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Abstract

The cartesian product of two graphs has been studied by many authors and has been generalized
by introducing 2 - cartesian product G1 ×2 G2 of two graphs G1 and G2. In this paper, we obtain
G1 ×2 G2, for Pn, Cn and Ks,t.
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1 Preliminaries

The cartesian product of two graphs had been studied in ([3], [4], [6]). The generalized cartesian

product G1 ×r G2 has been defined using the idea of distance in [1]. It is not easy to obtain G1 ×r G2

for general G1 and G2. So, in this paper we discuss this product for r = 2.

Let G = (V (G), E(G)) be a finite, simple graph with the vertex set V (G) and the edge set E(G).

A graph G is connected, if there is a path between every pair of vertices. If G is a connected graph then

dG(u, u
′) is the length of the shortest path between u and u′ in G. For a graph G, a maximal connected

subgraph is known as components of G. If G is a connected graph, then G has only one component, G

itself.

Throughout the paper we consider finite, simple and connected graph. We denote the path graph,

cycle graph and complete graph with n vertices by Pn, Cn and Kn respectively. The complete bipartite

graph is denoted by Km,n with (m+ n) vertices. The null graph is a graph with empty edge set. If the

graph G is a disjoint union of r similar components H, then we denote it by,

G =
r⋃
◦

i=1

H(i)

For the basic terminology, concepts and results of graph theory, we refer to ([3], [4], [6]).

We obtain G1 ×2 G2 for Pn, Cn and Ks,t. We discuss mainly connectedness of the product graph.

Definition 1.1. The 2−cartesian product of graphs G1 = (V1, E1) and G2 = (V2, E2) is the graph

G = (V,E) with the vertex set V = V1 × V2 and the edge set E defined as follows:

Two vertices (u, v) and (u′, v′) are adjacent in G if one of the following conditions is satisfied:
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(i) dG1(u, u
′) = 2 and dG2(v, v

′) = 0,

(ii) dG1(u, u
′) = 0 and dG2(v, v

′) = 2.

We denote this graph G by G1 ×2 G2.

It is clear that if we replace 2 by 1 in the definition, then we get usual cartesian product G1 ×G2.

Note that, if the diameters of both G1 and G2 are less then 2, then G1 ×2 G2 is a null graph.

Definition 1.2. The grid graph G = Gm,n is defined as the graph with vertex set, V = {(ui, vj) : i =
1, 2, . . . ,m and j = 1, 2, . . . , n} and edge set E =

m
∪
i=1
{(ui, vj) ↔ (ui, vj+1) : 1 ≤ j ≤ n − 1} ∪

n
∪
j=1
{(ui, vj)↔ (ui+1, vj) : 1 ≤ i ≤ m− 1}.

The semi tied grid graph G(m),(n0) is a grid graph with vertex set V (G) and edge set consisting of

the following edges:

(i) Each edge of Gm,n;

(ii) The edges (ui, v1)↔ (ui, vn), for every i = 1, 2, . . . ,m,

In place of (ii), if we consider (ii)’ then we get another semi tied grid graph denoted by G(m0),(n),

(ii)’ The edges (u1, vj)↔ (um, vj), for every j = 1, 2, . . . , n.

The graph containing all the above type of edges is called a tied grid graph and is denoted by

G(m0),(n0).

2 2- Cartesian Product

The 2 - cartesian product of path graphs has been obtained in [1]. In this section we discuss G1×2G2

with G1 path graph and G2 cycle graph and G1 ×2 G2, if both G1 and G2 are cycle graphs.

We fix the following notations. The path graph Pm is the graph with, V (Pm) = {u1, u2, . . . , um}
and E(Pm) = {(u1u2), (u2u3), . . . , (um−1um)} and Cm(m ≥ 3) is a cycle graph with V (Cm) =

V (Pm) and E(Cm) = E(Pm) ∪ {(umu1)}.
We use the following result on path graphs.

Proposition 2.1. [1] For m,n ≥ 3,

(a) If both m and n are even integers then, Pm ×2 Pn =

 4⋃
◦

i=1

(
G(m

2
),(n

2
)

)(i).

(b) If m is odd and n is even, then Pm×2 Pn =

 2⋃
◦

i=1

(
G(m+1

2
),(n

2
)

)(i)⋃
◦

 2⋃
◦

j=1

(
G(m−1

2
),(n

2
)

)(j).

