International Journal of Mathematics and Soft Computing Vol.4, No.1. (2014), 145 - 153.

UMSC ISSN Print : 2249 – 3328 ISSN Online: 2319 – 5215

Many more families of mean graphs

Selvam Avadayappan

Department of Mathematics V.H.N.S.N.College, Virudhunagar – 626001, INDIA. E-mail: selvam_avadayappan@yahoo.co.in

R. Sinthu

Department of Mathematics V.H.N.S.N.College, Virudhunagar – 626001, INDIA. E-mail: sinthu_maths@yahoo.co.in

Abstract

For every assignment $f_{\underline{i}} V(G) \rightarrow \{0, 1, 2, ..., q\}$, an induced edge labeling $f^* : E(G) \rightarrow \{1, 2, 3, ..., q\}$ is defined by $\frac{f(u) + f(v)}{2}$ if f(u) and f(u) are of same parity and by $\frac{f(u) + f(v) + 1}{2}$ otherwise for every edge $uv \in E(G)$. If $f^*(E) = \{1, 2, 3, ..., q\}$, then we say that f is a mean labeling of G. If a graph G admits a mean labeling, then G is called a mean graph. In this paper, we prove that the graphs $C_n + v_1 v_3$ $(n \ge 4)$, $C_2(P_n)$, $n \ge 2$, $T_n(C_m)$, $n \ge 2$, $m \ge 3$, DQ(n), $n \ge 2$, TQ(n), $n \ge 2$ and mC_n – snake, $m \ge 1$, $n \ge 3$ are mean graphs.

Keywords: Labeling, mean labeling, mean graph.

AMS Subject Classification (2010): 05C78.

1 Introduction

Throughout this paper, by a graph we mean a finite, undirected, simple graph. Let G(V,E) be a graph with p vertices and q edges. For notations and terminology, we follow [1]. Path on n vertices is denoted by P_n and a cycle on n vertices is denoted by C_n . A triangular snake T_n is obtained from a path v_1, v_2, \ldots, v_n by joining v_i and v_{i+1} to a new vertex u_i for $1 \le i \le n-1$, that is, every edge of a path is replaced by a triangle C_3 . The graph T_6 is shown in Figure 1.

Figure 1: Triangular snake *T*₆.

Let Q(n) be the quadrilateral snake obtained from the path $v_1, v_2, v_3, \ldots, v_n$ by joining v_i and v_{i+1} to new vertices u_i and w_i . That is, every edge of a path is replaced by a cycle C_4 . The quadrilateral snake Q(3) is given in Figure 2.

Figure 2: Quadrilateral snake Q(3).

The graph $C_n + v_1 v_3$ is obtained from the cycle C_n : $v_1 v_2 \dots v_n v_1$ by adding an edge between the vertices v_1 and v_3 . An example for the graph $C_7 + v_1 v_3$ is shown in Figure 3.

Let T_n be the triangular snake obtained from the path P_n : v_1v_2 ... v_n . Then the double triangular snake $C_2(P_n)$ is obtained from T_n by adding new vertices $w_1, w_2, \ldots, w_{n-1}$ and edges v_iw_i and w_iv_{i+1} for $1 \le i \le n-1$. The graph $C_2(P_5)$ is given in Figure 4.

Figure 3: *C*₇+*v*₁*v*₃.

Figure 4: Double triangular snake $C_2(P_5)$.

The balloon of the triangular snake $T_n(C_m)$ is the graph obtained from C_m by identifying an end vertex of the basic path in T_n at a vertex of C_m . The balloon graph $T_5(C_6)$ is given in Figure 5.

Figure 5: *The balloon of the triangular snake* $T_5(C_6)$ *.*

Let Q(n) be the quadrilateral *snake* obtained from the path $v_1, v_2, v_3, \ldots, v_n$. Then the double quadrilateral snake DQ(n) is obtained from Q(n) by adding new vertices $s_1, s_2, s_3, \ldots, s_{n-1}; t_1, t_2, t_3, \ldots$, t_{n-1} and new edges $v_i s_i, t_i v_{i+1}, s_i t_i$ for $1 \le i \le n-1$. The graph DQ(3) is shown in Figure 6.

Figure 6: Double quadrilateral snake DQ(n).

Let DQ(n) be the double quadrilateral snake obtained from the quadrilateral snake Q(n) by adding new vertices s_i and t_i . Then the triple quadrilateral snake TQ(n) is obtained from DQ(n) by adding new vertices $x_1, x_2, x_3, \ldots, x_{n-1}$; $y_1, y_2, y_3, \ldots, y_{n-1}$ and new edges $v_i x_i, y_i v_{i+1}, x_i y_i$ for $1 \le i \le n-1$. For example, the graph TQ(2) is given in Figure 7.

