Many more families of mean graphs

Selvam Avadayappan
Department of Mathematics
V.H.N.S.N.College, Virudhunagar - 626001, INDIA.
E-mail: selvam_avadayappan@yahoo.co.in
R. Sinthu
Department of Mathematics
V.H.N.S.N.College, Virudhunagar - 626001, INDIA.
E-mail: sinthu_maths@yahoo.co.in

Abstract

For every assignment $f: V(G) \rightarrow\{0,1,2, \ldots, q\}$, an induced edge labeling $f^{*}: E(G) \rightarrow$ $\{1,2,3, \ldots, q\}$ is defined by $\frac{f(u)+f(v)}{2}$ if $f(u)$ and $f(u)$ are of same parity and by $\frac{f(u)+f(v)+1}{2}$ otherwise for every edge $u v \in E(G)$. If $f *(E)=\{1,2,3, \ldots, q\}$, then we say that f is a mean labeling of G. If a graph G admits a mean labeling, then G is called a mean graph. In this paper, we prove that the graphs $C_{n}+v_{1} v_{3}(n \geq 4), C_{2}\left(P_{n}\right), n \geq 2, T_{n}\left(C_{m}\right), n \geq 2, m \geq 3$, $D Q(n), n \geq 2, T Q(n), n \geq 2$ and $m C_{n}-$ snake, $m \geq 1, n \geq 3$ are mean graphs..

Keywords: Labeling, mean labeling, mean graph.
AMS Subject Classification (2010): 05C78.

1 Introduction

Throughout this paper, by a graph we mean a finite, undirected, simple graph. Let $G(V, E)$ be a graph with p vertices and q edges. For notations and terminology, we follow [1]. Path on n vertices is denoted by P_{n} and a cycle on n vertices is denoted by C_{n}. A triangular snake T_{n} is obtained from a path $v_{1}, v_{2}, \ldots, v_{n}$ by joining v_{i} and v_{i+1} to a new vertex u_{i} for $1 \leq i \leq n-1$, that is, every edge of a path is replaced by a triangle C_{3}. The graph T_{6} is shown in Figure 1.

Figure 1: Triangular snake T_{6}.
Let $Q(n)$ be the quadrilateral snake obtained from the path $v_{1}, v_{2}, v_{3}, \ldots, v_{n}$ by joining v_{i} and v_{i+1} to new vertices u_{i} and w_{i}. That is, every edge of a path is replaced by a cycle C_{4}. The quadrilateral snake $Q(3)$ is given in Figure 2.

Figure 2: Quadrilateral snake $Q(3)$.
The graph $C_{n}+v_{1} v_{3}$ is obtained from the cycle $C_{n}: v_{1} v_{2} \ldots v_{n} v_{1}$ by adding an edge between the vertices v_{1} and v_{3}. An example for the graph $C_{7}+v_{1} v_{3}$ is shown in Figure 3.

Let T_{n} be the triangular snake obtained from the path $P_{n}: v_{1} v_{2} \ldots . v_{n}$. Then the double triangular snake $C_{2}\left(P_{n}\right)$ is obtained from T_{n} by adding new vertices $w_{1}, w_{2}, \ldots, w_{n-1}$ and edges $v_{i} w_{i}$ and $w_{i} v_{i+1}$ for 1 $\leq i \leq n-1$. The graph $C_{2}\left(P_{5}\right)$ is given in Figure 4.

Figure 3: $C_{7}+v_{1} v_{3}$.

Figure 4: Double triangular snake $C_{2}\left(P_{5}\right)$.

The balloon of the triangular snake $T_{n}\left(C_{m}\right)$ is the graph obtained from C_{m} by identifying an end vertex of the basic path in T_{n} at a vertex of C_{m}. The balloon graph $T_{5}\left(C_{6}\right)$ is given in Figure 5 .

Figure 5: The balloon of the triangular snake $T_{5}\left(C_{6}\right)$.
Let $Q(n)$ be the quadrilateral snake obtained from the path $v_{1}, v_{2}, v_{3}, \ldots, v_{n}$. Then the double quadrilateral snake $D Q(n)$ is obtained from $Q(n)$ by adding new vertices $s_{1}, s_{2}, s_{3}, \ldots, s_{n-1} ; t_{1}, t_{2}, t_{3}, \ldots$., t_{n-1} and new edges $v_{i} s_{i}, t_{i} v_{i+1}, s_{i} t_{i}$ for $1 \leq i \leq n-1$. The graph $D Q(3)$ is shown in Figure 6 .

