2 - Cartesian product of special graphs

U. P. Acharya
A. D. Patel Intitute of Technology, New Vallabh Vidyanagar, INDIA.
E-mail: urvaship04@yahoo.co.in
H. S. Mehta
Department of Mathematics, Sardar Patel University, Vallabh Vidyanagar-388 120, INDIA.
E-mail: himalimehta63@gmail.com

Abstract

The cartesian product of two graphs has been studied by many authors and has been generalized by introducing 2 - cartesian product $G_{1} \times{ }_{2} G_{2}$ of two graphs G_{1} and G_{2}. In this paper, we obtain $G_{1} \times{ }_{2} G_{2}$, for P_{n}, C_{n} and $K_{s, t}$.

Keywords: Cartesian product of graphs, 2-cartesian product of graphs, grid graph, tied grid graph. AMS Subject Classification(2010): 05C76.

1 Preliminaries

The cartesian product of two graphs had been studied in ([3], [4], [6]). The generalized cartesian product $G_{1} \times{ }_{r} G_{2}$ has been defined using the idea of distance in [1]. It is not easy to obtain $G_{1} \times{ }_{r} G_{2}$ for general G_{1} and G_{2}. So, in this paper we discuss this product for $r=2$.

Let $G=(V(G), E(G))$ be a finite, simple graph with the vertex set $V(G)$ and the edge set $E(G)$. A graph G is connected, if there is a path between every pair of vertices. If G is a connected graph then $d_{G}\left(u, u^{\prime}\right)$ is the length of the shortest path between u and u^{\prime} in G. For a graph G, a maximal connected subgraph is known as components of G. If G is a connected graph, then G has only one component, G itself.

Throughout the paper we consider finite, simple and connected graph. We denote the path graph, cycle graph and complete graph with n vertices by P_{n}, C_{n} and K_{n} respectively. The complete bipartite graph is denoted by $K_{m, n}$ with $(m+n)$ vertices. The null graph is a graph with empty edge set. If the graph G is a disjoint union of r similar components H , then we denote it by,

$$
G=\bigcup_{\substack{\circ \\ i=1}}^{r} H^{(i)}
$$

For the basic terminology, concepts and results of graph theory, we refer to ([3], [4], [6]).
We obtain $G_{1} \times{ }_{2} G_{2}$ for P_{n}, C_{n} and $K_{s, t}$. We discuss mainly connectedness of the product graph.
Definition 1.1. The 2 -cartesian product of graphs $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ is the graph $G=(V, E)$ with the vertex set $V=V_{1} \times V_{2}$ and the edge set E defined as follows:
Two vertices (u, v) and $\left(u^{\prime}, v^{\prime}\right)$ are adjacent in G if one of the following conditions is satisfied:
(i) $d_{G_{1}}\left(u, u^{\prime}\right)=2$ and $d_{G_{2}}\left(v, v^{\prime}\right)=0$,
(ii) $d_{G_{1}}\left(u, u^{\prime}\right)=0$ and $d_{G_{2}}\left(v, v^{\prime}\right)=2$.

We denote this graph G by $G_{1} \times{ }_{2} G_{2}$.
It is clear that if we replace 2 by 1 in the definition, then we get usual cartesian product $G_{1} \times G_{2}$. Note that, if the diameters of both G_{1} and G_{2} are less then 2 , then $G_{1} \times{ }_{2} G_{2}$ is a null graph.

Definition 1.2. The grid graph $G=G_{m, n}$ is defined as the graph with vertex set, $V=\left\{\left(u_{i}, v_{j}\right): i=\right.$ $1,2, \ldots, m$ and $j=1,2, \ldots, n\}$ and edge set $E=\bigcup_{i=1}^{m}\left\{\left(u_{i}, v_{j}\right) \leftrightarrow\left(u_{i}, v_{j+1}\right): 1 \leq j \leq n-1\right\} \cup$ $\bigcup_{j=1}^{n}\left\{\left(u_{i}, v_{j}\right) \leftrightarrow\left(u_{i+1}, v_{j}\right): 1 \leq i \leq m-1\right\}$.

