International Journal of Mathematics and Soft Computing Vol.4, No.1. (2014), 129 - 137.

Square graceful graphs

T. Tharmaraj

Department of Mathematics, Udaya School of Engineering, Vellamodi, Tamil Nadu, INDIA. E-mail:trajtr@gmail.com.

P. B. Sarasija Department of Mathematics, Noorul Islam University, Kumaracoil, Tamil Nadu, INDIA. E-mail:sijavk@gmail.com.

Abstract

A (p,q) graph G(V, E) is said to be a square graceful graph if there exists an injection $f:V(G) \rightarrow \{0,1,2,3,..., q^2\}$ such that the induced mapping $f_p: E(G) \rightarrow \{1,4,9,...,q^2\}$ defined by $f_p(uv) = |f(u) - f(v)|$ is a bijection. The function f is called a square labeling of G. In this paper, we prove that the star $K_{1,n}$, bistar $B_{m,n}$, the graph obtained by the subdivision of the edges of the star $K_{1,n}$, the graph obtained by the subdivision of the central edge of the bistar $B_{m,n}$, the generalised crown $C_3 \Theta K_{1,n}$, graph $P_m \Theta n K_1$ $(n \ge 2)$, the comb $P_n \Theta K_1$, graph (P_m, S_n) , (3, t) kite graph $(t \ge 2)$ and the path P_n are square graceful graphs.

Keywords: Square graceful graph, square graceful labeling.

AMS Subject Classification (2010): 05C69.

1 Introduction

Throughout this paper, by a graph we mean a finite, undirected, simple graph G(V, E) with p vertices and q edges. A detailed survey of graph labeling can be found in [2]. There are different types of graceful labelings like odd graceful labeling, even graceful labeling and skolem - graceful labeling to various classes of graphs. In this paper, we introduce a new graceful labeling called square graceful labeling. We use the following definitions in the subsequent section.

Definition 1.1. A (p,q) graph G(V,E) is said to be a square graceful graph if there exists an injection $f:V(G) \rightarrow \{0,1,2,3,...,q^2\}$ such that the induced mapping $f_p: E(G) \rightarrow \{1,4,9,..,q^2\}$ defined by $f_p(uv) = |f(u) - f(v)|$ is a bijection. The function f is called a square labeling of G.

Definition 1.2.[5] The corona $G_1 \Theta G_2$ of two graphs G_1 and G_2 is defined as the graph G obtained by taking one copy of G_1 (which has p vertices) and p copies of G_2 and then joining the i^{th} vertex of G_1 to every vertex in the i^{th} copy of G_2 .

Definition 1.3. [5] A complete biparitite graph $K_{1,n}$ is called a star and it has n+1 vertices and n edges.

Definition 1.4. [5] The bistar graph $B_{m,n}$ is the graph obtained from a copy of star $K_{1,m}$ and a copy of star $K_{1,n}$ by joining the vertices of maximum degree by an edge.

Definition 1.5. [3] The graph (P_m, S_n) is obtained from m copies of the star graph S_n and the path $P_m : \{u_1, u_2, ..., u_m\}$ by joining u_j with the center of the j^{th} copy of S_n by means of an edge, for $1 \le j \le m$.

Definition 1.6. [1] A subdivision of a graph G is a graph that can be obtained from G by a sequence of edge subdivisions.

Definition 1.7. [4] An (n,t)-kite graph ,consists of a cycle of length n with a t-edge path (the tail) attached to one vertex.

In this paper, we prove that the star $K_{1,n}$, bistar $B_{m,n}$, the graph obtained by the subdivision of the edges of the star $K_{1,n}$, the graph obtained by the subdivision of the central edge of the bistar $B_{m,n}$, the generalised crown $C_3 \Theta K_{1,n}$, graph $P_m \Theta n K_1$ $(n \ge 2)$, the comb $P_n \Theta K_1$, graph (P_m, S_n) , (3,t) kite graph $(t \ge 2)$ and the path P_n are square graceful graphs.

