Neighborhood Connected Domination and Colouring in Graphs

C. Sivagnanam
Department of General Requirements
College of Applied Sciences - Ibri
Sultanate of Oman.
E-mail: choshi71@ gmail.com

Abstract

A dominating set S of a connected graph $G=(V, E)$ is a neighborhood connected dominating set (ncd-set) if the induced subgraph $\langle N(S)\rangle$ of G is connected. The neighborhood connected domination number $\gamma_{n c}(G)$ is the minimum cardinality of a ncd-set. The minimum number of colours required to colour all the vertices such that no two adjacent vertices have same colour is the chromatic number $\chi(G)$ of G. In this paper we find an upper bound for sum of the ncd-number and chromatic number and characterize the corresponding extremal graphs.

Keywords: Neighborhood connected domination, chromatic number.
AMS Subject Classification(2010): 05C69.

1 Introduction

By a graph $G=(V, E)$ we mean a finite, undirected and connected graph with neither loops nor multiple edges. The order and size of G are denoted by n and m respectively. For graph theoretic terminology we refer to Chartrand and Lesniak [3].

Let $G=(V, E)$ be a graph and let $v \in V$. The open neighborhood and the closed neighborhood of v are denoted by $N(v)$ and $N[v]=N(v) \cup\{v\}$ respectively. If $S \subseteq V$, then $N(S)=\bigcup_{v \in S} N(v)$ and $N[S]=N(S) \cup S$.

A subset S of V is called a dominating set of G if $N[S]=V$. The minimum cardinality of a dominating set is called a domination number of G and is denoted by $\gamma(G)$. S. Arumugam and C. Sivagnanm [1] introduced the concept of neighborhood connected domination. A dominating set S of a connected graph G is called a neighborhood connected dominating set (ncd-set) if the induced subgraph $\langle N(S)\rangle$ is connected. The minimum cardinality of a ncd-set of G is called the neighborhood connected domination number (ncd-number) of G and is denoted by $\gamma_{n c}(G)$. The chromatic number $\chi(G)$ of a graph G is defined to be the minimum number of colours required to colour all the vertices such that no two adjacent vertices receive the same colour.

Several authors have studied the problem of obtaining an upper bound for the sum of a domination parameter and a graph theoretic parameter and characterizing the corresponding extremal graphs. In [4], J. Paulraj Joseph and S. Arumugam proved that $\gamma+\chi \leq n+1$. They also characterized the class of graphs for the upper bound is attained. In this paper, we obtain upper bounds for the sum of ncd-number and chromatic number and characterize the extremal graphs. We need the following theorems.

Theorem 1.1. [2] For any graph $G, \chi \leq 1+\Delta$.
Theorem 1.2. [2] If G is a connected graph that is neither an odd cycle nor a complete graph, then $\chi \leq \Delta$.

Theorem 1.3. [1] Let G be a graph with $\Delta=n-1$. Then $\gamma_{n c}(G)=1$ or 2 . Further $\gamma_{n c}(G)=2$ if and only if G has exactly one vertex v with $\operatorname{deg} v=n-1$ and v is a cut vertex of G.

Theorem 1.4. [1] For the path $P_{n}, \gamma_{n c}\left(P_{n}\right)=\left\lceil\frac{n}{2}\right\rceil$.
Theorem 1.5. [1] For any graph $G, \gamma_{n c}(G) \leq\left\lceil\frac{n}{2}\right\rceil$.
Theorem 1.6. [1] Let G be a graph with $\Delta<n-1$. Then $\gamma_{n c}(G) \leq n-\Delta$.

2 Definitions and Notations

Definition 2.1. $H\left(m_{1}, m_{2}, \cdots, m_{n}\right)$ denotes the graph obtained from the graph H by attaching m_{i} edges to the vertex $v_{i} \in V(H), 1 \leq i \leq n$.

Definition 2.2. $H\left(P_{m_{1}}, P_{m_{2}}, \cdots, P_{m_{n}}\right)$ is the graph obtained from the graph H by attaching the end vertex of $P_{m_{i}}$ to the vertex v_{i} in $H, 1 \leq i \leq n$.

Definition 2.3. Let H_{1} and H_{2} be two copies of C_{3} with vertex sets $V\left(H_{1}\right)=\left\{v_{1}^{(1)}, v_{2}^{(1)}, v_{3}^{(1)}\right\}$ and $V\left(H_{2}\right)=\left\{v_{1}^{(2)}, v_{2}^{(2)}, v_{3}^{(2)}\right\}$. Then the graph $C_{3}^{(2)}$ is obtained from $H_{1} \cup H_{2}$ by joining the vertices $v_{i}^{(1)}$ and $v_{i}^{(2)}, 1 \leq i \leq 3$, by an edge.

2.1 Graphs and Notations

We define the following graphs.
G_{1} is the graph obtained from $C_{3}\left(P_{3}, P_{2}, P_{2}\right)$ by attaching a P_{2} to the vertex of degree 2 .
G_{2} is the graph obtained from $C_{3}\left(P_{4}, P_{2}, P_{1}\right)$ by attaching a P_{2} to the vertex $u \notin V(C)$ of degree 2 , where C is a cycle in $C_{3}\left(P_{4}, P_{2}, P_{1}\right)$.
G_{3} is the graph obtained from $C_{3}\left(P_{3}, P_{2}, P_{1}\right)$ by attaching a P_{2} to the vertex $u \notin V(C)$ of degree 2 , where C is a cycle in $C_{3}\left(P_{3}, P_{2}, P_{1}\right)$.
G_{4} is the graph obtained from $C_{3}\left(P_{4}, P_{1}, P_{1}\right)$ by attaching a P_{2} to the vertex $u \notin V(C)$ of degree 2 , where C is a cycle in $C_{3}\left(P_{4}, P_{1}, P_{1}\right)$.
G_{5} is the graph obtained from $C_{3}\left(P_{4}, P_{1}, P_{1}\right)$ by attaching a P_{3} to the vertex $u \notin V(C)$ of degree 2 and $d(u, C)=1$, where C is a cycle in $C_{3}\left(P_{4}, P_{1}, P_{1}\right)$.
G_{6} is the graph obtained from $C_{3}\left(P_{3}, P_{1}, P_{1}\right)$ by attaching a P_{2} to the vertex $u \notin V(C)$ of degree 2 , where C is a cycle in $C_{3}\left(P_{3}, P_{1}, P_{1}\right)$.
G_{7} is the graph obtained from $C_{3}\left(P_{4}, P_{1}, P_{1}\right)$ by attaching a P_{2} to the vertex of degree 3 .
G_{8} is the graph obtained from $C_{3}\left(P_{3}, P_{1}, P_{1}\right)$ by attaching a P_{2} to the vertex of degree 3 .
G_{9} is the graph obtained from $C_{3}\left(P_{3}, P_{1}, P_{1}\right)$ by attaching a P_{3} to the vertex of degree 3 .
G_{10} is the graph obtained from $C_{3}(2,1,0)$ by attaching a P_{2} to a pendant vertex whose support has degree 4.
G_{11} is the graph obtained from $C_{3}(2,0,0)$ by attaching a P_{3} to the vertex $u \in V(C)$ of degree 2 , where C is a cycle in $C_{3}(2,0,0)$.
G_{12} is the graph obtained from $C_{3}(2,1,0)$ by attaching a P_{2} to the vertices whose support has degree 4 . G_{13} is the graph obtained from $C_{3}(2,1,1)$ by attaching a P_{2} to a pendant vertex whose support has degree 4 .