The semi tied grid graph $G_{(m),\left(n^{0}\right)}$ is a grid graph with vertex set $V(G)$ and edge set consisting of the following edges:
(i) Each edge of $G_{m, n}$;
(ii) The edges $\left(u_{i}, v_{1}\right) \leftrightarrow\left(u_{i}, v_{n}\right)$, for every $i=1,2, \ldots, m$,

In place of (ii), if we consider (ii)' then we get another semi tied grid graph denoted by $G_{\left(m^{0}\right),(n)}$,
(ii)' The edges $\left(u_{1}, v_{j}\right) \leftrightarrow\left(u_{m}, v_{j}\right)$, for every $j=1,2, \ldots, n$.

The graph containing all the above type of edges is called a tied grid graph and is denoted by $G_{\left(m^{0}\right),\left(n^{0}\right)}$.

2 2- Cartesian Product

The 2 - cartesian product of path graphs has been obtained in [1]. In this section we discuss $G_{1} \times{ }_{2} G_{2}$ with G_{1} path graph and G_{2} cycle graph and $G_{1} \times_{2} G_{2}$, if both G_{1} and G_{2} are cycle graphs.

We fix the following notations. The path graph P_{m} is the graph with, $V\left(P_{m}\right)=\left\{u_{1}, u_{2}, \ldots, u_{m}\right\}$ and $E\left(P_{m}\right)=\left\{\left(u_{1} u_{2}\right),\left(u_{2} u_{3}\right), \ldots,\left(u_{m-1} u_{m}\right)\right\}$ and $C_{m}(m \geq 3)$ is a cycle graph with $V\left(C_{m}\right)=$ $V\left(P_{m}\right)$ and $E\left(C_{m}\right)=E\left(P_{m}\right) \cup\left\{\left(u_{m} u_{1}\right)\right\}$.

We use the following result on path graphs.
Proposition 2.1. [1] For $m, n \geq 3$,
(a) If both m and n are even integers then, $P_{m} \times{ }_{2} P_{n}=\left[\bigcup_{i=1}^{4}\left(G_{\left(\frac{m}{2}\right),\left(\frac{n}{2}\right)}\right)^{(i)}\right]$.
(b) If m is odd and n is even, then $P_{m} \times_{2} P_{n}=\left[\bigcup_{\substack{0 \\ i=1}}^{2}\left(G_{\left(\frac{m+1}{2}\right),\left(\frac{n}{2}\right)}\right)^{(i)}\right] \bigcup_{\circ}\left[\bigcup_{\substack{0 \\ j=1}}^{2}\left(G_{\left(\frac{m-1}{2}\right),\left(\frac{n}{2}\right)}\right)^{(j)}\right]$.
(c) If m is even and n is odd, then $P_{m} \times_{2} P_{n}=\left[\bigcup_{\substack{\circ \\ i=1}}^{2}\left(G_{\left(\frac{m}{2}\right),\left(\frac{n+1}{2}\right)}\right)^{(i)}\right] \bigcup_{\circ}\left[\bigcup_{\substack{\circ \\ j=1}}^{2}\left(G_{\left(\frac{m}{2}\right),\left(\frac{n-1}{2}\right)}\right)^{(j)}\right]$.
(d) If both m and n are odd integers, then

$$
P_{m} \times_{2} P_{n}=\left[G_{\left(\frac{m+1}{2}\right),\left(\frac{n+1}{2}\right)}\right] \bigcup_{\circ}\left[G_{\left(\frac{m+1}{2}\right),\left(\frac{n-1}{2}\right)}\right] \bigcup_{\circ}\left[G_{\left(\frac{m-1}{2}\right),\left(\frac{n+1}{2}\right)}\right] \bigcup_{\circ}\left[G_{\left(\frac{m-1}{2}\right),\left(\frac{n-1}{2}\right)}\right]
$$

Proposition 2.2. Let P_{m} and C_{n} be path graph and cycle graph with m and n vertices respectively.
(a) If n is an even integer, then $P_{m} \times{ }_{2} C_{n}$ has four components which are semi tied grid graphs.
(b) If n is an odd integer, then $P_{m} \times{ }_{2} C_{n}$ has two components which are semi tied grid graphs.

