International Journal of Mathematics and Soft Computing Vol.4, No.1 (2014), 139 - 144.

2 - Cartesian product of special graphs

U. P. Acharya

A. D. Patel Intitute of Technology, New Vallabh Vidyanagar, INDIA. E-mail: urvaship04@yahoo.co.in

H. S. Mehta Department of Mathematics, Sardar Patel University, Vallabh Vidyanagar-388 120, INDIA. E-mail: himalimehta63@gmail.com

Abstract

The cartesian product of two graphs has been studied by many authors and has been generalized by introducing 2 - cartesian product $G_1 \times_2 G_2$ of two graphs G_1 and G_2 . In this paper, we obtain $G_1 \times_2 G_2$, for P_n , C_n and $K_{s,t}$.

Keywords: Cartesian product of graphs, 2-cartesian product of graphs, grid graph, tied grid graph. **AMS Subject Classification(2010):** 05C76.

1 Preliminaries

The cartesian product of two graphs had been studied in ([3], [4], [6]). The generalized cartesian product $G_1 \times_r G_2$ has been defined using the idea of distance in [1]. It is not easy to obtain $G_1 \times_r G_2$ for general G_1 and G_2 . So, in this paper we discuss this product for r = 2.

Let G = (V(G), E(G)) be a finite, simple graph with the vertex set V(G) and the edge set E(G). A graph G is connected, if there is a path between every pair of vertices. If G is a connected graph then $d_G(u, u')$ is the length of the shortest path between u and u' in G. For a graph G, a maximal connected subgraph is known as components of G. If G is a connected graph, then G has only one component, G itself.

Throughout the paper we consider finite, simple and connected graph. We denote the path graph, cycle graph and complete graph with n vertices by P_n , C_n and K_n respectively. The complete bipartite graph is denoted by $K_{m,n}$ with (m + n) vertices. The null graph is a graph with empty edge set. If the graph G is a disjoint union of r similar components H, then we denote it by,

$$G = \bigcup_{\substack{\circ\\i=1}}^{r} H^{(i)}$$

For the basic terminology, concepts and results of graph theory, we refer to ([3], [4], [6]).

We obtain $G_1 \times_2 G_2$ for P_n , C_n and $K_{s,t}$. We discuss mainly connectedness of the product graph.

Definition 1.1. The 2-cartesian product of graphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ is the graph G = (V, E) with the vertex set $V = V_1 \times V_2$ and the edge set E defined as follows:

Two vertices (u, v) and (u', v') are adjacent in G if one of the following conditions is satisfied:

- (i) $d_{G_1}(u, u') = 2$ and $d_{G_2}(v, v') = 0$,
- (ii) $d_{G_1}(u, u') = 0$ and $d_{G_2}(v, v') = 2$.

We denote this graph G by $G_1 \times_2 G_2$.

It is clear that if we replace 2 by 1 in the definition, then we get usual cartesian product $G_1 \times G_2$. Note that, if the diameters of both G_1 and G_2 are less then 2, then $G_1 \times_2 G_2$ is a null graph.

Definition 1.2. The grid graph $G = G_{m,n}$ is defined as the graph with vertex set, $V = \{(u_i, v_j) : i = 1, 2, ..., m \text{ and } j = 1, 2, ..., n\}$ and edge set $E = \bigcup_{i=1}^{m} \{(u_i, v_j) \leftrightarrow (u_i, v_{j+1}) : 1 \le j \le n-1\} \cup \bigcup_{i=1}^{n} \{(u_i, v_j) \leftrightarrow (u_{i+1}, v_j) : 1 \le i \le m-1\}.$

The semi tied grid graph $G_{(m),(n^0)}$ is a grid graph with vertex set V(G) and edge set consisting of the following edges:

(i) Each edge of $G_{m,n}$;

(ii) The edges $(u_i, v_1) \leftrightarrow (u_i, v_n)$, for every $i = 1, 2, \dots, m$,

In place of (ii), if we consider (ii)' then we get another semi tied grid graph denoted by $G_{(m^0),(n)}$,

(ii)' The edges $(u_1, v_j) \leftrightarrow (u_m, v_j)$, for every j = 1, 2, ..., n.