2.2 Sets of graphs

Also we define the sets of graphs.

$$
\begin{aligned}
B_{1}= & \left\{C_{3}(3,0,0)\right\} \\
B_{2}= & \left\{C_{6}, C_{4}\left(P_{3}, P_{1}, P_{1}, P_{1}\right), C_{4}(1,0,0,0)\right\} \\
B_{3}= & \left\{C_{7}, C_{9}\right\} \\
B_{4}= & \left\{G_{1}, C_{3}\left(P_{3}, P_{3}, P_{2}\right)\right\} \\
B_{5}= & \left\{G_{2}, G_{3}, C_{5}\left(P_{3}, P_{2}, P_{1}, P_{1}, P_{1}\right), C_{5}\left(P_{3}, P_{1}, P_{2}, P_{1}, P_{1}\right), C_{5}\left(P_{2}, P_{2}, P_{1}, P_{1}, P_{1}\right),\right. \\
& \left.C_{5}\left(P_{2}, P_{1}, P_{2}, P_{1}, P_{1}\right), C_{3}\left(P_{5}, P_{2}, P_{1}\right), C_{3}\left(P_{4}, P_{2}, P_{1}\right), C_{3}\left(P_{4}, P_{3}, P_{1}\right), C_{3}\left(P_{3}, P_{3}, P_{1}\right)\right\} \\
B_{6}= & \left\{G_{4}, G_{5}, G_{6}, C_{7}\left(P_{2}, P_{1}, P_{1}, P_{1}, P_{1}, P_{1}, P_{1}\right), C_{5}\left(P_{4}, P_{1}, P_{1}, P_{1}, P_{1}\right), C_{5}\left(P_{3}, P_{1}, P_{1}, P_{1}, P_{1}\right),\right. \\
& \left.C_{3}\left(P_{6}, P_{1}, P_{1}\right), C_{3}\left(P_{5}, P_{1}, P_{1}\right)\right\} \\
B_{7}= & \left\{C_{5}(2,0,0,0,0), C_{3}(2,1,0), C_{3}(2,1,1) \text { and } G_{i}: 7 \leq i \leq 13\right\} \\
B_{8}= & \left\{C_{4}, C_{3}(2,0,0), C_{3}(1,1,1), C_{3}(1,1,0), C_{3}\left(P_{1}, P_{2}, P_{3}\right), C_{3}\left(P_{1}, P_{1}, P_{3}\right), C_{3}\left(P_{1}, P_{1}, P_{4}\right),\right. \\
& \left.C_{5}(1,0,0,0,0)\right\}
\end{aligned}
$$

2.3 Family of graphs

Let \mathscr{A}_{1} be the family of unicyclic graphs of order n with odd cycle $C=\left(v_{1}, v_{2}, \cdots, v_{k}, v_{1}\right)$ satisfy the following conditions: $(i) 6 \leq n \leq 9$ (ii) $\Delta=3$ (iii) C contains s number of maximum degree vertices.

Let \mathscr{A}_{2} be the family of unicyclic graphs of order n with odd cycle $C=\left(v_{1}, v_{2}, \cdots, v_{k}, v_{1}\right)$ satisfy the following conditions $(i) 6 \leq n \leq 9$ (ii) $\Delta=4$.

3 Main Results

Theorem 3.1. For any graph $G, \gamma_{n c}+\chi \leq n+1$. Further equality holds if and only if G is isomorphic to C_{5} or K_{n} or $K_{n}-Y$ where $Y \subseteq E(G),|Y|=n-2$ and the edge-induced subgraph $\langle Y\rangle$ is a star.

Proof: If $\Delta<n-1$, then $\gamma_{n c} \leq n-\Delta$ and $\chi \leq \Delta+1$. Hence $\gamma_{n c}+\chi \leq n+1$. If $\Delta=n-1$ then $\gamma_{n c} \leq 2$.

If $\gamma_{n c}=1$, the inequality is obvious. If $\gamma_{n c}=2$, then G is neither an odd cycle nor a complete graph. Hence $\chi \leq \Delta$ so that $\gamma_{n c}+\chi \leq 2+\Delta \leq 2+n-1=n+1$.

Now, suppose G is a graph with $\gamma_{n c}+\chi=n+1$.

Case (i): $\quad \Delta=n-1$.
Then $\gamma_{n c} \leq 2$. If $\gamma_{n c}=1$, then $\chi=n$ and hence G is isomorphic to K_{n}. Suppose $\gamma_{n c}=2$. It follows from Theorem 1.3 that G has exactly one vertex v with $\operatorname{deg} v=n-1$ and v is a cut vertex of G. Since $\chi(G)=n-1$, it follows that $G-v$ has exactly two components G_{1} and G_{2} where $G_{1}=K_{1}$ and $\left\langle V\left(G_{2}\right) \cup\{v\}\right\rangle=K_{n-1}$. Hence $G=K_{n}-Y$ where $Y \subseteq|E(G)|,|Y|=n-2$ and the edge-induced subgraph $\langle Y\rangle$ is a star.
Case (ii): $\quad \Delta<n-1$.
Then $\gamma_{n c} \leq n-\Delta$. Since $\gamma_{n c}+\chi=n+1$, it follows that $\chi \geq \Delta+1$ and hence $\chi=\Delta+1$. Thus G is an odd cycle and $\gamma_{n c}=n-\Delta=n-2$. Hence $G=C_{5}$. The converse is obvious.