Figure 7: Triple quadrilateral snake TQ(n).

A cyclic snake mC_n is the graph obtained from m copies of C_n by identifying the vertex $v_{(k+2)_j}$ in the j^{th} copy at a vertex $v_{1_{j+1}}$ in the $(j+1)^{th}$ copy if n = 2k + 1 and identifying the vertex $v_{(k+1)_j}$ in the j^{th} copy at a vertex $v_{1_{j+1}}$ in the $(j+1)^{th}$ copy if n = 2k. The cycle snake graph $3C_6$ is shown in Figure 8.

Figure 8: Cyclic snake graph $3C_6$.

A graph labeling is an assignment of integers or a subset of a set to the vertices or edges or both subject to certain condition(s). If the domain of the mapping is the set of vertices (or edges) then the labeling is called a vertex labeling (or an edge labeling). A vertex labeling *f* is called a mean labeling of *G* if its induced edge labeling $f^*: E(G) \rightarrow \{1, 2, \dots, q\}$ defined by

$$f^{*}(uv) = \begin{cases} \frac{f(u) + f(v)}{2} & \text{if } f(u) \text{ and } f(v) \text{ are of same parity} \\ \frac{f(u) + f(v) + 1}{2} & \text{otherwise.} \end{cases}$$

is a bijection. We say that f is a mean labeling of G. If a graph G has a mean labeling, then we say that G is a mean graph.

The concept of mean labeling was first introduced by S. Somasundaram and R. Ponraj [8] in 2003. The meanness of many standard graphs like P_n , C_n , $K_n(n\leq 3)$, the ladder, the triangular snake, $K_{1,2}$, $K_{1,3}$, $K_{2,n}$, K_2+mK_1 , $K_n^c+2K_2$, S_m+K_1 , $C_m \cup P_n(m\geq 3, n\geq 2)$, quadrilateral snake, comb, bistars B(n), $B_{n+1,n}$, $B_{n+2,n}$, the carona of a ladder, subdivision of the central edge of $B_{n,n}$, subdivision of the star $K_{1,n}$, the friendship graph $C_3^{(2)}$, the crown $C_n \square K_1$, $C_n^{(2)}$, the dragon, arbitrary super subdivision of a path are proved in [8], [9], [10], [11], [2], [3]. In addition, they have proved that the graphs $K_n(n>3)$, $K_{1,n}(n>3)$, $B_{m,n}(m>n+2)$, $S(K_{1,n})$, n>4, $C_3^{(t)}$ (t>2) and the wheel W_n are not mean graphs. In [4], the meanness of the following graphs have been proved: $C_m \times P_n$; the caterpillar P(n,2,3); $Q_3 \times P_{2n}$; corona of a H – graph; mC_3 ; $C_n \cup K_{1,m}$ ($n\geq 3$, $1\leq m\leq 4$); $mC_3 \cup K_{1,m}$ ($1\leq m\leq 4$); the dragon $P_n(C_m)$ and some standard graphs. In [5], the meanness of the graphs ($P_m; C_n$), $m\geq 1$, $n\geq 3$, ($P_m; Q_3$), $m\geq 1$, ($P_{2n}; S_m$), $m\geq 3$, n>1, ($P_n; S_1$), ($P_n; S_2$), $n\geq 1$ have been proved. The meanness of the following product related graphs (P_3 ; $C_3 \times K_2$), $G \times K_2$ for any mean graph G with p = q+1 and the train graph $P_k(G,u,v)$ where G is a mean graph have been proved in [6]. It is also proved that $G^k(u,v)$ is a mean graph where G is a mean graph with two vertices u and v such that f(u) = 0 and f(v) = q in [7].

In this paper, we prove the meanness of the graphs $C_n+v_1v_3$ $(n\geq 4)$, $C_2(P_n)$, $n\geq 2$, $T_n(C_m)$, $n\geq 2$, $m\geq 3$, DQ(n), $n\geq 2$, TQ(n), $n\geq 2$ and mC_n – snake, $m\geq 1$, $n\geq 3$.

2 Main Results

Theorem 2.1. $C_n + v_1 v_3$ is a mean graph for $n \ge 4$.

Proof: Let C_n be a cycle with vertices $v_1, v_2, v_3, \ldots, v_n$ and edges $e_1, e_2, e_3, \ldots, e_n$, where $e_i = v_i v_{i+1}$ where '+' is addition modulo n.

Define $f: V(C_n + v_1v_3) \rightarrow \{0, 1, 2, \dots, n+1\}$ as follows:

Case 1: When *n* is odd, n = 2m+1, m = 2, 3, 4, ...