The graph containing all the above type of edges is called a *tied grid graph* and is denoted by $G_{(m^0),(n^0)}$.

2 2- Cartesian Product

The 2 - cartesian product of path graphs has been obtained in [1]. In this section we discuss $G_1 \times_2 G_2$ with G_1 path graph and G_2 cycle graph and $G_1 \times_2 G_2$, if both G_1 and G_2 are cycle graphs.

We fix the following notations. The path graph P_m is the graph with, $V(P_m) = \{u_1, u_2, \ldots, u_m\}$ and $E(P_m) = \{(u_1u_2), (u_2u_3), \ldots, (u_{m-1}u_m)\}$ and $C_m (m \ge 3)$ is a cycle graph with $V(C_m) = V(P_m)$ and $E(C_m) = E(P_m) \cup \{(u_mu_1)\}$.

We use the following result on path graphs.

Proposition 2.1. [1] For $m, n \geq 3$,

(a) If both m and n are even integers then, $P_m \times_2 P_n = \left| \bigcup_{\substack{i=1 \ i=1}}^4 \left(G_{(\frac{m}{2}), (\frac{n}{2})} \right)^{(i)} \right|.$

(b) If *m* is odd and *n* is even, then
$$P_m \times_2 P_n = \left[\bigcup_{\substack{i=1 \ i=1}}^2 \left(G_{(\frac{m+1}{2}),(\frac{n}{2})}\right)^{(i)}\right] \bigcup_{\circ} \left[\bigcup_{\substack{i=1 \ j=1}}^2 \left(G_{(\frac{m-1}{2}),(\frac{n}{2})}\right)^{(j)}\right].$$

(c) If m is even and n is odd, then $P_m \times_2 P_n = \left[\bigcup_{\substack{\circ \\ i=1}}^2 \left(G_{\left(\frac{m}{2}\right), \left(\frac{n+1}{2}\right)} \right)^{(i)} \right] \bigcup_{\circ} \left[\bigcup_{\substack{\circ \\ j=1}}^2 \left(G_{\left(\frac{m}{2}\right), \left(\frac{n-1}{2}\right)} \right)^{(j)} \right].$

140

(d) If both m and n are odd integers, then

$$P_m \times_2 P_n = \left[\ G_{\left(\frac{m+1}{2}\right), \left(\frac{n+1}{2}\right)} \right] \bigcup_{\circ} \left[\ G_{\left(\frac{m+1}{2}\right), \left(\frac{n-1}{2}\right)} \right] \bigcup_{\circ} \left[\ G_{\left(\frac{m-1}{2}\right), \left(\frac{n+1}{2}\right)} \right] \bigcup_{\circ} \left[\ G_{\left(\frac{m-1}{2}\right), \left(\frac{n-1}{2}\right)} \right].$$

Proposition 2.2. Let P_m and C_n be path graph and cycle graph with m and n vertices respectively.

- (a) If n is an even integer, then $P_m \times_2 C_n$ has four components which are semi tied grid graphs.
- (b) If n is an odd integer, then $P_m \times_2 C_n$ has two components which are semi tied grid graphs.

Proof:

(a) Let m and n be even integers, then from Proposition 2.1(a) we have

$$P_m \times_2 P_n = \left[\bigcup_{\substack{o \\ i=1}}^{4} \left(G_{\left(\frac{m}{2}\right), \left(\frac{n}{2}\right)} \right)^{(i)} \right]$$

Now in graph P_n , we add one edge between v_1 to v_n , then it becomes a cycle graph C_n . Also $d(v_1, v_{n-1}) = 2 = d(v_2, v_n)$ in C_n and so the edges between (u_i, v_1) and (u_i, v_{n-1}) as well as (u_i, v_2) and (u_i, v_n) , for each *i*, will be added in the resultant graph. Thus the grid component $G_{(\frac{m}{2}),(\frac{n}{2})}$ becomes semi tied grid graph $G_{(\frac{m}{2}),((\frac{n}{2})^0)}$ in $P_m \times_2 C_n$.