Theorem 3.2. Let T be a tree of order n. Then $\gamma_{n c}+\chi=n$ if and only if $T=P_{4}, P_{5}$ or $K_{1,3}$.
Proof: Let T be a tree with $\gamma_{n c}+\chi=n$. Since $\chi=2$, we have $\gamma_{n c}=n-2$ and hence $n \geq 4$. If $\Delta=n-1$, then $\gamma_{n c}=2$ so that $n=4$ and $T=K_{1,3}$. Suppose $\Delta<n-1$. Then $\gamma_{n c} \leq n-\Delta$. Since $\gamma_{n c}+2=n$, it follows that $\Delta \leq 2$, so that T is a path. Now by Theorem $1.4, \gamma_{n c}=\left\lceil\frac{n}{2}\right\rceil$, so that $n-2=\left\lceil\frac{n}{2}\right\rceil$, which gives $n=4$ or 5 . Thus T is either P_{4} or P_{5}. The converse is obvious.

Theorem 3.3. Let G be a unicyclic graph of order n. Then $\gamma_{n c}+\chi=n$ if and only if $G \in B_{8}$.
Proof: It can be easily verified for all the graphs given in the theorem, $\gamma_{n c}+\chi=n$. Now, let G be a unicyclic graph with cycle $C=\left(v_{1}, v_{2}, \ldots, v_{k}, v_{1}\right)$ and let $\gamma_{n c}+\chi=n$.
Case 1: $\quad \Delta=n-1$.
Then $\gamma_{n c} \leq 2$. If $\gamma_{n c}=1$ then G is K_{3} and $\gamma_{n c}+\chi \neq n$. Hence $\gamma_{n c}=2$ and $\chi=n-2$. Further if k is even, then $\chi=2$ and $n=4$ and in this case $k=4$ and $\Delta=2$, which is a contradiction. Hence k is odd, so that $\chi=3, n=5$ and $\Delta=4$. Hence G is isomorphic to $C_{3}(2,0,0)$.
Case 2: $\quad \Delta<n-1$.
If k is even, then $\chi=2$ and $\gamma_{n c}=n-2$. Also it follows from Theorem 1.5. that $\gamma_{n c} \leq\left\lceil\frac{n}{2}\right\rceil$, and hence $n \leq 5$.

If $n=5$, then $k=4$ and there exists a vertex not in C which is adjacent to a vertex in C. However, for this graph $\gamma_{n c}=2$ and $\chi=2$, so that $\gamma_{n c}+\chi \neq n$. Thus $n=4$ and G is isomorphic to C_{4}.

Now, suppose k is odd. Then $\chi=3$ and $\gamma_{n c}=n-3$. Also by Theorem 1.5, $\gamma_{n c} \leq\left\lceil\frac{n}{2}\right\rceil$, so that $5 \leq n \leq 7$. Further since $\Delta<n-1$, we have $\gamma_{n c} \leq n-\Delta$ and hence $\Delta \leq 3$.

If $\Delta=2$, then G is isomorphic to C_{5} or C_{7} and for these graphs $\gamma_{n c}+\chi \neq n$. Thus $\Delta=3$. Since $\gamma_{n c}=n-3, G$ contains at most three pendant vertices and hence C contains at most three vertices of degree 3 . Suppose C contains three vertices of degree 3 . Since $n \leq 7, k=3$. Let $C=\left(v_{1}, v_{2}, v_{3}, v_{1}\right)$ and $u_{i} v_{i} \in E, i=1,2,3$. If $\operatorname{deg} u_{i}=2$ for some i, then $\gamma_{n c}+\chi \neq n$. Hence $\operatorname{deg} u_{i}=1$ for all i and G is isomorphic to $C_{3}(1,1,1)$.

Suppose C contain two vertices of degree 3 . Then $k=3$ or 5 . We claim that $k=3$. Suppose $k=5$ and let $C=\left(v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{1}\right)$. Since exactly two vertices of G have degree $3, G$ is isomorphic to
the graph obtained from C_{5} by attaching P_{2} to two distinct vertices. For this graph $\gamma_{n c}=\chi=3$, so that $\gamma_{n c}+\chi \neq n$, which is a contradiction.

Thus $k=3$ and let $C=\left(v_{1}, v_{2}, v_{3}, v_{1}\right)$. Let $\operatorname{deg} v_{1}=\operatorname{deg} v_{2}=3$ and $u_{i} v_{i} \in E, i=1,2$. If $\operatorname{deg} u_{1}=\operatorname{deg} u_{2}=2$, then G is isomorphic to the graph obtained from C_{3} by attaching P_{3} to two distinct vertices. For this graph $\gamma_{n c}=\chi=3$, so that $\gamma_{n c}+\chi \neq n$. Hence at least one of the vertices u_{1}, u_{2} is of degree 1 .

If deg $u_{1}=\operatorname{deg} u_{2}=1$, then G is isomorphic to $C_{3}(1,1,0)$. If deg $u_{2}=3$ then $\gamma_{n c}=\chi=3$, so that $\gamma_{n c}+\chi \neq n$. Hence $\operatorname{deg} u_{2}=2$. Let $u_{2} w \in E(G)$. If $\operatorname{deg} w=2$, then G is isomorphic to the graph obtained from C_{3} by attaching P_{2} to one vertex and attaching P_{4} to another vertex. For this graph $\gamma_{n c}=\chi=3$, so that $\gamma_{n c}+\chi \neq n$. Hence $\operatorname{deg} w=1$ and G is isomorphic to $C_{3}\left(P_{1}, P_{2}, P_{3}\right)$.

Suppose C contains exactly one vertex of degree 3 . Then $k=3$ or 5 . Suppose $k=3$. Let $u_{1} v_{1} \in E$. Since $n \leq 7$, $\operatorname{deg} u_{1} \leq 4$. If $\operatorname{deg} u_{1}=3$ or 4 , then G is a graph with $\gamma_{n c}+\chi \neq n$. Hence deg $u_{1}=2$. Let $u_{1} w \in E$. If $\operatorname{deg} w=3$ then G is a graph with $\gamma_{n c}+\chi \neq n$. Hence $\operatorname{deg} w \leq 2$ and G is isomorphic to $C_{3}\left(P_{1}, P_{1}, P_{3}\right)$ or $C_{3}\left(P_{1}, P_{1}, P_{4}\right)$.

