transformation of T that contains P_{1} as one of the constituent epts. Since $v_{i+t} v_{j-t}$ is an edge in the path $P(T)$, $i+t+1=j-t$ which implies $j=i+2 t+1$. The induced label of the edge $v_{i} v_{j}$ is given by,

$$
\begin{equation*}
f^{*}\left(v_{i} v_{j}\right)=f *\left(v_{i} v_{i+2 t+1}\right)=\left\lceil\frac{\left|f\left(v_{i}\right)-f\left(v_{i+2 t+1}\right)\right|}{2}\right\rceil=(2 n-1)|m-i-t| \tag{7}
\end{equation*}
$$

and $f *\left(v_{i+t} v_{j-t}\right)=f *\left(v_{i+t} v_{i+t+1}\right)=\left\lceil\frac{\left|f\left(v_{i+t}\right)-f\left(v_{i+t+1}\right)\right|}{2}\right\rceil=(2 n-1)|m-i-t|$

Therefore, from (7) and (8), $f^{*}\left(v_{i} v_{j}\right)=f^{*}\left(v_{i+t} v_{j-t}\right)$.

$$
\begin{aligned}
& e_{1, i}^{j}=u_{1, i}^{j} u_{1, i+1}^{j} \quad \text { for } \quad 1 \leq i \leq n-1,1 \leq j \leq m \\
& e_{2, i}^{j}=u_{2, i}^{j} u_{2, i+1}^{j} \quad \text { for } \quad 1 \leq i \leq n-1,1 \leq j \leq m \quad \text { and } \quad e_{j}=v_{j} v_{j+1} \quad \text { for } 1 \leq j \leq m-1
\end{aligned}
$$

For each vertex label f, the induced edge label f^{*} is defined as follows:

$$
\begin{array}{lll}
f^{*}\left(v_{i} v_{i+1}\right)=(2 n-1)(m-i) & \text { for } & 1 \leq i \leq m-1, \\
f^{*}\left(e_{1, i}^{j}\right)=(m-j+1)(2 n-1)-i & \text { for } \quad 1 \leq i \leq n-1,1 \leq j \leq m \\
f^{*}\left(e_{2, i}^{j}\right)=(m-j)(2 n-1)+i & \text { for } & 1 \leq i \leq n-1,1 \leq j \leq m
\end{array}
$$

It can be verified that f is an extra skolem difference mean labeling of $T @ 2 P_{n}$. Hence, $T @ 2 P_{n}$ is an extra skolem difference mean graph.
The example for an extra skolem difference mean labeling of $T @ 2 P_{3}$, where T is a Tp-tree with 9 vertices is given in Figure 5.

Figure 5: Extra skolem difference mean labeling of $T @ 2 P_{3}$.

References

[1] F. Harary, Graph theory, Addison Wesley, Massachusetts, (1972).
[2] K. Murugan and A. Subramanian, Skolem difference mean labeling of H- graphs, International Journal of Mathematics and Soft Computing, Vol.1, No.1(2011),115-129.
[3] D. Ramya, M. Selvi and R. Kalaiyarasi, On skolem difference mean labeling of graphs, IJMA, 4(12)(2013), 73-79.