So we get
$$P_m \times_2 C_n = \left[\bigcup_{\substack{i=1 \ i=1}}^4 \left(G_{(\frac{m}{2}),((\frac{n}{2})^0)} \right)^{(i)} \right].$$

Similarly, $P_m \times_2 C_n = \left[\bigcup_{\substack{i=1 \ i=1}}^2 \left(G_{(\frac{m+1}{2}),((\frac{n}{2})^0)} \right)^{(i)} \right] \bigcup_{\circ} \left[\bigcup_{\substack{i=1 \ i=1}}^2 \left(G_{(\frac{m-1}{2}),((\frac{n}{2})^0)} \right)^{(j)} \right], \text{ if } m \text{ is odd}$

(b) Let m be even integers and n be odd integer, then from Proposition 2.1(c),

$$P_m \times_2 P_n = \left[\bigcup_{\substack{i=1 \\ i=1}}^2 \left(G_{(\frac{m}{2}), (\frac{n+1}{2})} \right)^{(i)} \right] \bigcup_{\circ} \left[\bigcup_{\substack{i=1 \\ j=1}}^2 \left(G_{(\frac{m}{2}), (\frac{n-1}{2})} \right)^{(j)} \right]$$

Note that here for i = 1 and 2 we get two components $G_{(\frac{m}{2}),(\frac{n+1}{2})}$ of same graph. The vertices are joined as, $(u_i, v_1) \longrightarrow (u_i, v_3) \longrightarrow \ldots \longrightarrow (u_i, v_n)$ in one component and $(u_i, v_2) \longrightarrow (u_i, v_4) \longrightarrow \ldots \longrightarrow (u_i, v_{n-1})$ are joined in other component. Again, $d(v_n, v_2) = 2 = d(v_{n-1}, v_1)$ in C_n . So, the two edges $(u_i, v_n) \longrightarrow (u_i, v_2)$ and $(u_i, v_{n-1}) \longrightarrow (u_i, v_1)$ will be added in the resultant graph $P_m \times_2 C_n$ and the two components are joined by these edges. So, we get one component $G_{(\frac{m}{2}),(n^0)}$ in place of $\bigcup_{i=1}^2 \left(G_{(\frac{m}{2}),(\frac{n+1}{2})}\right)^{(i)}$. Consequently, $P_m \times_2 C_n$ has only two components as follows:

$$P_m \times_2 C_n = \left[\bigcup_{\substack{\circ \\ i=1}}^2 \left(G_{\left(\frac{m}{2}\right), (n^0)} \right)^{(i)} \right].$$

Similarly if m is odd, then

$$P_m \times_2 C_n = \left[G_{(\frac{m+1}{2}),(n^0)}\right] \bigcup_{\circ} \left[G_{(\frac{m-1}{2}),(n^0)}\right]$$

Proposition 2.3. Let C_m and C_n be cycle graphs with m and n vertices respectively.

(a) If both m and n are even integers, then $C_m \times_2 C_n$ has four components which are tied grid graphs.

(b) If m is odd and n is even, then $C_m \times_2 C_n$ has two components which are tied grid graphs.

(c) If both m and n are odd integers, then $C_m \times_2 C_n$ is a connected graph which is a tied grid graph.

Proof:

(a) Let m and n be even integers, then from Proposition 2.2 (a),

$$P_m \times_2 C_n = \left[\bigcup_{\substack{i=1 \\ i=1}}^{4} \left(G_{(\frac{m}{2}), ((\frac{n}{2})^0)} \right)^{(i)} \right].$$

Also $d(u_1, u_{m-1}) = 2 = d(u_2, u_m)$ in C_m and so the edges between (u_1, v_j) and (u_{m-1}, v_j) as well as (u_2, v_j) and (u_m, v_j) , for each j will be added in the resultant graph. Thus the semi tied grid component $G_{(\frac{m}{2}),((\frac{n}{2})^0)}$ becomes a tied grid graph $G_{((\frac{m}{2})^0),((\frac{n}{2})^0)}$ in $C_m \times_2 C_n$. So we get

$$C_m \times_2 C_n = \left[\bigcup_{\substack{i=1 \\ i=1}}^{4} \left(G_{((\frac{m}{2})^0),((\frac{n}{2})^0)} \right)^{(i)} \right].$$

