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Abstract 

For every assignment f: V(G)→ { }0, 1, 2, . . . , q , an induced edge labeling f* : E(G) →
 

{ }1,  2, 3,  . . . ,  q is defined by 
2

)()( vfuf +  if )(uf  and )(uf are of same parity and by 

2
1)()( ++ vfuf  otherwise

  

for every edge ( ).uv E G∈  If ( ) { }* 1,  2,  3,  . . . ,   = f E q , then we 

say that f is a mean labeling of G.  If a graph G admits a mean labeling, then G is called a mean 
graph.  In this paper, we prove that the graphs Cn+v1v3 (n≥4), C2(Pn), n≥2, Tn(Cm), n ≥ 2, m≥3, 
DQ(n), n ≥ 2, TQ(n), n ≥ 2 and mCn – snake,  m ≥ 1, n ≥ 3 are mean graphs.. 
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1    Introduction 

Throughout this paper, by a graph we mean a finite, undirected, simple graph.  Let G(V,E) be a 
graph with p vertices and q edges.  For notations and terminology, we follow [1].  Path on n vertices is 
denoted by Pn and a cycle on n vertices is denoted by Cn.  A triangular snake Tn is obtained from a 
path v1, v2, . . . , vn by joining vi and vi+1 to a new vertex ui for 1 ≤ i ≤ n-1, that is, every edge of a path 
is replaced by a triangle C3.  The graph T6 is shown in Figure 1. 
 
 

 
 

Figure 1: Triangular snake T6. 

Let Q(n) be the quadrilateral snake obtained from the path v1, v2, v3, . . ., vn by joining vi and vi+1 to 
new vertices ui and wi  .  That is, every edge of a path is replaced by a cycle C4.  The quadrilateral 
snake Q(3) is given in Figure 2. 
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Figure 2: Quadrilateral snake Q(3). 
 

The graph Cn+v1v3 is obtained from the cycle Cn: v1v2 . . . vnv1 by adding an edge between the 
vertices v1 and v3.  An example for the graph C7+v1v3 is shown in Figure 3. 

Let Tn be the triangular snake obtained from the path Pn: v1v2. . .vn.  Then the double triangular 
snake C2(Pn) is obtained from Tn by adding new vertices w1, w2, . …,wn-1 and edges viwi and wivi+1 for 1 
≤ i ≤ n-1.  The graph C2(P5) is given in Figure 4. 

 
 

 
 
 
 
 
 
 
 
 

                    
                      Figure 3: C7+v1v3.                                     Figure 4: Double triangular snake C2(P5). 

 

The balloon of the triangular snake Tn(Cm) is the graph obtained from Cm by identifying an end 
vertex of the basic path in Tn at a vertex of Cm. The balloon graph T5(C6) is given in Figure 5. 
 
 
 
 

 
 
 

 
Figure 5: The balloon of the triangular snake T5(C6). 

Let Q(n) be the quadrilateral snake obtained from the path v1, v2, v3, . . ., vn. Then the double 
quadrilateral snake DQ(n) is obtained from Q(n) by adding new vertices s1, s2, s3, . . . , sn-1; t1, t2, t3,  . . 
., tn-1 and new edges vi si, ti vi+1 , si ti for 1 ≤  i ≤ n-1.  The graph DQ(3) is shown in Figure 6. 
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Figure 6: Double quadrilateral snake DQ(n). 

Let DQ(n) be the double quadrilateral snake obtained from the quadrilateral snake Q(n) by adding 
new vertices si and ti. Then the triple quadrilateral snake TQ(n) is obtained from DQ(n) by adding new 
vertices x1, x2, x3, . . . , xn-1;  y1, y2, y3,  . . ., yn-1 and new edges vixi, yivi+1, xiyi  for 1 ≤ i ≤ n-1.  For 
example, the graph TQ(2) is given in Figure 7. 
 

 

 

 

 

 
 

Figure 7: Triple quadrilateral snake TQ(n). 

A cyclic snake mCn is the graph obtained from m copies of Cn by identifying the vertex ( 2) jkv + in 

the jth copy at a vertex 
11 j

v
+

in the (j+1)th  copy if n = 2k + 1 and identifying the vertex ( 1) jkv + in the jth  

copy at a vertex 
11 j

v
+

in the (j+1)th  copy if n = 2k.  The cycle snake graph 3C6 is shown in Figure 8.    

 

 
 

 

 
 

Figure 8: Cyclic snake graph 3C6. 