(c) If m is even and n is odd, then Pm×2 Pn =

 2⋃
◦

i=1

(
G(m

2
),(n+1

2
)

)(i)⋃
◦

 2⋃
◦

j=1

(
G(m

2
),(n−1

2
)

)(j).
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(d) If both m and n are odd integers, then

Pm ×2 Pn =
[
G(m+1

2
),(n+1

2
)

]⋃
◦

[
G(m+1

2
),(n−1

2
)

]⋃
◦

[
G(m−1

2
),(n+1

2
)

]⋃
◦

[
G(m−1

2
),(n−1

2
)

]
.

Proposition 2.2. Let Pm and Cn be path graph and cycle graph with m and n vertices respectively.

(a) If n is an even integer, then Pm ×2 Cn has four components which are semi tied grid graphs.

(b) If n is an odd integer, then Pm ×2 Cn has two components which are semi tied grid graphs.

Proof:

(a) Let m and n be even integers, then from Proposition 2.1(a) we have

Pm ×2 Pn =

 4⋃
◦

i=1

(
G(m

2
),(n

2
)

)(i)
Now in graph Pn, we add one edge between v1 to vn, then it becomes a cycle graph Cn. Also

d(v1, vn−1) = 2 = d(v2, vn) in Cn and so the edges between (ui, v1) and (ui, vn−1) as well as (ui, v2)

and (ui, vn), for each i, will be added in the resultant graph. Thus the grid component G(m
2
),(n

2
) becomes

semi tied grid graph G(m
2
),((n

2
)0) in Pm ×2 Cn.

So we get Pm ×2 Cn =

 4⋃
◦

i=1

(
G(m

2
),((n

2
)0)

)(i) .

Similarly, Pm ×2 Cn =

 2⋃
◦

i=1

(
G(m+1

2
),((n

2
)0)

)(i)⋃
◦

 2⋃
◦

j=1

(
G(m−1

2
),((n

2
)0)

)(j) , if m is odd.

(b) Let m be even integers and n be odd integer, then from Proposition 2.1(c),

Pm ×2 Pn =

 2⋃
◦

i=1

(
G(m

2
),(n+1

2
)

)(i)⋃
◦

 2⋃
◦

j=1

(
G(m

2
),(n−1

2
)

)(j)
Note that here for i = 1 and 2 we get two components G(m

2
),(n+1

2
) of same graph. The vertices are

joined as, (ui, v1) −→ (ui, v3) −→ . . . −→ (ui, vn) in one component and (ui, v2) −→ (ui, v4) −→
. . . −→ (ui, vn−1) are joined in other component. Again, d(vn, v2) = 2 = d(vn−1, v1) in Cn. So,

the two edges (ui, vn) −→ (ui, v2) and (ui, vn−1) −→ (ui, v1) will be added in the resultant graph

Pm ×2 Cn and the two components are joined by these edges. So, we get one component G(m
2
),(n0) in

place of
2⋃
◦

i=1

(
G(m

2
),(n+1

2
)

)(i)
. Consequently, Pm ×2 Cn has only two components as follows:

Pm ×2 Cn =

 2⋃
◦

i=1

(
G(m

2
),(n0)

)(i) .
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Similarly if m is odd, then

Pm ×2 Cn =
[
G(m+1

2
),(n0)

]⋃
◦

[
G(m−1

2
),(n0)

]

Proposition 2.3. Let Cm and Cn be cycle graphs with m and n vertices respectively.

(a) If both m and n are even integers, then Cm ×2 Cn has four components which are tied grid graphs.

(b) If m is odd and n is even, then Cm ×2 Cn has two components which are tied grid graphs.

(c) If both m and n are odd integers, then Cm ×2 Cn is a connected graph which is a tied grid graph.

Proof:

(a) Let m and n be even integers, then from Proposition 2.2 (a),

Pm ×2 Cn =

 4⋃
◦

i=1

(
G(m

2
),((n

2
)0)

)(i) .

Also d(u1, um−1) = 2 = d(u2, um) in Cm and so the edges between (u1, vj) and (um−1, vj) as well as

(u2, vj) and (um, vj), for each j will be added in the resultant graph. Thus the semi tied grid component

G(m
2
),((n

2
)0) becomes a tied grid graph G((m

2
)0),((n

2
)0) in Cm ×2 Cn. So we get

Cm ×2 Cn =

 4⋃
◦

i=1

(
G((m

2
)0),((n

2
)0)

)(i) .

(b) Let m be odd integer and n be even integer. As we have seen in Proposition 2.2 (a), the two compo-

nents G(m+1
2

),((n
2
)0); for i = 1 and 2 joined by the edges (um, vj)↔ (u2, vj) and (um−1, vj)↔ (u1, vj)

and give one component G(m0),((n
2
)0) in Cm×2Cn. Similarly the other two components G(m−1

2
),((n

2
)0);

for j = 1 and 2 give one more tied grid graph in the resultant graph. So we get

Cm ×2 Cn =

 2⋃
◦

i=1

(
G(m0),((n

2
)0)

)(i) .