Proof:

(a) Let m and n be even integers, then from Proposition 2.1(a) we have

$$
P_{m} \times{ }_{2} P_{n}=\left[\bigcup_{\substack{\circ \\ i=1}}^{4}\left(G_{\left(\frac{m}{2}\right),\left(\frac{n}{2}\right)}\right)^{(i)}\right]
$$

Now in graph P_{n}, we add one edge between v_{1} to v_{n}, then it becomes a cycle graph C_{n}. Also $d\left(v_{1}, v_{n-1}\right)=2=d\left(v_{2}, v_{n}\right)$ in C_{n} and so the edges between $\left(u_{i}, v_{1}\right)$ and $\left(u_{i}, v_{n-1}\right)$ as well as $\left(u_{i}, v_{2}\right)$ and $\left(u_{i}, v_{n}\right)$, for each i, will be added in the resultant graph. Thus the grid component $G_{\left(\frac{m}{2}\right),\left(\frac{n}{2}\right)}$ becomes semi tied grid graph $G_{\left(\frac{m}{2}\right),\left(\left(\frac{n}{2}\right)^{0}\right)}$ in $P_{m} \times{ }_{2} C_{n}$.

So we get $P_{m} \times{ }_{2} C_{n}=\left[\bigcup_{i=1}^{4}\left(G_{\left(\frac{m}{2}\right),\left(\left(\frac{n}{2}\right)^{0}\right)}\right)^{(i)}\right]$.
Similarly, $P_{m} \times{ }_{2} C_{n}=\left[\bigcup_{i=1}^{2}\left(G_{\left(\frac{m+1}{2}\right),\left(\left(\frac{n}{2}\right)^{0}\right)}\right)^{(i)}\right] \bigcup_{\circ}\left[\bigcup_{\substack{\circ \\ j=1}}^{2}\left(G_{\left(\frac{m-1}{2}\right),\left(\left(\frac{n}{2}\right)^{0}\right)}\right)^{(j)}\right]$, if m is odd.
(b) Let m be even integers and n be odd integer, then from Proposition 2.1(c),

$$
P_{m} \times{ }_{2} P_{n}=\left[\bigcup_{\substack{\circ \\ i=1}}^{2}\left(G_{\left(\frac{m}{2}\right),\left(\frac{n+1}{2}\right)}\right)^{(i)}\right] \bigcup_{\circ}\left[\bigcup_{\substack{\circ}}^{2}\left(G_{\left(\frac{m}{2}\right),\left(\frac{n-1}{2}\right)}\right)^{(j)}\right]
$$

Note that here for $i=1$ and 2 we get two components $G_{\left(\frac{m}{2}\right),\left(\frac{n+1}{2}\right)}$ of same graph. The vertices are joined as, $\left(u_{i}, v_{1}\right) \longrightarrow\left(u_{i}, v_{3}\right) \longrightarrow \ldots \longrightarrow\left(u_{i}, v_{n}\right)$ in one component and $\left(u_{i}, v_{2}\right) \longrightarrow\left(u_{i}, v_{4}\right) \longrightarrow$ $\ldots \longrightarrow\left(u_{i}, v_{n-1}\right)$ are joined in other component. Again, $d\left(v_{n}, v_{2}\right)=2=d\left(v_{n-1}, v_{1}\right)$ in C_{n}. So, the two edges $\left(u_{i}, v_{n}\right) \longrightarrow\left(u_{i}, v_{2}\right)$ and $\left(u_{i}, v_{n-1}\right) \longrightarrow\left(u_{i}, v_{1}\right)$ will be added in the resultant graph $P_{m} \times{ }_{2} C_{n}$ and the two components are joined by these edges. So, we get one component $G_{\left(\frac{m}{2}\right),\left(n^{0}\right)}$ in place of $\bigcup_{i=1}^{2}\left(G_{\left(\frac{m}{2}\right),\left(\frac{n+1}{2}\right)}\right)^{(i)}$. Consequently, $P_{m} \times{ }_{2} C_{n}$ has only two components as follows:

$$
P_{m} \times{ }_{2} C_{n}=\left[\bigcup_{i=1}^{2}\left(G_{\left(\frac{m}{2}\right),\left(n^{0}\right)}\right)^{(i)}\right]
$$

Similarly if m is odd, then

$$
P_{m} \times{ }_{2} C_{n}=\left[G_{\left(\frac{m+1}{2}\right),\left(n^{0}\right)}\right] \bigcup_{\circ}\left[G_{\left(\frac{m-1}{2}\right),\left(n^{0}\right)}\right]
$$

Proposition 2.3. Let C_{m} and C_{n} be cycle graphs with m and n vertices respectively.
(a) If both m and n are even integers, then $C_{m} \times{ }_{2} C_{n}$ has four components which are tied grid graphs.
(b) If m is odd and n is even, then $C_{m} \times{ }_{2} C_{n}$ has two components which are tied grid graphs.
(c) If both m and n are odd integers, then $C_{m} \times{ }_{2} C_{n}$ is a connected graph which is a tied grid graph.

Proof:

(a) Let m and n be even integers, then from Proposition 2.2 (a),

$$
P_{m} \times{ }_{2} C_{n}=\left[\bigcup_{i=1}^{4}\left(G_{\left(\frac{m}{2}\right),\left(\left(\frac{n}{2}\right)^{0}\right)}\right)^{(i)}\right]
$$

Also $d\left(u_{1}, u_{m-1}\right)=2=d\left(u_{2}, u_{m}\right)$ in C_{m} and so the edges between $\left(u_{1}, v_{j}\right)$ and $\left(u_{m-1}, v_{j}\right)$ as well as $\left(u_{2}, v_{j}\right)$ and $\left(u_{m}, v_{j}\right)$, for each j will be added in the resultant graph. Thus the semi tied grid component $G_{\left(\frac{m}{2}\right),\left(\left(\frac{n}{2}\right)^{0}\right)}$ becomes a tied grid graph $G_{\left(\left(\frac{m}{2}\right)^{0}\right),\left(\left(\frac{n}{2}\right)^{0}\right)}$ in $C_{m} \times{ }_{2} C_{n}$. So we get

$$
C_{m} \times{ }_{2} C_{n}=\left[\bigcup_{i=1}^{4}\left(G_{\left(\left(\frac{m}{2}\right)^{0}\right),\left(\left(\frac{n}{2}\right)^{0}\right)}\right)^{(i)}\right]
$$

(b) Let m be odd integer and n be even integer. As we have seen in Proposition 2.2 (a), the two components $G_{\left(\frac{m+1}{2}\right),\left(\left(\frac{n}{2}\right)^{0}\right)}$; for $i=1$ and 2 joined by the edges $\left(u_{m}, v_{j}\right) \leftrightarrow\left(u_{2}, v_{j}\right)$ and $\left(u_{m-1}, v_{j}\right) \leftrightarrow\left(u_{1}, v_{j}\right)$ and give one component $G_{\left(m^{0}\right),\left(\left(\frac{n}{2}\right)^{0}\right)}$ in $C_{m} \times{ }_{2} C_{n}$. Similarly the other two components $G_{\left(\frac{m-1}{2}\right),\left(\left(\frac{n}{2}\right)^{0}\right)}$; for $j=1$ and 2 give one more tied grid graph in the resultant graph. So we get

$$
C_{m} \times{ }_{2} C_{n}=\left[\bigcup_{\substack{\circ \\ i=1}}^{2}\left(G_{\left(m^{0}\right),\left(\left(\frac{n}{2}\right)^{0}\right)}\right)^{(i)}\right]
$$