Suppose $k=5$. Let $u_{1} v_{1} \in E$. Then $\operatorname{deg} u_{1}=1$ or 2 . If $\operatorname{deg} u_{1}=2$ then G is a graph with $\gamma_{n c}+\chi \neq n$. Hence $\operatorname{deg} w=1$ and G is isomorphic to $C_{5}(1,0,0,0,0)$.

Remark 3.4. There is no cubic graph of order n with $\gamma_{n c}+\chi=n$.
Proof: Let G be a cubic graph with $\gamma_{n c}+\chi=n$. If G is a complete graph then $\gamma_{n c}+\chi=n+1$, which is a contradiction. Hence $\chi \leq 3$. Then $\gamma_{n c} \geq n-3$. It follows from Theorem 1.6, $\gamma_{n c} \leq n-3$. Thus we have $\gamma_{n c}=n-3$ and then $\chi=3$. Theorem 1.5 gives $\gamma_{n c} \leq\left\lceil\frac{n}{2}\right\rceil$ which implies $n \leq 7$. Since G is not a complete graph, we have $n=6$. Then $\gamma_{n c}=3$ and $\chi=3$. Since each vertices v of G dominates four vertices, and all the vertices have degree 3 , two vertices are sufficient to dominates six vertices. Hence there does not exist a cubic graph with $\gamma_{n c}+\chi=n$.

Theorem 3.5. Let T be a tree of order n. Then $\gamma_{n c}+\chi=n-1$ if and only if T is $K_{1,4}$ or P_{6} or P_{7} or its obtained from $K_{1,3}$ by subdividing at least two edges once.

Proof: Let T be a tree with $\gamma_{n c}+\chi=n-1$. Since $\chi=2$, we have $\gamma_{n c}=n-3$ and hence $n \geq 5$. If $\Delta=n-1$ then $\gamma_{n c}=2$ so that $n=5$ and $T=K_{1,4}$. Suppose $\Delta<n-1$. Then $\gamma_{n c} \leq n-\Delta$. Since $\gamma_{n c}+2=n-1$, it follows that $\Delta \leq 3$. Now from Theorem 1.5, $\gamma_{n c} \leq\left\lceil\frac{n}{2}\right\rceil$, so that $n-3 \leq\left\lceil\frac{n}{2}\right\rceil$ which gives $n \leq 7$. Hence $5 \leq n \leq 7$. If $\Delta=2$ then T is a path and hence $T=P_{6}$ or P_{7}. If $\Delta=3$ then $n \neq 5$. Suppose $n=6$. Let v be a vertex of degree $\Delta=3$ and $N(v)=\left\{v_{1}, v_{2}, v_{3}\right\}$. Let $u_{1}, u_{2} \in V-N[v]$. If $u_{1}, u_{2} \in N\left(v_{i}\right), 1 \leq i \leq 3$, then $\gamma_{n c}=2$ which is a contradiction. Hence u_{1} is adjacent to v_{i} and u_{2} is adjacent to $v_{j}, j \neq i$. Thus T is isomorphic to a graph obtained from $K_{1,3}$ by subdividing two edges once.

Suppose $n=7$. Let v be a vertex of degree $\Delta=3$ and $N(v)=\left\{v_{1}, v_{2}, v_{3}\right\}$. Let $u_{1}, u_{2}, u_{3} \in$ $V-N[v]$. Suppose $\operatorname{deg} v_{1}=1$. If $\operatorname{deg} v_{2}=2$ and $\operatorname{deg} v_{3}=3$ then $\gamma_{n c}=3 \neq n-3$ which is
a contradiction. If $\operatorname{deg} v_{2}=1$ and $\operatorname{deg} v_{3}=3$ then $u_{1} v_{3}, u_{2} v_{3} \in E(T)$. Since T is a tree without loss of generality we assume u_{3} is adjacent to u_{1} then $\gamma_{n c}=3 \neq n-3$ which is a contradiction. Let $\operatorname{deg} v_{2}=1$ and $\operatorname{deg} v_{3}=2$ and $u_{1} v_{3} \in E(T)$. If $u_{1} u_{2}, u_{1} u_{3} \in E(T)$ then $\gamma_{n c}=3 \neq n-3$ which is a contradiction. If $u_{1} u_{2}, u_{2} u_{3} \in E(T)$ then $\gamma_{n c} \neq n-3$ which is a contradiction. Hence $\operatorname{deg} v_{i}=2,1 \leq i \leq 3$. Thus T is isomorphic to a graph obtained from $K_{1,3}$ by subdividing all the edges once. The converse is obvious.

Lemma 3.6. Let G be a unicyclic graph of order n and $\Delta=n-1$. Then $\gamma_{n c}+\chi=n-1$ if and only if $G \in B_{1}$.

Proof: Let G be an unicyclic graph with cycle $C=\left(v_{1}, v_{2}, \cdots, v_{k}, v_{1}\right), \Delta=n-1$ and let $\gamma_{n c}+\chi=$ $n-1$. Then $\gamma_{n c} \leq 2$. If $\gamma_{n c}=1$ then G is k_{3} and $\gamma_{n c}+\chi=n+1$. Hence $\gamma_{n c}=2$ and $\chi=n-3$. If $k \geq 4$ then $\Delta<n-1$. Hence $k=3$. Thus $\chi=3, n=6$ and $\Delta=5$. Hence G is isomorphic to $C_{3}(3,0,0) \in B_{1}$. The converse is obvious.

Theorem 3.7. Let G be a unicyclic graph with even cycle $C=\left(v_{1}, v_{2}, \cdots, v_{k}, v_{1}\right)$ and $\Delta<n-1$. Then $\gamma_{n c}+\chi=n-1$ if and only if $G \in B_{2}$.