$f(v_I)=0;$	$f(v_2)=2;$
$f(v_i) = 2i - 1, \ 3 \le i \le m + 1;$	$f(v_{m+j+1}) = n-2j+3, \ 1 \le j \le m.$

Then the induced edge labels are

$$\begin{aligned} f^*(e_1) &= 1; \\ f^*(e_{m+j+1}) &= n-2j+2, \ l \leq j \leq m-1; \end{aligned} \qquad \begin{array}{ll} f^*(e_i) &= 2i, \ 2 \leq i \leq m+1; \\ f^*(e_{2m+1}) &= 2; \ f^*(v_1v_3) = 3. \end{aligned}$$

Case 2: When *n* is even, n = 2m, m = 2, 3, 4, ...

$$f(v_1) = 0; f(v_2) = 2; f(v_i) = 2i \cdot 1, \ 3 \le i \le m + 1; f(v_{m+i+1}) = n \cdot 2j + 2, \ 1 \le j \le m \cdot 1.$$

Then the induced edge labels are

$$\begin{aligned} f^*(e_1) &= 1; & f^*(e_i) &= 2i, \ 2 \leq i \leq m; \\ f^*(e_{m+j}) &= n-2j+3, \ 1 \leq j \leq m-1; & f^*(e_{2m}) &= 2; & f^*(v_1v_3) &= 3. \end{aligned}$$

Clearly, *f* is a mean labeling of $C_n + v_1 v_3$.

A mean labelings of the graphs $C_7 + v_1 v_3$ and $C_{10} + v_1 v_3$ are shown in Figure 9.

Figure 9: Mean labelings of $C_7 + v_1v_3$ and $C_{10} + v_1v_3$.

Theorem 2.2. $C_2(P_n)$ is a mean graph for $n \ge 2$.

Proof: Let $v_1, v_2, v_3, ..., v_n; u_1, u_2, u_3, ..., u_{n-1}$ and $w_1, w_2, w_3, ..., w_{n-1}$ be the vertices of $C_2(P_n)$. Define $f : V(C_2(P_n)) \rightarrow \{0, 1, 2, ..., 5n-5\}$ as follows:

$$f(v_i) = 5(i-1), \ 1 \le i \le n; \qquad f(u_i) = 5i-1, \ 1 \le i \le n-1;$$

$$f(w_i) = 5i-3, \ 1 \le i \le n-1.$$

Then the induced edge labels are

 $\begin{aligned} f^*(v_i v_{i+1}) &= 5i-2, \ l \leq i \leq n-1; \\ f^*(v_i w_i) &= 5i-4, \ l \leq i \leq n-1; \\ f^*(w_i v_{i+1}) &= 5i-1, \ l \leq i \leq n-1; \\ f^*(w_i v_{i+1}) &= 5i-1, \ l \leq i \leq n-1. \end{aligned}$

Clearly *f* is a mean labeling of $C_2(P_n)$.

A mean labeling of the graph $C_2(P_5)$ is illustrated in Figure 10.

Figure 10: *A mean labeling of the graph* $C_2(P_5)$ *.*

Theorem 2.3. $T_n(C_m)$ is a mean graph for $n \ge 2$, $m \ge 3$.

Proof: Let $v_1, v_2, v_3, \ldots, v_m$ be the vertices of C_m and $u_1, u_2, u_3, \ldots, u_n$; $w_1, w_2, w_3, \ldots, w_{n-1}$ be the vertices of T_n .

Then define *g* on $T_n(C_m)$ as follows:

Case 1: when *m* is even, m = 2k, k = 2, 3, 4, ...

 $g(v_i) = f(v_i), \ 1 \le i \le m;$ $g(u_i) = m + 3i - 3, \ 1 \le i \le n;$ $g(w_i) = m + 3i - 1, \ 1 \le i \le n - 1.$

Then the induced edge labels are

$$g^{*}(e_{i}) = f(e_{i}), \ 1 \le i \le m; \qquad g^{*}(u_{i}u_{i+1}) = m+3i-1, \ 1 \le i \le n-1; g^{*}(u_{i}w_{i}) = m+3i-2, \ 1 \le i \le n-1; \quad g^{*}(w_{i}u_{i+1}) = m+3i, \ 1 \le i \le n-1.$$

Case 2: when *m* is odd, m = 2k + 1, k = 1, 2, 3, ...

$$g(v_i) = f(v_i), \ 1 \le i \le m;$$

$$g(u_i) = m + 3i - 3, \ 1 \le i \le n;$$

$$g(w_i) = m + 3i - 1, \ 1 \le i \le n - 1.$$

Then the induced edge labels are

 $g^{*}(e_{i}) = f(e_{i}), \ 1 \le i \le m; \qquad g^{*}(u_{i}u_{i+1}) = m + 3i \cdot 1, \ 1 \le i \le n \cdot 1; \\g^{*}(u_{i}w_{i}) = m + 3i \cdot 2, \ 1 \le i \le n \cdot 1; \quad g^{*}(w_{i}u_{i+1}) = m + 3i, \ 1 \le i \le n \cdot 1.$

Clearly *g* is a mean labeling of $T_n(C_m)$.