Figure 6: Double quadrilateral snake $D Q(n)$.
Let $\mathrm{D} Q(n)$ be the double quadrilateral snake obtained from the quadrilateral snake $Q(n)$ by adding new vertices s_{i} and t_{i}. Then the triple quadrilateral snake $T Q(n)$ is obtained from $\mathrm{DQ}(n)$ by adding new vertices $x_{1}, x_{2}, x_{3}, \ldots, x_{n-1} ; y_{1}, y_{2}, y_{3}, \ldots, y_{n-1}$ and new edges $v_{i} x_{i}, y_{i} v_{i+1}, x_{i} y_{i}$ for $1 \leq i \leq n-1$. For example, the graph $T Q(2)$ is given in Figure 7.

Figure 7: Triple quadrilateral snake TQ(n).
A cyclic snake $m C_{n}$ is the graph obtained from m copies of C_{n} by identifying the vertex $v_{(k+2)_{j}}$ in the $j^{\text {th }}$ copy at a vertex $v_{1_{j+1}}$ in the $(j+1)^{\text {th }}$ copy if $n=2 k+1$ and identifying the vertex $v_{(k+1)_{j}}$ in the $j^{\text {th }}$ copy at a vertex $v_{1_{j+1}}$ in the $(j+1)^{\text {th }}$ copy if $n=2 k$. The cycle snake graph $3 C_{6}$ is shown in Figure 8.

Figure 8: Cyclic snake graph $3 C_{6}$.
A graph labeling is an assignment of integers or a subset of a set to the vertices or edges or both subject to certain condition(s). If the domain of the mapping is the set of vertices (or edges) then the labeling is called a vertex labeling (or an edge labeling). A vertex labeling f is called a mean labeling of G if its induced edge labeling $f^{*}: E(G) \rightarrow\{1,2, \cdots, q\}$ defined by

$$
f *(u v)=\left\{\begin{array}{l}
\frac{f(u)+f(v)}{2} \text { if } f(u) \text { and } f(v) \text { are of same parity } \\
\frac{f(u)^{2}+f(v)+1}{2} \text { otherwise. }
\end{array}\right.
$$

is a bijection. We say that f is a mean labeling of G. If a graph G has a mean labeling, then we say that G is a mean graph.

The concept of mean labeling was first introduced by S. Somasundaram and R. Ponraj [8] in 2003. The meanness of many standard graphs like $P_{n}, C_{n}, K_{n}(n \leq 3)$, the ladder, the triangular snake, $K_{1,2}, K_{1,3}$, $K_{2, n}, K_{2}+m K_{1}, K_{n}^{c}+2 K_{2}, S_{m}+K_{1}, C_{m} \cup P_{n}(m \geq 3, n \geq 2)$, quadrilateral snake, comb, bistars $B(n), B_{n+1, n}$, $B_{n+2, n}$, the carona of a ladder, subdivision of the central edge of $B_{n, n}$, subdivision of the star $K_{1, n}$, the friendship graph $C_{3}^{(2)}$, the crown $C_{n} \square K_{1}, C_{n}^{(2)}$, the dragon, arbitrary super subdivision of a path are proved in [8], [9], [10], [11], [2], [3]. In addition, they have proved that the graphs $K_{n}(n>3), K_{1, n}(n>3)$, $B_{m, n}(m>n+2), S\left(K_{1, n}\right), n>4, C_{3}^{(t)}(t>2)$ and the wheel W_{n} are not mean graphs. In [4], the meanness of the following graphs have been proved: $C_{m} \times P_{n}$; the caterpillar $P(n, 2,3)$; $Q_{3} \times P_{2 n}$; corona of a $H-$ graph; $m C_{3} ; C_{n} \cup K_{1, m}(n \geq 3,1 \leq m \leq 4) ; m C_{3} \cup K_{1, m}(1 \leq m \leq 4)$; the dragon $P_{n}\left(C_{m}\right)$ and some standard graphs. In [5], the meanness of the graphs $\left(P_{m} ; C_{n}\right), m \geq 1, n \geq 3,\left(P_{m} ; Q_{3}\right), m \geq 1,\left(P_{2 n} ; S_{m}\right), m \geq 3, n>1$, $\left(P_{n} ; S_{1}\right),\left(P_{n} ; S_{2}\right), n \geq 1$ have been proved. The meanness of the following product related graphs (P_{3}; $\left.C_{3} \times K_{2}\right), G \times K_{2}$ for any mean graph G with $p=q+1$ and the train graph $P_{k}(G, u, v)$ where G is a mean graph have been proved in [6]. It is also proved that $G^{k}(u, v)$ is a mean graph where G is a mean graph with two vertices u and v such that $f(u)=0$ and $f(v)=q$ in [7].