Proof: Since k is even $\chi=2$ and $\gamma_{n c}=n-3$. It follows from Theorem 1.5 that $\gamma_{n c} \leq\left\lceil\frac{n}{2}\right\rceil$ and hence $n \leq 7$.
Case 1: $n=7$.
Then $k=4$ or 6 . If $k=4$ then $C=\left(v_{1}, v_{2}, v_{3}, v_{4}, v_{1}\right)$. Let u_{1}, u_{2}, u_{3} be the vertices not on C. If $\operatorname{deg} u_{i}=1$ for all $i=1,2,3$ then G is isomorphic to $C_{4}(1,1,1,0)$ or $C_{4}(2,1,0,0)$ or $C_{4}(3,0,0,0)$. For this graphs $\gamma_{n c} \neq n-3$. If deg $u_{3}=2$ then G is isomorphic to $C_{4}\left(P_{3}, P_{2}, P_{1}, P_{1}\right)$. But $\gamma_{n c}=3 \neq n-3$. If $\operatorname{deg} u_{3}=3$ then G is a graph obtained from $C_{4}\left(P_{3}, P_{1}, P_{1}, P_{1}\right)$ by attaching a P_{2} to the vertex $u \notin V(C)$ of degree 2. For this graph $\gamma_{n c}=3 \neq n-3$. If $\operatorname{deg} u_{1}=1$ and $\operatorname{deg} u_{i} \neq 1, i=2,3$ then $\operatorname{deg} u_{2}=\operatorname{deg} u_{3}=2$. Hence G is isomorphic to $C_{4}\left(P_{4}, P_{1}, P_{1}, P_{1}\right)$. But $\gamma_{n c}=3 \neq n-3$. If $k=6$ then G is isomorphic to $C_{6}(1,0,0,0,0,0)$. But $\gamma_{n c}=3 \neq n-3$.
Case 2: $n=6$.
Then $k=4$ or 6 . If $k=6$ then G is C_{6}. Let $k=4$ then G is any one of the following graph $(i) H_{1}=$ $C_{4}(1,1,0,0)(i i) H_{2}=C_{4}(2,0,0,0)(i i i) H_{3}=C_{4}\left(P_{3}, P_{1}, P_{1}, P_{1}\right)$. But $\gamma_{n c}\left(H_{1}\right)=\gamma_{n c}\left(H_{2}\right)=2$. Hence G is isomorphic to $C_{4}\left(P_{3}, P_{1}, P_{1}, P_{1}\right)$.

If $n=5$ then $k=4$ and G is isomorphic to $C_{4}(1,0,0,0)$. If $n=4$ then G is C_{4} and $\gamma_{n c} \neq n-3$. The converse is obvious.

Lemma 3.8. Let $G \in \mathscr{A}_{1}$ and $s=3$. Then $\gamma_{n c}+\chi=n-1$ if and only if $G \in B_{4}$.
Proof: Since k is odd, $\chi=3$ and $\gamma_{n c}=n-4$, also $s=3$ gives $k=3$ or 5 . If $k=5$ then G is isomorphic to $C_{5}\left(P_{3}, P_{2}, P_{2}, P_{1}, P_{1}\right)$ or $C_{5}\left(P_{2}, P_{2}, P_{2}, P_{1}, P_{1}\right)$ or $C_{5}\left(P_{2}, P_{2}, P_{1}, P_{2}, P_{1}\right)$ or $C_{5}\left(P_{3}, P_{1}\right.$, $\left.P_{2}, P_{2}, P_{1}\right)$ or $C_{5}\left(P_{3}, P_{2}, P_{1}, P_{1}, P_{2}\right)$. For this graphs $\gamma_{n c} \neq n-4$ which is a contradiction. Thus $k=3$.

Let $C=\left(v_{1}, v_{2}, v_{3}, v_{1}\right)$ and $u_{i} v_{i} \in E, 1 \leq i \leq 3$. If $\operatorname{deg} u_{i}=1,1 \leq i \leq 3$ then G is isomorphic to $C_{3}(1,1,1)$. But $\gamma_{n c}\left[C_{3}(1,1,1)\right]=3 \neq n-4$ which is a contradiction. If $\operatorname{deg} u_{1}=3$ then at most one of u_{2} and u_{3} has degree 2 . Let deg $u_{2}=2$. Then deg $u_{3}=1$. For this graph $\gamma_{n c}=4 \neq n-4$ which is a contradiction. If $\operatorname{deg} u_{2}=1$ and $\operatorname{deg} u_{3}=1$ then the graph G is isomorphic to G_{1}. Suppose deg $u_{1}=2$. Then $\left(\operatorname{deg} u_{2}=2\right.$ and $\left.\operatorname{deg} u_{3}=2\right)$ or $\left(\operatorname{deg} u_{2}=2\right.$ and $\left.\operatorname{deg} u_{3}=1\right)$ or $\left(\operatorname{deg} u_{2}=1\right.$ and $\left.\operatorname{deg} u_{3}=1\right)$.

If $\operatorname{deg} u_{1}=2, \operatorname{deg} u_{2}=2$ and $\operatorname{deg} u_{3}=2$ then G is isomorphic to $C_{3}\left(P_{3}, P_{3}, P_{3}\right)$. But $\gamma_{n c}\left[C_{3}\left(P_{3}\right.\right.$, $\left.\left.P_{3}, P_{3}\right)\right]=4 \neq n-4$ which is a contradiction. If $\operatorname{deg} u_{1}=2, \operatorname{deg} u_{2}=2$ and $\operatorname{deg} u_{3}=1$ then G is isomorphic to $C_{3}\left(P_{3}, P_{3}, P_{2}\right)$. If $\operatorname{deg} u_{1}=2, \operatorname{deg} u_{2}=1$ and $\operatorname{deg} u_{3}=1$ then G is isomorphic to $C_{3}\left(P_{3}, P_{1}, P_{1}\right)$. But $\gamma_{n c}\left[C_{3}\left(P_{3}, P_{1}, P_{1}\right)\right] \neq n-4$ which is a contradiction.

The converse is obvious.

Lemma 3.9. Let $G \in \mathscr{A}_{1}$ and $s=2$. Then $\gamma_{n c}+\chi=n-1$ if and only if $G \in B_{5}$.

Proof: Since k is odd $\chi=3$ and $\gamma_{n c}=n-4$. Also $s=2$ gives $k=3$ or 5 or 7 .
Case 1: $k=7$.
Then G is isomorphic to the graph obtained from C_{7} by attaching P_{2} to any two vertices. But $\gamma_{n c}<n-4$ which is a contradiction.
Case 2: $k=5$.
Let $C=\left(v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{1}\right)$ and let x be a pendant vertex in G. It is clear that $d(x, c) \leq 3$. If $d(x, C)=3$ then G is isomorphic to $C_{5}\left(P_{4}, P_{2}, P_{1}, P_{1}, P_{1}\right)$ or $C_{5}\left(P_{4}, P_{1}, P_{2}, P_{1}, P_{1}\right)$. For this graphs $\gamma_{n c} \neq n-4$ which is a contradiction.