A mean labelings of the graphs $T_5(C_6)$ and $T_5(C_9)$ are given in Figure 11(a) and 11(b) respectively.

Figure 11(a): A mean labeling of $T_5(C_6)$.

Figure 11(b): A mean labeling of $T_5(C_9)$.

150

Theorem 2.4. The double quadrilateral snake DQ(n) is a mean graph for $n \ge 2$.

Proof: Let $v_1, v_2, v_3, \ldots, v_n$; $u_1, u_2, u_3, \ldots, u_{n-1}$; $w_1, w_2, w_3, \ldots, w_{n-1}$; $s_1, s_2, s_3, \ldots, s_{n-1}$; $t_1, t_2, t_3, \ldots, t_{n-1}$ be the vertices of DQ(n).

Define $f: V(DQ(n)) \rightarrow \{0, 1, 2, ..., 7n - 7\}$ as follows: $f(v_i) = 7(i - 1), \ 1 \le i \le n;$ $f(u_i) = 7i - 5, \ 1 \le i \le n - 1;$ $f(w_i) = 7i - 3, \ 1 \le i \le n - 1;$ $f(s_i) = 7i - 4, \ 1 \le i \le n - 1;$ $f(t_i) = 7i - 1, \ 1 \le i \le n - 1.$

Then the induced edge labels are

 $\begin{aligned} f(v_i v_{i+1}) &= 7i - 3, \ 1 \le i \le n-1; & f(v_i u_i) = 7i - 6, \ 1 \le i \le n-1; \\ f(w_i v_{i+1}) &= 7i - 1, \ 1 \le i \le n-1; & f(u_i w_i) = 7i - 4, \ 1 \le i \le n-1; \\ f(v_i s_i) &= 7i - 5, \ 1 \le i \le n-1; & f(t_i v_{i+1}) = 7i, \ 1 \le i \le n-1; \\ f(s_i t_i) &= 7i - 2, \ 1 \le i \le n-1. \end{aligned}$

Clearly f is a mean labeling of DQ(n).

Figure 12: A mean labeling of DQ(4).

Theorem 2.5. The triple quadrilateral snake TQ(n) is a mean graph for $n \ge 2$.

Proof: Let $v_1, v_2, v_3, \ldots, v_n; u_1, u_2, u_3, \ldots, u_{n-1}; w_1, w_2, w_3, \ldots, w_{n-1}; s_1, s_2, s_3, \ldots, s_{n-1}; t_1, t_2, t_3, \ldots, t_{n-1}; x_1, x_2, x_3, \ldots, x_{n-1}; y_1, y_2, y_3, \ldots, y_{n-1}$ be the vertices of TQ(n).

Define $f: V(TQ(n)) \to \{0, 1, 2, ..., 10n - 10\}$ as follows:

$f(v_i) = 10(i-1), \ 1 \le i \le n;$	$f(u_i) = 10i - 8, \ l \le i \le n - 1;$
$f(w_i) = 10i - 4, \ 1 \le i \le n - 1;$	$f(s_i) = 10i - 6, \ 1 \le i \le n - 1;$
$f(t_i) = 10i - 1, \ 1 \le i \le n - 1;$	$f(x_i) = 10i - 5, \ 1 \le i \le n - 1;$
$f(y_i) = 10i - 3, \ 1 \le i \le n-1.$	

Then the induced edge labels are

$f(v_i v_{i+1}) = 10i - 5, \ 1 \le i \le n - 1;$	$f(v_i u_i) = 10i - 9, \ 1 \le i \le n - 1;$
$f(w_i v_{i+1}) = 10i - 2, \ 1 \le i \le n-1;$	$f(u_i w_i) = 10i - 6, \ 1 \le i \le n - 1;$
$f(v_i s_i) = 10i - 8, \ 1 \le i \le n - 1;$	$f(t_i v_{i+1}) = 10i, \ 1 \le i \le n-1;$
$f(s_i t_i) = 10i - 3, \ 1 \le i \le n - 1;$	$f(v_i x_i) = 10i - 7, \ 1 \le i \le n - 1;$
$f(y_i v_{i+1}) = 10i - 1, \ 1 \le i \le n-1;$	$f(x_i y_i) = 10i - 4, \ 1 \le i \le n - 1.$

Clearly f is a mean labeling of TQ(n).