In this paper, we prove the meanness of the graphs $C_{n}+v_{1} v_{3}(n \geq 4), C_{2}\left(P_{n}\right), n \geq 2, T_{n}\left(C_{m}\right), n \geq 2, m \geq 3$, $D Q(n), n \geq 2, T Q(n), n \geq 2$ and $m C_{n}$ - snake, $m \geq 1, n \geq 3$.

2 Main Results

Theorem 2.1. $\quad C_{n}+v_{1} v_{3}$ is a mean graph for $n \geq 4$.
Proof: Let C_{n} be a cycle with vertices $v_{1}, v_{2}, v_{3}, \ldots, v_{n}$ and edges $e_{1}, e_{2}, e_{3}, \ldots, e_{n}$, where $e_{i}=v_{i} v_{i+1}$ where ' + ' is addition modulo n.
Define $f: V\left(C_{n}+v_{1} V_{3}\right) \rightarrow\{0,1,2, \ldots, n+1\}$ as follows:
Case 1: When n is odd, $n=2 m+1, m=2,3,4, \ldots$

$$
\begin{array}{ll}
f\left(v_{1}\right)=0 ; & f\left(v_{2}\right)=2 ; \\
f\left(v_{i}\right)=2 i-1,3 \leq i \leq m+1 ; & f\left(v_{m+j+1}\right)=n-2 j+3,1 \leq j \leq m .
\end{array}
$$

Then the induced edge labels are

$$
\begin{array}{ll}
f^{*}\left(e_{1}\right)=1 ; & f^{*}\left(e_{i}\right)=2 i, 2 \leq i \leq m+1 ; \\
f^{*}\left(e_{m+j+1}\right)=n-2 j+2,1 \leq j \leq m-1 ; & f^{*}\left(e_{2 m+1}\right)=2 ; \quad f^{*}\left(v_{1} v_{3}\right)=3 .
\end{array}
$$

Case 2: When n is even, $n=2 m, m=2,3,4, \ldots$

$$
\begin{array}{ll}
f\left(v_{1}\right)=0 ; & f\left(v_{2}\right)=2 ; \\
f\left(v_{i}\right)=2 i-1,3 \leq i \leq m+1 ; & f\left(v_{m+j+1}\right)=n-2 j+2,1 \leq j \leq m-1 .
\end{array}
$$

Then the induced edge labels are

$$
\begin{array}{ll}
f^{*}\left(e_{1}\right)=1 ; & f^{*}\left(e_{i}\right)=2 i, 2 \leq i \leq m ; \\
f^{*}\left(e_{m+j}\right)=n-2 j+3,1 \leq j \leq m-1 ; & f^{*}\left(e_{2 m}\right)=2 ; \quad f^{*}\left(v_{1} v_{3}\right)=3 .
\end{array}
$$

Clearly, f is a mean labeling of $C_{n}+v_{1} v_{3}$.
A mean labelings of the graphs $C_{7}+v_{1} v_{3}$ and $C_{10}+v_{1} v_{3}$ are shown in Figure 9.

Figure 9: Mean labelings of $C_{7}+v_{1} v_{3}$ and $C_{10}+v_{1} v_{3}$.
Theorem 2.2. $\quad C_{2}\left(P_{n}\right)$ is a mean graph for $n \geq 2$.
Proof: Let $v_{1}, v_{2}, v_{3}, \ldots, v_{n} ; u_{1}, u_{2}, u_{3}, \ldots, u_{n-1}$ and $w_{1}, w_{2}, w_{3}, \ldots, w_{n-1}$ be the vertices of $C_{2}\left(P_{n}\right)$.
Define $f: V\left(C_{2}\left(P_{n}\right)\right) \rightarrow\{0,1,2, \ldots, 5 n-5\}$ as follows:

$$
\begin{array}{ll}
f\left(v_{i}\right)=5(i-1), 1 \leq i \leq n ; & f\left(u_{i}\right)=5 i-1,1 \leq i \leq n-1 ; \\
f\left(w_{i}\right)=5 i-3,1 \leq i \leq n-1 . &
\end{array}
$$