Suppose $d(x, C)=2$. Then $n=8$ or 9 . Suppose $n=8$. Let $\operatorname{deg} v_{1}=3$ and $\left(v_{1}, x_{1}, x\right)$ be a path in G. Since $n=8$ there is a vertex x_{2} in $V(G)$ and x_{2} is adjacent to v_{2} or v_{3} or v_{4} or v_{5}. Hence G is isomorphic to $C_{5}\left(P_{3}, P_{2}, P_{1}, P_{1}, P_{1}\right)$ or $C_{5}\left(P_{3}, P_{1}, P_{2}, P_{1}, P_{1}\right)$. Suppose $n=9$. Then there are two vertices $x_{2}, x_{3} \in V(G)$. If $\operatorname{deg} x_{2}=\operatorname{deg} x_{3}=1$ then $x_{2} v_{2}$ or $x_{2} v_{3} \in E$ and $x_{1} x_{3} \in E$. For this graph $\gamma_{n c} \neq n-4$ which is a contradiction. If $\operatorname{deg} x_{2}=2$ then $\operatorname{deg} x_{3}=1$ and $x_{2} x_{3} \in E$. Hence G is isomorphic to $C_{5}\left(P_{3}, P_{3}, P_{1}, P_{1}, P_{1}\right)$ or $C_{5}\left(P_{3}, P_{1}, P_{3}, P_{1}, P_{1}\right)$. For this graph $\gamma_{n c} \neq n-4$.

If $d(x, C)=1$ then G is isomorphic to $C_{5}\left(P_{2}, P_{2}, P_{1}, P_{1}, P_{1}\right)$ or $C_{5}\left(P_{2}, P_{1}, P_{2}, P_{1}, P_{1}\right)$.
Case 3: $k=3$.
Let $C=\left(v_{1}, v_{2}, v_{3}, v_{1}\right)$ and let x be a pendant vertex in G. Then $d(x, C) \leq 5$. If $d(x, C)=5$ then $n=9$ and G is isomorphic to $C_{3}\left(P_{6}, P_{2}, P_{1}\right)$. But $\gamma_{n c} \neq n-4$ which is a contradiction.
Sub Case 3.1: $d(x, C)=4$.
Let $\left(v_{1}, x_{1}, x_{2}, x_{3}, x\right)$ be the $v_{1}-x$ path. Then $n=8$ or 9 . Suppose $n=8$ then G is isomorphic to $C_{3}\left(P_{5}, P_{2}, P_{1}\right)$. If $n=9$ there exist two vertices x_{4} and x_{5} such that $x_{4} v_{2} \in E$ and x_{5} is adjacent to any one of x_{1}, x_{2}, x_{3} and x_{4}. All these cases $\gamma_{n c} \neq n-4$.
Sub Case 3.2: $d(x, C)=3$.
Let $\left(v_{1}, x_{1}, x_{2}, x\right)$ be the $v_{1}-x$ path. Then $7 \leq n \leq 9$. If $n=7$ then G is isomorphic to $C_{3}\left(P_{4}, P_{2}, P_{1}\right)$. Let $n=8$ and $x_{3} v_{2} \in E$. Then there is a vertex x_{4} which is adjacent to any one of
x_{1}, x_{2} and x_{3}. Hence G is isomorphic to $C_{3}\left(P_{4}, P_{3}, P_{1}\right)$ or G_{2}. Let $n=9$ and $x_{3} v_{2} \in E$. Then there are two vertices x_{4} and x_{5} with $x_{2} x_{4}, x_{3} x_{5} \in E$ or $x_{2} x_{4}, x_{1}, x_{5} \in E$ or $x_{1} x_{5}, x_{3} x_{4} \in E$. All these cases $\gamma_{n c} \neq n-4$.
Sub Case 3.3: $d(x, C)=2$.
Let $\left(v_{1}, x_{1}, x\right)$ be the $v_{1}-x$ path and let $x_{2} v_{2} \in E$. Then $6 \leq n \leq 9$. If $n=6$ then G is isomorphic to $C_{3}\left(P_{3}, P_{2}, P_{1}\right)$. For this graph $\gamma_{n c} \neq n-4$. If $n=7$ then G is isomorphic to $C_{3}\left(P_{3}, P_{3}, P_{1}\right)$ or G_{3}. If $n=8$ then G is a graph obtained from $C_{3}\left(P_{3}, P_{3}, P_{1}\right)$ by attaching a P_{2} to the vertex $u \notin V(C)$ of degree 2 . For this graph $\gamma_{n c} \neq n-4$. If $n=9$ then G is a graph obtained from $C_{3}\left(P_{3}, P_{3}, P_{1}\right)$ by attaching a pendant vertex to all the vertices of degree 2 which are not on C. For this graph $\gamma_{n c} \neq n-4$.

If $d(x, C)=1$ then G is isomorphic to $C_{3}\left(P_{2}, P_{2}, P_{1}\right)$. But $\gamma_{n c} \neq n-4$ which is a contradiction. The converse is obvious.