(b) Let m be odd integer and n be even integer. As we have seen in Proposition 2.2 (a), the two components $G_{(\frac{m+1}{2}),((\frac{n}{2})^0)}$; for i = 1 and 2 joined by the edges $(u_m, v_j) \leftrightarrow (u_2, v_j)$ and $(u_{m-1}, v_j) \leftrightarrow (u_1, v_j)$ and give one component $G_{(m^0),((\frac{n}{2})^0)}$ in $C_m \times_2 C_n$. Similarly the other two components $G_{(\frac{m-1}{2}),((\frac{n}{2})^0)}$; for j = 1 and 2 give one more tied grid graph in the resultant graph. So we get

$$C_m \times_2 C_n = \left[\bigcup_{\substack{o \ i=1}}^2 \left(G_{(m^0),((\frac{n}{2})^0)} \right)^{(i)} \right].$$

(c) If m and n both are odd integers then by the same argument given in (b), two different components are joined by the edges $(u_i, v_n) \longleftrightarrow (u_i, v_2)$; for every i. Also $(u_i, v_1) \longleftrightarrow (u_i, v_{n-1})$ edges are added in the graph $C_m \times_2 C_n$. So it gives only one component, that is, $G_{(m^0),(n^0)}$, which is a tied grid graph in $C_m \times_2 C_n$. So, the resultant graph is connected.

Remark 2.4. The number of components in $P_m \times_2 P_n$ is fixed (four), whereas in case of $P_m \times_2 C_n$ and $C_m \times_2 C_n$, the number of components depends on the parity of m and n.

Proposition 2.5. Let $K_{s,t}$ be a complete bipartite graph and P_m be a path graph with m vertices. Then $K_{s,t} \times_2 P_m$ has exactly four components.

Proof: Let $K_{s,t}$ be a complete bipartite graph with U_1 and U_2 partite sets. It is clear that two vertices lie in the same partite set if and only if distance between them is two. Let $V(P_m) = \{v_1, v_2, \ldots, v_m\}$. $d(v_j, v_{j+2}) = 2$ for $j = 1, 2, \ldots, m-2$ in P_m . Two vertices say, (u, v_j) and (u, v_{j+2}) in $K_{s,t} \times_2 P_m$ are adjacent for $j = 1, 2, \ldots, m-2$. Also, two vertices say, (u, v_j) and (u', v_j) in $K_{s,t} \times_2 P_m$ are adjacent only if u and u' are in same partite set of $K_{s,t}$ and $j = 1, 2, \ldots, m$. Hence, for each $u \in U_1$, we get $(u, v_j) \longleftrightarrow (u, v_{j+2})$ for $j = 1, 3, \ldots, m-2$ and $(u, v_j) \longleftrightarrow (u, v_{j+2})$ for $j = 2, 4, \ldots, m-3$. Therefore, there are two components each isomorphic to $K_s \times P_{\frac{m}{2}}$ if m is even or two components $K_s \times P_{\frac{m+1}{2}}$ and $K_s \times P_{\frac{m-1}{2}}$ if m is odd.

Similarly, with respect to the other partite set U_2 of $K_{s,t}$ there are two components each isomorphic to $K_t \times P_{\frac{m}{2}}$ if m is even or two components $K_t \times P_{\frac{m+1}{2}}$ and $K_t \times P_{\frac{m-1}{2}}$ if m is odd.

Thus in total, $K_{s,t} \times_2 P_m$ has exactly four components.

Proposition 2.6. Let $K_{s,t}$ be complete bipartite graph and C_m be cycle graph with m vertices.

- (a) If m is an even integer then $K_{s,t} \times_2 C_m$ has four components.
- (b) If m is odd an integer then $K_{s,t} \times_2 C_m$ has two components.