Then the induced edge labels are

$$
\begin{array}{ll}
f^{*}\left(v_{i} v_{i+1}\right)=5 i-2,1 \leq i \leq n-1 ; & f^{*}\left(v_{i} u_{i}\right)=5 i-3,1 \leq i \leq n-1 ; \\
f^{*}\left(v_{i} w_{i}\right)=5 i-4,1 \leq i \leq n-1 ; & f^{*}\left(u_{i} v_{i+1}\right)=5 i, l \leq i \leq n-1 ; \\
f^{*}\left(w_{i} v_{i+1}\right)=5 i-1, l \leq i \leq n-1 . &
\end{array}
$$

Clearly f is a mean labeling of $C_{2}\left(P_{n}\right)$.
A mean labeling of the graph $C_{2}\left(P_{5}\right)$ is illustrated in Figure 10.

Figure 10: A mean labeling of the graph $C_{2}\left(P_{5}\right)$.

Theorem 2.3. $\quad T_{n}\left(C_{m}\right)$ is a mean graph for $n \geq 2, m \geq 3$.
Proof: Let $v_{1}, v_{2}, v_{3}, \ldots, v_{m}$ be the vertices of C_{m} and $u_{1}, u_{2}, u_{3}, \ldots, u_{n} ; w_{1}, w_{2}, w_{3}, \ldots, w_{n-1}$ be the vertices of T_{n}.
Then define g on $T_{n}\left(C_{m}\right)$ as follows:
Case 1: when m is even, $m=2 k, k=2,3,4, \ldots$

$$
\begin{aligned}
& g\left(v_{i}\right)=f\left(v_{i}\right), 1 \leq i \leq m ; \\
& g\left(u_{i}\right)=m+3 i-3,1 \leq i \leq n ; \\
& g\left(w_{i}\right)=m+3 i-1,1 \leq i \leq n-1 .
\end{aligned}
$$

Then the induced edge labels are

$$
\begin{array}{ll}
g^{*}\left(e_{i}\right)=f\left(e_{i}\right), l \leq i \leq m ; & g^{*}\left(u_{i} u_{i+1}\right)=m+3 i-1, l \leq i \leq n-1 ; \\
g^{*}\left(u_{i} w_{i}\right)=m+3 i-2, l \leq i \leq n-1 ; & g^{*}\left(w_{i} u_{i+1}\right)=m+3 i, l \leq i \leq n-1 .
\end{array}
$$

Case 2: when m is odd, $m=2 k+1, k=1,2,3, \ldots$

$$
\begin{aligned}
& g\left(v_{i}\right)=f\left(v_{i}\right), l \leq i \leq m ; \\
& g\left(u_{i}\right)=m+3 i-3, l \leq i \leq n ; \\
& g\left(w_{i}\right)=m+3 i-1, l \leq i \leq n-1 .
\end{aligned}
$$

Then the induced edge labels are

$$
\begin{array}{ll}
g^{*}\left(e_{i}\right)=f\left(e_{i}\right), l \leq i \leq m ; & g^{*}\left(u_{i} u_{i+1}\right)=m+3 i-1, l \leq i \leq n-1 ; \\
g^{*}\left(u_{i} w_{i}\right)=m+3 i-2, l \leq i \leq n-1 ; & g^{*}\left(w_{i} u_{i+1}\right)=m+3 i, l \leq i \leq n-1 .
\end{array}
$$

Clearly g is a mean labeling of $T_{n}\left(C_{m}\right)$.
A mean labelings of the graphs $T_{5}\left(C_{6}\right)$ and $T_{5}\left(C_{9}\right)$ are given in Figure 11(a) and 11(b) respectively.

Figure 11(a): A mean labeling of $T_{5}\left(C_{6}\right)$.

Figure 11(b): A mean labeling of $T_{5}\left(C_{9}\right)$.

Theorem 2.4. The double quadrilateral snake $D Q(n)$ is a mean graph for $n \geq 2$.
Proof: Let $v_{1}, v_{2}, v_{3}, \ldots, v_{n} ; u_{1}, u_{2}, u_{3}, \ldots, u_{n-1} ; w_{1}, w_{2}, w_{3}, \ldots, w_{n-1} ; s_{1}, s_{2}, s_{3}, \ldots, s_{n-1} ; t_{1}, t_{2}, t_{3}, \ldots$, t_{n-1} be the vertices of $D Q(n)$.