2 Main Results

Theorem 2.1. The star $K_{1,n}$ is square graceful for all *n*.

Proof: Let $V(K_{1,n}) = \{u_i / 1 \le i \le n+1\}$. Let $E(K_{1,n}) = \{u_{n+1} u_i / 1 \le i \le n\}$. Define an injection $f: V(K_{1,n}) \to \{0,1,2,3,...,n^2\}$ by $f(u_i) = i^2$ if $1 \le i \le n$ and $f(u_{n+1}) = 0$. Then f induces a bijection $f_p: E(K_{1,n}) \to \{1,4,9,...,n^2\}$.

Example 2.2. A square graceful labeling of star $K_{1,12}$ is shown in Figure 1.

Figure 1: A square graceful labeling of star $K_{1,12}$.

Theorem 2.3. The graph obtained by the subdivision of the edges of the star $K_{1,n}$ is a square graceful graph.

Proof: Let *G* be the graph obtained by the subdivision of the edges of the star $K_{1,n}$. Let $V(G) = \{v, u_i, w_i / 1 \le i \le n\}$ and $E(G) = \{v, w_i, w_i u_i / 1 \le i \le n\}$. Define an injection $f:V(G) \rightarrow \{0,1,2,3,...,4n^2\}$ by $f(w_i) = (2n+1-i)^2$ for $1 \le i \le n$, $f(u_i) = n(3n+2-2i)$ for $1 \le i \le n$, f(v) = 0. Then, *f* induces a bijection $f_p: E(G) \rightarrow \{1,4,9,...,4n^2\}$ and hence the subdivision of the edges of the star $K_{1,n}$ is a square graceful graph.

Example 2.4. A square graceful labeling of the graph obtained by the subdivision of the edges of the star $K_{1,5}$ is shown in Figure 2.

Figure 2: A square graceful labeling of the graph obtained by the subdivision of the edges of the star $K_{1,5}$

Theorem 2.5. Every bistar $B_{m,n}$ is a square graceful graph.

Proof: Let $B_{m,n}$ be the bistar graph with m + n + 2 vertices. Let $V(B_{m,n}) = \{u_i, v_j / 1 \le i \le m + 1, 1 \le j \le n + 1\}$ and $E(B_{m,n}) = \{u_i, u_{m+1}, v_j, v_{n+1}, u_{m+1}, v_{n+1} / 1 \le i \le m, 1 \le j \le n\}$. **Case (i):** m > n.

Define an injection $f: V(B_{m,n}) \to \{0, 1, 2, 3, ..., (m+n+1)^2\}$ by

$$f(u_i) = (m+n+2-i)^2$$
 if $1 \le i \le m$; $f(u_{m+1}) = 0$;

$$f(v_i) = (n+2-j)^2 + 1$$
 if $1 \le j \le n$; $f(v_{n+1}) = 1$.

Case (ii): m < n.

Define an injection $f: V(B_{m,n}) \to \{0, 1, 2, 3, ..., (m+n+1)^2\}$ by

$$f(u_i) = (m+2-i)^2$$
 if $1 \le i \le m$; $f(u_{m+1}) = 1$,

$$f(v_i) = (m+n+2-j)^2 + 1$$
 if $1 \le j \le n$; $f(v_{n+1}) = 0$.

Case (iii): m = n.

Define an injection $f: V(B_{n,n}) \to \{0,1,2,3,...,(2n+1)^2\}$ by

$$\begin{split} f(u_{n+1}) &= 0 \; ; \; f(u_i) = (2n+2-i)^2 \; if \; 1 \le i \le n \; ; \\ f(v_j) &= (n+2-j)^2 + 1 \; if \; 1 \le j \le n \; ; \; f(v_{n+1}) = 1 \; . \end{split}$$

In all the above three cases, f induces a bijection $f_p: E(B_{m,n}) \rightarrow \{1,4,9,\dots,(m+n+1)^2\}.$

Theorem 2.6. The graph obtained by the subdivision of the central edge of the bistar $B_{m,n}$ is a square graph.