Lemma 3.10. Let $G \in \mathscr{A}_{1}$ and $s=1$. Then $\gamma_{n c}+\chi=n-1$ if and only if $G \in B_{6}$.
Proof: Since k is odd, $\chi=3$ and $\gamma_{n c}=n-4$. Also $s=1$ gives $k=3$ or 5 or 7 .
Case 1: $k=7$.
Then G is isomorphic to $C_{7}\left(P_{3}, P_{1}, P_{1}, P_{1}, P_{1}, P_{1}, P_{1},\right)$ or $C_{7}\left(P_{2}, P_{1}, P_{1}, P_{1}, P_{1}, P_{1}, P_{1},\right)$. But $\gamma_{n c}\left[C_{7}\left(P_{3}, P_{1}, P_{1}, P_{1}, P_{1}, P_{1}, P_{1},\right)\right] \neq n-4$. Hence G is isomorphic to $C_{7}\left(P_{2}, P_{1}, P_{1}, P_{1}, P_{1}, P_{1}, P_{1},\right)$.
Case 2: $k=5$.
Let $C=\left(v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{1}\right)$ and let x be a pendant vertex in G. Also let us assume $\operatorname{deg} v_{1}=3$. Then $d(x, C) \leq 4$. If $d(x, C)=4$ then $n=9$ and G is isomorphic to $C_{5}\left(P_{5}, P_{1}, P_{1}, P_{1}, P_{1}\right)$. But $\gamma_{n c} \neq n-4$. Let $d(x, C)=3$ and let $\left(v_{1}, x_{1}, x_{2}, x\right)$ be the $v_{1}-x$ path. If $\operatorname{deg} x_{1}=3$ or $\operatorname{deg} x_{2}=3$ then $\gamma_{n c} \neq n-4$. Hence G is isomorphic to $C_{5}\left(P_{4}, P_{1}, P_{1}, P_{1}, P_{1}\right)$. Let $d(x, C)=2$ and let $\left(v_{1}, x_{1}, x\right)$ be the $v_{1}-x$ path. Then $n=7$ or 8 . If $n=7$ then G is isomorphic to $C_{5}\left(P_{3}, P_{1}, P_{1}, P_{1}, P_{1}\right)$. If $n=8$ then there is a vertex x_{2} such that $x_{2} x_{1} \in E$. For this graph $\gamma_{n c} \neq n-4$. If $d(x, C)=1$ then G is isomorphic to $C_{5}\left(P_{2}, P_{1}, P_{1}, P_{1}, P_{1}\right)$. But $\gamma_{n c} \neq n-4$.
Case 3: $k=3$.
Let $C=\left(v_{1}, v_{2}, v_{3}, v_{1}\right)$ and let x be a pendant vertex in G. Also let us assume $\operatorname{deg} v_{1}=3$. Then $d(x, C) \leq 6$. If $d(x, C)=6$ then $n=9$ and G is isomorphic to $C_{3}\left(P_{7}, P_{1}, P_{1}\right)$. But $\gamma_{n c} \neq n-4$.

Let $d(x, C)=5$ and let $\left(v_{1}, x_{1}, x_{2}, x_{3}, x_{4}, x\right)$ be the $v_{1}-x$ path. If $\operatorname{deg} x_{i}=2,1 \leq i \leq 4$ then G is isomorphic to $C_{3}\left(P_{6}, P_{1}, P_{1}\right)$. If $\operatorname{deg} x_{i}=3$ for some $i, 1 \leq i \leq 4$ then $\gamma_{n c} \neq n-4$.

Let $d(x, C)=4$ and let $\left(v_{1}, x_{1}, x_{2}, x_{3}, x\right)$ be the $v_{1}-x$ path. If $\operatorname{deg} x_{i}=2,1 \leq i \leq 3$ then G is isomorphic to $C_{3}\left(P_{5}, P_{1}, P_{1}\right)$. If deg $x_{i}=3$ for some $i, 1 \leq i \leq 3$ then $\gamma_{n c} \neq n-4$.

Let $d(x, C)=3$ and let $\left(v_{1}, x_{1}, x_{2}, x\right)$ be the $v_{1}-x$ path. If $\operatorname{deg} x_{i}=2$ or $3,1 \leq i \leq 2$ then $\gamma_{n c} \neq n-4$. Hence at most one of x_{1}, x_{2} has degree 3. Then G is isomorphic to G_{4} or G_{5}.

Let $d(x, C)=2$ and let $\left(v_{1}, x_{1}, x\right)$ be the $v_{1}-x$ path. If $\operatorname{deg} x_{1}=2$ then $\gamma_{n c} \neq n-4$. Thus $\operatorname{deg} x_{1}=3$ and hence G is isomorphic to G_{6}.

If $d(x, C)=1$ then $n=5$ which is a contradiction. The converse is obvious.

Lemma 3.11. Let $G \in \mathscr{A}_{2}$. Then $\gamma_{n c}+\chi=n-1$ if and only if $G \in B_{7}$.
Proof: Since k is odd $\chi=3$ and $\gamma_{n c}=n-4$.
Case 1: C contains a vertex of degree Δ.
Then $k=3$ or 5 or 7 . If $k=7$ then G is isomorphic to $C_{7}(2,0,0,0,0,0,0)$ and $\gamma_{n c} \neq n-4$.
Sub Case 1.1: $k=5$.
Let $C=\left(v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{1}\right)$. If x is a pendant vertex then $d(x, C) \leq 3$. If $d(x, C)=3$ then $\gamma_{n c} \neq n-4$. If $d(x, C)=2$ then by similar arguments given in previous lemma $\gamma_{n c} \neq n-4$. If $d(x, C)=1$ then $n=7$ or 8 or 9 . If $n=8$ or 9 we have $\gamma_{n c} \neq n-4$. Then G is isomorphic to $C_{5}(2,0,0,0,0)$.
Sub Case 1.2: $k=3$.
Let $C=\left(v_{1}, v_{2}, v_{3}, v_{1}\right)$. If x is a pendant vertex then $d(x, C) \leq 5$. If $d(x, C)=5$ or 4 then $\gamma_{n c} \neq n-4$. If $d(x, C)=3$ then $n=7$ or 8 or 9 . If $n=8$ or 9 then by similar arguments given in previous lemma $\gamma_{n c} \neq n-4$. If $n=7$ then G is isomorphic to G_{7}. If $d(x, C)=2$ then $6 \leq n \leq 9$. If $n=6$ then G is isomorphic to G_{8}. If $n=7$ then G is isomorphic to G_{9} or G_{10} or G_{11}. If $n=8$ then G is isomorphic to G_{12} or G_{13}. If $n=9$ then no graph exists. If $d(x, C)=1$ then $6 \leq n \leq 9$. Then by similar arguments given in previous lemma there is no graph of order 8 and 9 . If $n=6$ then G is isomorphic to $C_{3}(2,1,0)$. If $n=7$ then G is isomorphic to $C_{3}(2,1,1)$.
Case 2: C does not contains maximum degree vertex.
Then $k=3$ or 5 . If $k=5$ then G is a graph obtained from $C_{5}\left(P_{3}, P_{1}, P_{1}, P_{1}, P_{1}\right)$ by attaching two P_{2} to the vertex $u \notin V(C)$ of degree 2. For this graph $\gamma_{n c} \neq n-4$. If $k=3$ then by similar arguments in previous lemmas there is no graph. The converse is obvious.
Theorem 3.12. Let G be a unicyclic graph of order n. Then $\gamma_{n c}+\chi=n-1$ if and only if $G \in \bigcup_{i=1}^{7} B_{i}$.
Proof: Let G be a unicyclic graph with cycle $C=\left(v_{1}, v_{2}, \cdots, v_{k}, v_{1}\right)$ and let $\gamma_{n c}+\chi=n-1$. If $\Delta=n-1$ or $\Delta<n-1$ with k is even then $G \in B_{1} \cup B_{2}$.