Define $f: V(D Q(n)) \rightarrow\{0,1,2, \ldots, 7 n-7\}$ as follows:

$$
\begin{array}{ll}
f\left(v_{i}\right)=7(i-1), l \leq i \leq n ; & f\left(u_{i}\right)=7 i-5,1 \leq i \leq n-1 ; \\
f\left(w_{i}\right)=7 i-3,1 \leq i \leq n-1 ; & f\left(s_{i}\right)=7 i-4,1 \leq i \leq n-1 ; \\
f\left(t_{i}\right)=7 i-1, l \leq i \leq n-1 . &
\end{array}
$$

Then the induced edge labels are

$$
\begin{array}{ll}
f\left(v_{i} v_{i+1}\right)=7 i-3,1 \leq i \leq n-1 ; & f\left(v_{i} u_{i}\right)=7 i-6,1 \leq i \leq n-1 ; \\
f\left(w_{i} v_{i+1}\right)=7 i-1,1 \leq i \leq n-1 ; & f\left(u_{i} w_{i}\right)=7 i-4,1 \leq i \leq n-1 ; \\
f\left(v_{i} s_{i}\right)=7 i-5,1 \leq i \leq n-1 ; & f\left(t_{i} v_{i+1}\right)=7 i, 1 \leq i \leq n-1 ; \\
f\left(s_{i} t_{i}\right)=7 i-2,1 \leq i \leq n-1 . &
\end{array}
$$

Clearly f is a mean labeling of $D Q(n)$.

Figure 12: A mean labeling of $D Q(4)$.

Theorem 2.5. The triple quadrilateral snake $T Q(n)$ is a mean graph for $n \geq 2$.
Proof: Let $v_{1}, v_{2}, v_{3}, \ldots, v_{n} ; u_{1}, u_{2}, u_{3}, \ldots, u_{n-1} ; w_{1}, w_{2}, w_{3}, \ldots, w_{n-1} ; s_{1}, s_{2}, s_{3}, \ldots, s_{n-1} ; t_{1}, t_{2}, t_{3}, \ldots$, $t_{n-1} ; x_{1}, x_{2}, x_{3}, \ldots, x_{n-1} ; y_{1}, y_{2}, y_{3}, \ldots, y_{n-1}$ be the vertices of $T Q(n)$.
Define $f: V(T Q(n)) \rightarrow\{0,1,2, \ldots, 10 n-10\}$ as follows:

$$
\begin{array}{ll}
f\left(v_{i}\right)=10(i-1), l \leq i \leq n ; & f\left(u_{i}\right)=10 i-8,1 \leq i \leq n-1 ; \\
f\left(w_{i}\right)=10 i-4,1 \leq i \leq n-1 ; & f\left(s_{i}\right)=10 i-6,1 \leq i \leq n-1 ; \\
f\left(t_{i}\right)=10 i-1,1 \leq i \leq n-1 ; & f\left(x_{i}\right)=10 i-5,1 \leq i \leq n-1 ; \\
f\left(y_{i}\right)=10 i-3, l \leq i \leq n-1 . &
\end{array}
$$

Then the induced edge labels are

$$
\begin{array}{ll}
f\left(v_{i} v_{i+1}\right)=10 i-5, l \leq i \leq n-1 ; & f\left(v_{i} u_{i}\right)=10 i-9, l \leq i \leq n-1 ; \\
f\left(w_{i} v_{i+1}\right)=10 i-2,1 \leq i \leq n-1 ; & f\left(u_{i} w_{i}\right)=10 i-6,1 \leq i \leq n-1 ; \\
f\left(v_{i} s_{i}\right)=10 i-8,1 \leq i \leq n-1 ; & f\left(t_{i} v_{i+1}\right)=10 i, 1 \leq i \leq n-1 \\
f\left(s_{i} t_{i}\right)=10 i-3, l \leq i \leq n-1 ; & f\left(v_{i} x_{i}\right)=10 i-7, l \leq i \leq n-1 ; \\
f\left(y_{i} v_{i+1}\right)=10 i-1, l \leq i \leq n-1 ; & f\left(x_{i} y_{i}\right)=10 i-4, l \leq i \leq n-1
\end{array}
$$

Clearly f is a mean labeling of $T Q(n)$.

A mean labeling of the graph $T Q(3)$ is given in Figure 13.