Proof:

(a) Let *m* be even. By Proposition 2.5, $K_{s,t} \times_2 P_m$ has four components. As C_m is obtained from P_m by adding an edge $v_1 \leftrightarrow v_m$, in each of the four components of $K_{s,t} \times_2 P_m$ we have to add the edges $(u, v_1) \leftrightarrow (u, v_{m-1})$ or $(u, v_2) \leftrightarrow (u, v_m)$ for each vertex *u* in $K_{s,t}$. Consequently, we get two components isomorphic to $K_s \times C_m^2$ and two components isomorphic to $K_t \times C_m^2$.

(b) Let *m* be odd integer, then the two components $K_s \times P_{\frac{m+1}{2}}$ and $K_s \times P_{\frac{m-1}{2}}$ of $K_{s,t} \times_2 P_m$ are joined by adding the edges $(u, v_m) \longleftrightarrow (u, v_2)$ and $(u, v_1) \longleftrightarrow (u, v_{m-1})$ for every vertex *u* in $K_{s,t}$. Consequently, we have one component $K_s \times C_m$. Hence, $K_{s,t} \times_2 C_m$ has four components.

Similarly, the two components $K_t \times P_{\frac{m+1}{2}}$ and $K_t \times P_{\frac{m-1}{2}}$ of $K_{s,t} \times_2 P_m$ are joined by adding the edges $(u, v_m) \longleftrightarrow (u, v_2)$ and $(u, v_1) \longleftrightarrow (u, v_{m-1})$ for every vertex u in $K_{s,t}$ and consequently, we have one component $K_t \times C_m$. Thus in total $K_{s,t} \times_2 C_m$ has two components.

From the above theorem, it is evident that the number of components in $K_{s,t} \times_2 C_m$ depends only on the parity of the integer m. All the above results reveal that, even if G_1 and G_2 are connected the resultant graph $G_1 \times_2 G_2$ need not be connected. So in 2- cartesian product the result similar to the following result is not true.

Proposition 2.7. [6] Let $G = G_1 \times G_2$, with G_1 and G_2 both connected graphs. Then G is connected.

Proposition 2.8. [1] If G and H are two connected bipartite graphs, then $G \times_2 H$ has exactly four connected components.

In [2], the derived graph $G^!$ of G is defined in terms of d(u, v) = 2. Also, the graph G^2 is obtained by considering 2 - distance. The 2 - cartesian product can be obtained with the help of $G^!$ or G^2 or combination of G and G^2 using usual cartesian product. But, in this paper we consider 2-cartesian product separately as we have obtained $G_1 \times_2 G_2$ and their results directly in terms of the factor graphs G_1 and G_2 , without computing the graphs $G^!$ or G^2 .

Acknowledgement

This research work is supported by UGC, New Delhi under the SAP to the Department of Mathematics, S. P. University, Vallabh Vidyanagar.

References

- [1] U. P. Acharya, H. S. Mehta, Generalized Cartesian Product of Graphs, (communicated).
- [2] A. Alwardi, B. Arsic, I. Gutman and N. D. Soner, *The Common Neighborhood Graphs and Its Energy*, Iran. J. of Math. Sci. and Inf., Vol.7, No.1 (2012), 1-8.
- [3] N. L. Biggs, Algebraic Graph Theory, Cambridge University Press, 2nd edition Cambridge, 1993.
- [4] F. Harary, Graph Theory, Addison Wesley, Massachusetts, 1969.
- [5] Josef Lauri and Raffaele Scapellato, *Topics in Graph Automorphisms and Reconstruction*, Cambridge University press, 2003.
- [6] K. K. Parthasarathy, Basic Graph Theory, Tata Megraw. Hill Pub. Co. Ltd. 1994.
- [7] G. Sabidussi, Graph Multiplication, Math. Z., 72 (1960), 446-457.
- [8] Yukio Shibata and Yosuke Kikuchi, *Graph products based on the distance in Graphs*, IEICE Trans. Fundamentals,vol.E83-A,March,2000.
- [9] Zlatomir lukic, *A note on Graphs Representable as products of Graphs*, Nouvelle adrie tome 32 (46),(1981), 115-118.

144