A graph labeling is an assignment of integers or a subset of a set to the vertices or edges or both 
subject to certain condition(s).  If the domain of the mapping is the set of vertices (or edges) then the 
labeling is called a vertex labeling (or an edge labeling). A vertex labeling f is called a mean labeling 
of G if its induced edge labeling { }qGEf ,,2,1)(:* →  defined by  
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+
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is a bijection. We say that  f  is a mean labeling of G.  If a graph G has a mean labeling, then we say that G 
is a mean graph.  

The concept of mean labeling was first introduced by S. Somasundaram and R. Ponraj [8] in 2003.  
The meanness of many standard graphs like Pn, Cn, Kn(n≤3), the ladder, the triangular snake, K1,2, K1,3, 
K2,n, K2+mK1, Kn

c+2K2, Sm+K1, Cm∪Pn(m≥3, n≥2), quadrilateral snake, comb, bistars B(n), Bn+1,n, 
Bn+2,n, the carona of a ladder, subdivision of the central edge of Bn,n, subdivision of the star K1,n, the 
friendship graph C3

(2), the crown   Cn  K1, Cn
(2), the dragon, arbitrary super subdivision of a path are 

proved in [8], [9], [10], [11], [2], [3].  In addition, they have proved that the graphs Kn(n>3), K1,n(n>3), 
Bm,n(m>n+2), S(K1,n), n>4, C3

(t) (t>2) and the wheel Wn are not mean graphs.  In [4], the meanness of 
the following graphs have been proved: Cm×Pn; the caterpillar P(n,2,3); Q3 ×P2n; corona of a H – 
graph; mC3; Cn∪K1,m (n≥3, 1≤m≤4); mC3∪K1,m (1≤m≤4); the dragon Pn(Cm) and some standard 
graphs.  In [5], the meanness of the graphs (Pm;Cn), m≥1, n≥3, (Pm;Q3), m≥1, (P2n;Sm), m≥3, n>1, 
(Pn;S1), (Pn;S2), n≥1 have been proved. The meanness of the following product related graphs (P3; 
C3×K2), G×K2 for any mean graph G with p = q+1 and the train graph Pk(G,u,v) where G is a mean 
graph have been proved in [6]. It is also proved that Gk(u,v) is a mean graph where G is a mean graph 
with two vertices u and v such that f(u) = 0 and f(v) = q in [7]. 

In this paper, we prove the meanness of the graphs Cn+v1v3 (n≥4), C2(Pn), n≥2, Tn(Cm), n ≥ 2, m≥3, 
DQ(n), n ≥ 2, TQ(n), n ≥ 2 and mCn – snake,  m ≥ 1, n ≥ 3. 

2    Main Results 

Theorem 2.1. Cn+v1v3 is a mean graph for n ≥ 4. 

Proof: Let Cn be a cycle with vertices v1, v2, v3, . . . , vn and edges e1, e2, e3, . . . , en, where ei = vivi+1 
where ‘+’ is addition modulo n. 
Define ( ) { }1 3 :   0,  1,  2,  . . . ,  1nf V C v v n→+ + as follows:  

Case 1: When n is odd, n = 2m+1, m = 2, 3, 4, . . .  
 f(v1) = 0;    f(v2) = 2;  

f(vi) = 2i-1, 3≤ i ≤ m+1;   f(vm+j+1) = n-2j+3, 1 ≤ j ≤ m. 

Then the induced edge labels are 
 f*(e1) = 1;    f*(ei) = 2i, 2 ≤ i ≤ m+1;  

f*(em+j+1) = n-2j+2, 1 ≤ j ≤ m-1;  f*(e2m+1) = 2; f*(v1v3) = 3. 

Case 2: When n is even, n =2m, m = 2, 3, 4, . . .  
f(v1) = 0;    f(v2) = 2;  
f(vi) = 2i-1, 3 ≤ i ≤ m+1;   f(vm+j+1) = n-2j+2, 1 ≤ j ≤ m-1. 
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Then the induced edge labels are 
 f*(e1) = 1;    f*(ei) = 2i, 2 ≤ i ≤ m;  

f*(em+j) = n-2j+3, 1≤ j ≤ m-1;  f*(e2m) = 2; f*(v1v3) = 3. 
Clearly,  f is a mean labeling of Cn+v1v3.             ■ 

A mean labelings of the graphs C7+v1v3 and C10+v1v3 are shown in Figure 9. 

 
 

 
 
 
 
 
 
 

 

 
Figure 9: Mean labelings of C7+v1v3 and C10+v1v3. 

Theorem 2.2. C2(Pn) is a mean graph for  n ≥ 2. 