Figure 13: A mean labeling of $T Q(3)$.
Theorem 2.6. The graph $m C_{n}$ - snake, $m \geq 1, n \geq 3$ has a mean graph.
Proof: We prove this result by induction on m. Let $v_{1}, v_{2}, \ldots, v_{n}$ be the vertices and $e_{1}, e_{2}, \ldots, e_{n}$ be the edges of $m C_{n}$ for $l \leq j \leq m$. Let f be a mean labeling of the cycle C_{n}.
When $m=1, C_{n}$ is a mean graph, $\mathrm{n} \geq 3$. Hence the result is true when $m=1$.
Let $m=2$. The cyclic snake $2 C_{n}$ is the graph obtained from 2 copies of C_{n} by identifying the vertex $v_{(k+2)_{1}}$ in the first copy of C_{n} at a vertex $v_{1_{2}}$ in the second copy of C_{n} when $n=2 k+1$ and identifying the vertex $v_{(k+1)_{1}}$ in the first copy of C_{n} at a vertex $v_{1_{2}}$ in the second copy of C_{n} when $n=2 k$. Define the mean labeling g of $2 C_{n}$ as follows:
For $l \leq i \leq n, \quad g\left(v_{i_{1}}\right)=f\left(v_{i_{1}}\right), g\left(v_{i_{2}}\right)=f\left(v_{i_{1}}\right)+n, \quad g^{*}\left(e_{i_{1}}\right)=f^{*}\left(e_{i_{1}}\right), g^{*}\left(e_{i_{2}}\right)=f^{*}\left(e_{i_{1}}\right)+n$.
Thus, $2 C_{n}$-snake is a mean graph.
Assume that $m C_{n}$-snake is a mean graph for any $m \geq 1$. We prove that $(m+1) C_{n}$-snake is a mean graph.

Let f be a mean labeling of $m C_{n}$. We define the mean labeling g on $(m+1) C_{n}$ as follows:

$$
g\left(v_{i_{j}}\right)=f\left(v_{i_{1}}\right)+(j-l) n, l \leq i \leq n, 2 \leq j \leq m ; \quad g\left(v_{i_{m+1}}\right)=f\left(v_{i_{1}}\right)+m n, l \leq i \leq n .
$$

For the vertex labeling g, the induced edge labeling g^{*} is defined as follows:

$$
g^{*}\left(e_{i_{j}}\right)=f^{*}\left(e_{i_{1}}\right)+(j-1) n, l \leq i \leq n, 2 \leq j \leq m ; \quad g^{*}\left(e_{i_{m+1}}\right)=f^{*}\left(e_{i_{1}}\right)+m n, l \leq i \leq n .
$$

Then it can be easily verified that g is a mean labeling of $(m+1) C_{n}$ - snake.
Mean labelings of $5 C_{6}$-snake and $4 C_{7}$-snake are shown in Figure 14.

Figure 14(a): Mean labelings of $5 C_{6}$.

Figure 14(b): Mean labelings of $4 C_{7}$.

References

[1] R. Balakrishnan and K. Ranganathan, A Text Book of Graph Theory, Springer Verlag (2000).
[2] R. Ponraj and S. Somasundaram, Further results on mean graphs, Proceedings of SACOEFERENCE, (2005), 443-448.
[3] R. Ponraj and S. Somasundaram, Mean graphs obtained from mean graphs, Preprint.
[4] Selvam Avadayappan and R. Vasuki, Some Results on Mean Graphs, International Journal of Physical Sciences, 21(1)M(2009), 273-284.
[5] Selvam Avadayappan and R. Vasuki, New Families of mean graphs, International Journal of Mathematical Combinatorics, 2 (2010), 68 - 80.
[6] Selvam Avadayappan and Muthulakshmi Karuppasamy, Meanness of Product Related Graphs, College Sadhana, Vol.3, No.2(2011), 147 - 150.
[7] Selvam Avadayappan and Muthulakshmi Karuppasamy, College Sadhana, Vol.4, No.1(2011), 299-305.
[8] S. Somasundaram and R. Ponraj, Mean Labelings of Graphs, NationalAcademy Science Letter, 26(2003), 210 - 213.
[9] S. Somasundaram and R. Ponraj, Non-existence of mean labeling for a wheel, Bulletin of Pure and Applied Sciences, (Section E Maths \& Statistics) 22E, (2003), 103 - 111.
[10] S. Somasundaram and R. Ponraj, Some results on mean graphs, Pure and Applied Mathematika Sciences, 58(2003), 29 - 35.
[11] S. Somasundaram and R. Ponraj, On Mean Graphs of Order ≤ 5, Journal of Decision and Mathematical Sciences, 9 No. 1-3(2004), 48 -58.