A mean labeling of the graph TQ(3) is given in Figure 13.

Figure 13: A mean labeling of TQ(3).

Theorem 2.6. The graph mC_n – snake, $m \ge 1$, $n \ge 3$ has a mean graph.

Proof: We prove this result by induction on *m*. Let $v_1, v_2, ..., v_n$ be the vertices and $e_1, e_2, ..., e_n$ be the edges of mC_n for $l \le j \le m$. Let *f* be a mean labeling of the cycle C_n .

When m = 1, C_n is a mean graph, $n \ge 3$. Hence the result is true when m = 1.

Let m = 2. The cyclic snake $2C_n$ is the graph obtained from 2 copies of C_n by identifying the vertex $v_{(k+2)_1}$ in the first copy of C_n at a vertex v_{1_2} in the second copy of C_n when n = 2k+1 and identifying the vertex $v_{(k+1)_1}$ in the first copy of C_n at a vertex v_{1_2} in the second copy of C_n when n = 2k. Define the mean labeling g of $2C_n$ as follows:

For $l \le i \le n$, $g(v_{i_1}) = f(v_{i_1}), g(v_{i_2}) = f(v_{i_1}) + n$, $g^*(e_{i_1}) = f^*(e_{i_1}), g^*(e_{i_2}) = f^*(e_{i_1}) + n$.

Thus, $2C_n$ -snake is a mean graph.

Assume that mC_n -snake is a mean graph for any $m \ge 1$. We prove that $(m+1)C_n$ -snake is a mean graph.

Let f be a mean labeling of mC_n . We define the mean labeling g on $(m+1)C_n$ as follows:

$$g(v_{i_j}) = f(v_{i_1}) + (j-l) n, \ l \le i \le n, \ 2 \le j \le m; \qquad g(v_{i_{m+1}}) = f(v_{i_1}) + mn, \ l \le i \le n.$$

For the vertex labeling g, the induced edge labeling g^* is defined as follows:

$$g^{*}(e_{i_{i}}) = f^{*}(e_{i_{i}}) + (j-l) n, \ l \le i \le n, \ 2 \le j \le m; \ g^{*}(e_{i_{m+1}}) = f^{*}(e_{i_{i}}) + mn, \ l \le i \le n.$$

Then it can be easily verified that g is a mean labeling of $(m+1)C_n$ - snake.

Mean labelings of $5C_6$ -snake and $4C_7$ -snake are shown in Figure 14.

Figure 14(a): Mean labelings of $5C_6$.

Figure 14(b): Mean labelings of $4C_7$.

References

- [1] R. Balakrishnan and K. Ranganathan, A Text Book of Graph Theory, Springer Verlag (2000).
- [2] R. Ponraj and S. Somasundaram, *Further results on mean graphs*, Proceedings of SACOEFERENCE, (2005), 443 448.
- [3] R. Ponraj and S. Somasundaram, Mean graphs obtained from mean graphs, Preprint.
- [4] Selvam Avadayappan and R. Vasuki, Some Results on Mean Graphs, International Journal of Physical Sciences, 21(1)M(2009), 273 – 284.
- [5] Selvam Avadayappan and R. Vasuki, *New Families of mean graphs*, International Journal of Mathematical Combinatorics, 2 (2010), 68 – 80.
- [6] Selvam Avadayappan and Muthulakshmi Karuppasamy, *Meanness of Product Related Graphs*, College Sadhana, Vol.3, No.2(2011), 147 150.
- [7] Selvam Avadayappan and Muthulakshmi Karuppasamy, *College Sadhana*, Vol.4, No.1(2011), 299 305.
- [8] S. Somasundaram and R. Ponraj, *Mean Labelings of Graphs*, NationalAcademy Science Letter, 26(2003), 210 213.
- [9] S. Somasundaram and R. Ponraj, *Non-existence of mean labeling for a wheel*, Bulletin of Pure and Applied Sciences, (Section E Maths & Statistics) 22E, (2003), 103 111.
- [10] S. Somasundaram and R. Ponraj, Some results on mean graphs, Pure and Applied Mathematika Sciences, 58(2003), 29 – 35.
- [11] S. Somasundaram and R. Ponraj, *On Mean Graphs of Order* \leq 5, Journal of Decision and Mathematical Sciences, 9 No. 1 3(2004), 48 -58.