Proof: Let v1, v2, v3, . . . , vn; u1, u2, u3, . . . , un-1 and w1, w2, w3, . . . . , wn-1 be the vertices of C2(Pn). 
 Define ( )( ) { }2 :   0,  1,  2,  . . . ,  5 5nf V C P n→ − as follows: 

 f(vi) = 5(i-1), 1≤ i ≤ n;  f(ui) = 5i-1, 1≤ i ≤ n-1;  
f(wi) = 5i-3, 1≤ i ≤ n-1. 

Then the induced edge labels are 
 f*(vivi+1) = 5i-2, 1≤ i ≤ n-1; f*(viui) = 5i-3, 1≤ i ≤ n-1;  

f*(viwi) = 5i-4, 1≤ i ≤ n-1; f*(uivi+1) = 5i, 1 ≤ i ≤ n-1; 
 f*(wivi+1) = 5i-1, 1 ≤ i ≤ n-1. 

Clearly f is a mean labeling of C2(Pn).              ■ 
A mean labeling of the graph C2(P5) is illustrated in Figure 10. 

 
Figure 10: A mean labeling of the graph C2(P5). 
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Theorem 2.3. Tn(Cm) is a mean graph for  n ≥ 2, m ≥ 3. 

Proof: Let v1, v2, v3, . . . , vm be the vertices of Cm and u1, u2, u3, . . . , un ; w1, w2, w3, . . . . , wn-1 be the 
vertices of Tn. 
Then define g on Tn(Cm) as follows: 

Case 1: when m is even, m = 2k, k = 2, 3, 4, . . .  
 g(vi) = f(vi), 1 ≤ i ≤ m;  

g(ui) = m+3i-3, 1 ≤ i ≤ n; 
 g(wi) = m+3i-1, 1 ≤ i ≤ n-1. 
Then the induced edge labels are 
 g*(ei) = f(ei), 1 ≤ i ≤ m;  g*(uiui+1)= m+3i-1, 1 ≤ i ≤ n-1; 
 g*(uiwi) = m+3i-2, 1 ≤ i ≤ n-1; g*(wiui+1) = m+3i, 1 ≤ i ≤ n-1. 

Case 2: when m is odd, m = 2k + 1, k = 1, 2, 3, . . .  
 g(vi) = f(vi) , 1 ≤ i ≤ m;  

g(ui) = m+3i-3, 1 ≤ i ≤ n; 
 g(wi) = m+3i-1, 1 ≤ i ≤ n-1. 
Then the induced edge labels are 
 g*(ei) = f(ei), 1 ≤ i≤ m;  g*(uiui+1) = m+3i-1, 1 ≤ i ≤ n-1; 
 g*(uiwi) = m+3i-2, 1 ≤ i ≤ n-1; g*(wiui+1) = m+3i, 1 ≤ i ≤ n-1. 
Clearly g is a mean labeling of Tn(Cm).              ■ 

A mean labelings of the graphs T5(C6) and T5(C9) are given in Figure 11(a) and 11(b) respectively. 

 
Figure 11(a): A mean labeling of T5(C6). 

 
Figure 11(b): A mean labeling of T5(C9). 
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Theorem 2.4.  The double quadrilateral snake DQ(n) is a mean graph for n ≥ 2. 

Proof: Let v1, v2, v3, . . ., vn; u1, u2, u3, . . ., un-1; w1, w2, w3, . . . , wn-1; s1, s2, s3,  . . . , sn-1; t1, t2, t3, . . . , 
tn-1 be the vertices of DQ(n). 

 Define { }: ( ( )) 0,1,2,...,7 7f V DQ n n→ −  as follows: 

 f(vi) = 7(i – 1), 1 ≤ i ≤ n; f(ui) = 7i – 5, 1 ≤ i ≤ n-1;  
f(wi) = 7i – 3, 1 ≤ i ≤ n-1; f(si) = 7i – 4, 1 ≤ i ≤ n-1;  
f(ti) = 7i – 1, 1 ≤ i ≤ n-1.  

Then the induced edge labels are 
f(vivi+1) = 7i – 3, 1 ≤ i ≤ n-1; f(viui) = 7i – 6, 1 ≤ i ≤ n-1; 
f(wi vi+1) = 7i – 1, 1 ≤ i ≤ n-1; f(uiwi) = 7i – 4, 1 ≤ i ≤ n-1; 

 f(visi) = 7i – 5, 1 ≤ i ≤ n-1; f(ti vi+1) = 7i, 1 ≤ i ≤ n-1;   
f(siti) = 7i – 2, 1 ≤ i ≤ n-1. 

Clearly f  is a mean labeling of DQ(n).              ■ 
  

 

 

 

 
 

 
Figure 12: A mean labeling of DQ(4). 