(c) If m and n both are odd integers then by the same argument given in (b), two different components

are joined by the edges (ui, vn)←→ (ui, v2); for every i. Also (ui, v1)←→ (ui, vn−1) edges are added

in the graph Cm ×2 Cn. So it gives only one component, that is, G(m0),(n0), which is a tied grid graph

in Cm ×2 Cn. So, the resultant graph is connected.

Remark 2.4. The number of components in Pm ×2 Pn is fixed (four), whereas in case of Pm ×2 Cn

and Cm ×2 Cn, the number of components depends on the parity of m and n.
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Proposition 2.5. Let Ks,t be a complete bipartite graph and Pm be a path graph with m vertices. Then

Ks,t ×2 Pm has exactly four components.

Proof: Let Ks,t be a complete bipartite graph with U1 and U2 partite sets. It is clear that two vertices

lie in the same partite set if and only if distance between them is two. Let V (Pm) = {v1, v2, . . . , vm}.
d(vj , vj+2) = 2 for j = 1, 2, . . . ,m−2 in Pm. Two vertices say, (u, vj) and (u, vj+2) in Ks,t×2Pm are

adjacent for j = 1, 2, . . . ,m− 2. Also, two vertices say, (u, vj) and (u′, vj) in Ks,t×2 Pm are adjacent

only if u and u′ are in same partite set of Ks,t and j = 1, 2, . . . ,m. Hence, for each u ∈ U1, we get

(u, vj) ←→ (u, vj+2) for j = 1, 3, . . . ,m − 2 and (u, vj) ←→ (u, vj+2) for j = 2, 4, . . . ,m − 3.

Therefore, there are two components each isomorphic to Ks × Pm
2

if m is even or two components

Ks × Pm+1
2

and Ks × Pm−1
2

if m is odd.

Similarly, with respect to the other partite set U2 of Ks,t there are two components each isomorphic

to Kt × Pm
2

if m is even or two components Kt × Pm+1
2

and Kt × Pm−1
2

if m is odd.

Thus in total, Ks,t ×2 Pm has exactly four components.

Proposition 2.6. Let Ks,t be complete bipartite graph and Cm be cycle graph with m vertices.

(a) If m is an even integer then Ks,t ×2 Cm has four components.

(b) If m is odd an integer then Ks,t ×2 Cm has two components.

Proof:

(a) Let m be even. By Proposition 2.5, Ks,t ×2 Pm has four components. As Cm is obtained from Pm

by adding an edge v1 ←→ vm, in each of the four components of Ks,t ×2 Pm we have to add the edges

(u, v1)←→ (u, vm−1) or (u, v2) ←→ (u, vm) for each vertex u in Ks,t. Consequently, we get two

components isomorphic to Ks × Cm
2

and two components isomorphic to Kt × Cm
2

.

(b) Let m be odd integer, then the two components Ks × Pm+1
2

and Ks × Pm−1
2

of Ks,t ×2 Pm are

joined by adding the edges (u, vm) ←→ (u, v2) and (u, v1) ←→ (u, vm−1) for every vertex u in Ks,t.

Consequently, we have one component Ks × Cm. Hence, Ks,t ×2 Cm has four components.

Similarly, the two components Kt × Pm+1
2

and Kt × Pm−1
2

of Ks,t ×2 Pm are joined by adding the

edges (u, vm) ←→ (u, v2) and (u, v1) ←→ (u, vm−1) for every vertex u in Ks,t and consequently, we

have one component Kt × Cm. Thus in total Ks,t ×2 Cm has two components.

From the above theorem, it is evident that the number of components in Ks,t ×2 Cm depends only

on the parity of the integer m. All the above results reveal that, even if G1 and G2 are connected the

resultant graph G1 ×2 G2 need not be connected. So in 2- cartesian product the result similar to the

following result is not true.

Proposition 2.7. [6] Let G = G1 ×G2, with G1 and G2 both connected graphs. Then G is connected.

Proposition 2.8. [1] If G and H are two connected bipartite graphs, then G ×2 H has exactly four

connected components.
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In [2], the derived graph G! of G is defined in terms of d(u, v) = 2. Also, the graph G2 is obtained

by considering 2 - distance. The 2 - cartesian product can be obtained with the help of G! or G2 or

combination of G and G2 using usual cartesian product. But, in this paper we consider 2-cartesian

product separately as we have obtained G1×2 G2 and their results directly in terms of the factor graphs

G1 and G2, without computing the graphs G! or G2.
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