(c) If m and n both are odd integers then by the same argument given in (b), two different components are joined by the edges $\left(u_{i}, v_{n}\right) \longleftrightarrow\left(u_{i}, v_{2}\right)$; for every i. Also $\left(u_{i}, v_{1}\right) \longleftrightarrow\left(u_{i}, v_{n-1}\right)$ edges are added in the graph $C_{m} \times{ }_{2} C_{n}$. So it gives only one component, that is, $G_{\left(m^{0}\right),\left(n^{0}\right)}$, which is a tied grid graph in $C_{m} \times{ }_{2} C_{n}$. So, the resultant graph is connected.

Remark 2.4. The number of components in $P_{m} \times{ }_{2} P_{n}$ is fixed (four), whereas in case of $P_{m} \times{ }_{2} C_{n}$ and $C_{m} \times{ }_{2} C_{n}$, the number of components depends on the parity of m and n.

Proposition 2.5. Let $K_{s, t}$ be a complete bipartite graph and P_{m} be a path graph with m vertices. Then $K_{s, t} \times{ }_{2} P_{m}$ has exactly four components.

Proof: Let $K_{s, t}$ be a complete bipartite graph with U_{1} and U_{2} partite sets. It is clear that two vertices lie in the same partite set if and only if distance between them is two. Let $V\left(P_{m}\right)=\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}$. $d\left(v_{j}, v_{j+2}\right)=2$ for $j=1,2, \ldots, m-2$ in P_{m}. Two vertices say, $\left(u, v_{j}\right)$ and $\left(u, v_{j+2}\right)$ in $K_{s, t} \times{ }_{2} P_{m}$ are adjacent for $j=1,2, \ldots, m-2$. Also, two vertices say, $\left(u, v_{j}\right)$ and $\left(u^{\prime}, v_{j}\right)$ in $K_{s, t} \times{ }_{2} P_{m}$ are adjacent only if u and u^{\prime} are in same partite set of $K_{s, t}$ and $j=1,2, \ldots, m$. Hence, for each $u \in U_{1}$, we get $\left(u, v_{j}\right) \longleftrightarrow\left(u, v_{j+2}\right)$ for $j=1,3, \ldots, m-2$ and $\left(u, v_{j}\right) \longleftrightarrow\left(u, v_{j+2}\right)$ for $j=2,4, \ldots, m-3$. Therefore, there are two components each isomorphic to $K_{s} \times P_{\frac{m}{2}}$ if m is even or two components $K_{s} \times P_{\frac{m+1}{2}}$ and $K_{s} \times P_{\frac{m-1}{2}}$ if m is odd.

Similarly, with respect to the other partite set U_{2} of $K_{s, t}$ there are two components each isomorphic to $K_{t} \times P_{\frac{m}{2}}$ if m is even or two components $K_{t} \times P_{\frac{m+1}{2}}$ and $K_{t} \times P_{\frac{m-1}{2}}$ if m is odd.

Thus in total, $K_{s, t} \times{ }_{2} P_{m}$ has exactly four components.

Proposition 2.6. Let $K_{s, t}$ be complete bipartite graph and C_{m} be cycle graph with m vertices.
(a) If m is an even integer then $K_{s, t} \times{ }_{2} C_{m}$ has four components.
(b) If m is odd an integer then $K_{s, t} \times{ }_{2} C_{m}$ has two components.

Proof:

(a) Let m be even. By Proposition $2.5, K_{s, t} \times{ }_{2} P_{m}$ has four components. As C_{m} is obtained from P_{m} by adding an edge $v_{1} \longleftrightarrow v_{m}$, in each of the four components of $K_{s, t} \times{ }_{2} P_{m}$ we have to add the edges $\left(u, v_{1}\right) \longleftrightarrow\left(u, v_{m-1}\right)$ or $\left(u, v_{2}\right) \longleftrightarrow\left(u, v_{m}\right)$ for each vertex u in $K_{s, t}$. Consequently, we get two components isomorphic to $K_{s} \times C_{\frac{m}{2}}$ and two components isomorphic to $K_{t} \times C_{\frac{m}{2}}$.
(b) Let m be odd integer, then the two components $K_{s} \times P_{\frac{m+1}{2}}$ and $K_{s} \times P_{\frac{m-1}{2}}$ of $K_{s, t} \times{ }_{2} P_{m}$ are joined by adding the edges $\left(u, v_{m}\right) \longleftrightarrow\left(u, v_{2}\right)$ and $\left(u, v_{1}\right) \longleftrightarrow\left(u, v_{m-1}\right)$ for every vertex u in $K_{s, t}$. Consequently, we have one component $K_{s} \times C_{m}$. Hence, $K_{s, t} \times{ }_{2} C_{m}$ has four components.

Similarly, the two components $K_{t} \times P_{\frac{m+1}{2}}$ and $K_{t} \times P_{\frac{m-1}{2}}$ of $K_{s, t} \times{ }_{2} P_{m}$ are joined by adding the edges $\left(u, v_{m}\right) \longleftrightarrow\left(u, v_{2}\right)$ and $\left(u, v_{1}\right) \longleftrightarrow\left(u, v_{m-1}\right)$ for every vertex u in $K_{s, t}$ and consequently, we have one component $K_{t} \times C_{m}$. Thus in total $K_{s, t} \times{ }_{2} C_{m}$ has two components.

From the above theorem, it is evident that the number of components in $K_{s, t} \times{ }_{2} C_{m}$ depends only on the parity of the integer m. All the above results reveal that, even if G_{1} and G_{2} are connected the resultant graph $G_{1} \times{ }_{2} G_{2}$ need not be connected. So in 2 - cartesian product the result similar to the following result is not true.

Proposition 2.7. [6] Let $G=G_{1} \times G_{2}$, with G_{1} and G_{2} both connected graphs. Then G is connected.

Proposition 2.8. [1] If G and H are two connected bipartite graphs, then $G \times_{2} H$ has exactly four connected components.

In [2], the derived graph $G^{!}$of G is defined in terms of $d(u, v)=2$. Also, the graph G^{2} is obtained by considering 2 - distance. The 2 - cartesian product can be obtained with the help of $G^{!}$or G^{2} or combination of G and G^{2} using usual cartesian product. But, in this paper we consider 2-cartesian product separately as we have obtained $G_{1} \times{ }_{2} G_{2}$ and their results directly in terms of the factor graphs G_{1} and G_{2}, without computing the graphs $G^{!}$or G^{2}.

Acknowledgement

This research work is supported by UGC, New Delhi under the SAP to the Department of Mathematics, S. P. University, Vallabh Vidyanagar.

References

[1] U. P. Acharya, H. S. Mehta, Generalized Cartesian Product of Graphs, (communicated).
[2] A. Alwardi, B. Arsic, I. Gutman and N. D. Soner, The Common Neighborhood Graphs and Its Energy, Iran. J. of Math. Sci. and Inf., Vol.7, No. 1 (2012), 1-8.
[3] N. L. Biggs, Algebraic Graph Theory, Cambridge University Press, $2^{\text {nd }}$ edition Cambridge, 1993.
[4] F. Harary, Graph Theory, Addison Wesley, Massachusetts, 1969.
[5] Josef Lauri and Raffaele Scapellato, Topics in Graph Automorphisms and Reconstruction, Cambridge University press, 2003.
[6] K. K. Parthasarathy, Basic Graph Theory, Tata Megraw. Hill Pub. Co. Ltd. 1994.
[7] G. Sabidussi, Graph Multiplication, Math. Z., 72 (1960), 446-457.
[8] Yukio Shibata and Yosuke Kikuchi, Graph products based on the distance in Graphs, IEICE Trans. Fundamentals,vol.E83-A,March,2000.
[9] Zlatomir lukic, A note on Graphs Representable as products of Graphs, Nouvelle adrie tome 32 (46),(1981), 115-118.