 
Theorem 2.5. The triple quadrilateral snake TQ(n) is a mean graph for n≥2.  

Proof:  Let v1, v2, v3, . . ., vn; u1, u2, u3, . . ., un-1; w1, w2, w3, . . . , wn-1; s1, s2, s3,  . . . , sn-1; t1, t2, t3, . . . , 
tn-1; ; x1, x2, x3, . . ., xn-1 ; y1, y2, y3, . . ., yn-1  be the vertices of TQ(n). 

Define { }: ( ( )) 0,1,2,...,10 10f V TQ n n→ −  as follows: 

f(vi) = 10(i – 1), 1 ≤ i ≤ n;  f(ui) = 10i – 8, 1 ≤ i ≤ n-1;  
f(wi) = 10i – 4, 1 ≤ i ≤ n-1;  f(si) = 10i – 6, 1 ≤ i ≤ n-1;   
f(ti) = 10i – 1, 1 ≤ i ≤ n-1;  f(xi) = 10i – 5, 1 ≤ i ≤ n-1;   
f(yi) = 10i – 3, 1 ≤ i ≤ n-1. 

Then the induced edge labels are 
  f(vivi+1) = 10i – 5, 1 ≤ i ≤ n-1;  f(viui) = 10i – 9, 1 ≤ i ≤ n-1;  

f(wi vi+1) = 10i – 2, 1 ≤ i ≤ n-1;  f(uiwi) = 10i – 6, 1 ≤ i ≤ n-1;  
f(visi) = 10i – 8, 1 ≤ i ≤ n-1;  f(ti vi+1) = 10i, 1 ≤ i ≤ n-1;         
f(siti) = 10i – 3, 1 ≤ i ≤ n-1;  f(vi xi) = 10i - 7, 1 ≤ i ≤ n-1;         
f(yi vi+1) = 10i - 1, 1 ≤ i ≤ n-1;  f(xi yi) = 10i - 4, 1 ≤ i ≤ n-1.            

Clearly f  is a mean labeling of TQ(n).              ■ 
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A mean labeling of the graph TQ(3) is given in Figure 13.  
 
 
 
 
 
 
 
 

Figure 13: A mean labeling of TQ(3). 

Theorem 2.6.  The graph mCn – snake, m ≥ 1, n ≥ 3 has a mean graph. 
Proof: We prove this result by induction on m. Let v1, v2, …, vn be the vertices and e1, e2, …, en be the 
edges of mCn for 1 ≤  j ≤ m. Let  f  be a mean labeling of the cycle Cn. 
When m = 1, Cn is a mean graph, n ≥ 3. Hence the result is true when m = 1. 
Let m = 2.  The cyclic snake 2Cn is the graph obtained from 2 copies of Cn by identifying the vertex 

1( 2)kv + in the first copy of Cn at a vertex 
21v in the second copy of Cn when n = 2k+1 and identifying the 

vertex 
1( 1)kv + in the first copy of Cn at a vertex 

21v in the second copy of Cn when  n = 2k. Define the 

mean labeling g of 2Cn as follows: 

For 1 ≤ i ≤ n,  g(
 1iv ) = f(

 1iv ),  g(
2i

v ) = f(
 1iv ) + n,  g*(

1i
e ) = f*(

1i
e ), g*(

2i
e )  = f*(

1i
e ) + n. 

Thus, 2Cn-snake is a mean graph. 
Assume that mCn-snake is a mean graph for any m ≥ 1.  We prove that (m+1)Cn-snake is a mean 

graph.   
Let f  be a mean labeling of mCn. We define the mean labeling g on (m+1)Cn as follows: 

 g(
jiv ) = f(

 1iv ) + (j – 1) n, 1 ≤ i ≤ n, 2 ≤  j ≤ m;         g(
1mi

v
+

) = f(
 1iv ) + mn, 1 ≤ i ≤ n. 

For the vertex labeling g, the induced edge labeling g* is defined as follows: 

 g*( 
jie ) = f*(

1i
e ) + (j – 1) n, 1 ≤  i ≤ n, 2 ≤  j ≤ m;   g*( 

1mi
e

+
) = f*(

1i
e ) + mn, 1 ≤ i ≤ n. 

Then it can be easily verified that g is a mean labeling of (m+1)Cn- snake.             ■ 
 

Mean labelings of   5C6-snake and 4C7-snake are shown in Figure 14.  
 
 
 
 
 
 
 

Figure 14(a): Mean labelings of 5C6. 
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Figure 14(b): Mean labelings of  4C7. 
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