Suppose $\Delta<n-1$ and k is odd.Then $\chi=3$ and $\gamma_{n c}=n-4$. Also it follows from Theorem 1.5 that $\gamma_{n c} \leq\left\lceil\frac{n}{2}\right\rceil$ so that $6 \leq n \leq 9$. Further since $\Delta<n-1$ we have $\gamma_{n c} \leq n-\Delta$ and hence $\Delta \leq 4$. If $\Delta=2$ then G is isomorphic to C_{7} or C_{9}. Hence $G \in B_{3}$. Since $\gamma_{n c}=n-4, G$ contains at most four pendant vertices and hence C contains at most four vertices of degree 3 . Then $s \leq 4$. If $s=4$ then $k=5$. Let $v \in V(C)$ of degree 2 and let $u_{1}, u_{2}, u_{3}, u_{4} \in V(G-C)$. Then $\operatorname{deg} u_{i}=1,1 \leq i \leq 4$ and $S=V-\left\{v_{1}, u_{1}, u_{2}, u_{3}, u_{4}\right\}$ is a ncd set of cardinality $n-5$ which is a contradiction. Hence $s \leq 3$. Then $G \in \mathscr{A}_{1}$ or \mathscr{A}_{2}. Hence by lemmas 3.6, 3.7, 3.8, 3.9, 3.10, 3.11 the result follows. The converse is obvious.

Theorem 3.13. Let G be a cubic graph of order n. Then $\gamma_{n c}+\chi=n-1$ if and only if $G=C_{3}^{(2)}$.
Proof: Let G be a cubic graph with $\gamma_{n c}+\chi=n-1$. If G is a complete graph then $\gamma_{n c}+\chi=n+1$ which is a contradiction. Hence $\chi \leq 3$. Then $\gamma_{n c} \geq n-4$. It follows from Theorem 1.6, $\gamma_{n c} \leq n-3$. Thus we have $\gamma_{n c}=n-4$ or $n-3$.

Case 1: $\gamma_{n c}=n-3$.
Then $\chi=2$. It follows from Theorem 1.5 that $\gamma_{n c} \leq\left\lceil\frac{n}{2}\right\rceil$ which gives $n \leq 7$. Since G is not a complete graph we have $n=6$. Then $\gamma_{n c}=3$ and $\chi=2$. Since each vertex v of G dominates four vertices and all the vertices having degree three, two vertices are sufficient to dominate six vertices. Hence $\gamma_{n c} \leq 2$ which is a contradiction.
Case 2: $\gamma_{n c}=n-4$.
Then $\chi=3$. It follows from Theorem 1.5 that $\gamma_{n c} \leq\left\lceil\frac{n}{2}\right\rceil$ which gives $n \leq 9$. Since G is not a complete graph we have $n=6$ or 8 .

Suppose $n=6$. Then $\gamma_{n c}=2$ and $\chi=3$
Let $S=\left\{v_{1}, v_{2}\right\}$ be the $\gamma_{n c}$-set of G and let $V-S=\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}$
Sub Case 2.1: $\langle S\rangle=\overline{K_{2}}$.
Let v_{1} is adjacent to u_{1}, u_{2} and u_{3}. If v_{2} is also adjacent to u_{1}, u_{2}, and u_{3} then u_{4} is adjacent to u_{1}, u_{2}, and u_{3}. For this graph $\chi=2$ which is a contradiction. Suppose v_{2} is adjacent to u_{1}, u_{2} and u_{4}. If $u_{1} u_{2} \in E$ then G is not a cubic graph. Hence u_{1} is adjacent to u_{3} or u_{4}. If $u_{1} u_{3} \in E$ then $u_{2} u_{4}, u_{3} u_{4} \in E$. Then the graph G is isomorphic to the graph G. If $u_{1} u_{4} \in E$ then $u_{2} u_{3}, u_{3} u_{4} \in E$. Then the graph G is isomorphic to $C_{3}^{(2)}$.
Sub Case 2.2: $\langle S\rangle=K_{2}$.
Let v_{1} is adjacent to u_{1} and u_{2}. If v_{2} is also adjacent to u_{1} and u_{2} then G is not a cubic graph. Suppose v_{2} is adjacent to u_{1} and u_{3}. Then u_{4} is adjacent to u_{1}, u_{2} and u_{3} and hence $u_{2} u_{3} \in E$. Then G is isomorphic to the graph G_{1}. Suppose v_{2} is adjacent to u_{3} and u_{4}. If $u_{1} u_{2} \in E$ then $u_{2} u_{4}, u_{3} u_{4} \in E$. Then also G is isomorphic to $C_{3}^{(2)}$. If $u_{1} u_{2} \notin E$ then $u_{1} u_{3}, u_{1} u_{4}, u_{2} u_{3}, u_{2} u_{4} \in E(G)$. For this graph $\chi=2$ which is a contradiction.

Suppose $n=8$ then $\gamma_{n c}=4$ and $\chi=3$. Since each vertex v of G dominates four vertices and all the vertices having degree three maximum of three vertices is sufficient to dominate eight vertices. Hence $\gamma_{n c} \leq 3$ which is a contradiction. The converse is obvious.

References

[1] S. Arumugam and C. Sivagnanam, Neighborhood connected domination in graphs, J. Combin. Math. Combin. Comput., 73 (2010), 55-64.
[2] G. Chartrand and L. Lesniak, Graphs and Digraphs, CRC, (2005).
[3] J. Paulraj Joseph and S. Arumugam, Domination and colouring in graphs, International journal of management and systems, 15 (1999), 37-44.
[4] C. Sivagnanam, Studies in graph theory - Neighborhood connected and Neighborhood total domination in graphs, Ph.D thesis, 2008, Anna University, Chennai, Tamilnadu, India.