Proof: Let *G* be the graph obtained by the subdivision of the central edge of the bistar *B*_{*m,n*}. Let *V*(*G*) = {*w*, *u_i*, *v_j*/1≤*i*≤*m*+1, 1≤ *j*≤*n*+1}. Then *E*(*G*) = {*u_iu_{m+1}*, *v_jv_{n+1}*, *wu_{m+1}*, *wv_{n+1}*/1≤*i*≤*m*, 1≤ *j*≤*n*}. **Case (i)**: *m* > *n*. Define an injection *f*:*V*(*G*) → {0,1,2,3,...,(*m*+*n*+2)²} by *f*(*u_{m+1}*) = (*m*+*n*+2)², *f*(*v_{n+1}*) = (*m*+*n*+1)²; *f*(*w*) = 0; *f*(*u_i*) = (2*m*+2*n*+3-*i*)(1-*i*) if 1≤*i*≤*m*; *f*(*v_j*) = (2*m*+2*n*+2-*j*)*j* if *m*+1≤ *j*≤*m*+*n*. **Case (ii)**: *m* < *n*. Define an injection *f*:*V*(*G*) → {0,1,2,3,...,(*m*+*n*+2)²} by *f*(*u_{n+1}) = (<i>m*+*n*+1)²; *f*(*v_{n+1}) = (<i>m*+*n*+2)²; *f*(*w*) = 0;

$$f(u_{m+1}) = (m+n+1)^2 \quad ; f(v_{n+1}) = (m+n+2)^2 \quad ; f(w) = 0;$$

$$f(u_i) = (2m+2n+2-i)i \quad \text{if} \quad n+1 \le i \le m+n; \quad f(v_j) = (2m+2n+3-j)(2+j) \quad \text{if} \quad 1 \le j \le m.$$

Case (iii): $m = n$.
Define an injection $f: V(G) \rightarrow \{0,1,2,3,...,(2n+2)^2\}$ by

 $f(u_{n+1}) = (2n+2)^2 \quad ; f(v_{n+1}) = (2n+1)^2 \quad ; \quad f(w) = 0 \quad ;$ $f(u_i) = 2(4n+3-2i)i \quad if \quad 1 \le i \le n \; ;$ $f(v_j) = (4n+3-2j)(2j-1) \quad if \quad 1 \le j \le n \; .$

In all the above three cases, f induces a bijection $f_p: E(G) \rightarrow \{1, 4, 9, \dots, (m+n+2)^2\}$.

Example 2.7. A square graceful labeling of bistar $B_{5,3}$ is shown in Figure 3.

Figure 3: A square graceful labeling of $B_{5,3}$.

Theorem 2.8. The generalised crown $C_3 \Theta K_{1,n}$ is a square graceful graph.

Proof: Let $\{v_1, v_2, v_3, u_{i_1}, u_{i_2}, ..., u_{i_n}\}$ be the vertices of $C_3 \Theta K_{1,n}$. Here $\{v_1, v_2, v_3\}$ are the vertices of C₃ and $u_{i_1}, u_{i_2}, ..., u_{i_n}$ are the vertices of the *i*th copy of $K_{1,n}$ adjacent to v_i for i = 1, 2, 3 and the size of the graph is q = 3n + 3.

Define an injection
$$f:V(C_3 \Theta K_{1,n}) \to \{0,1,2,3,...,(3n+3)^2\}$$
 by
 $f(v_1) = 0$; $f(v_2) = 25$; $f(v_3) = 16$; $f(u_{i_j}) = (3n+4-j)^2$ if $1 \le j \le n$;
 $f(u_{2_j}) = (2n+4-j)^2 + 25$ if $1 \le j \le n$; $f(u_{3_j}) = (n+4-j)^2 + 16$ if $1 \le j \le n-2$; $f(u_{3_{(n-1)}}) = 20$
and $f(u_{3_n}) = 17$. Then f induces a bijection $f_p: E(C_3 \Theta K_{1,n}) \to \{1,4,9,...,(3n+3)^2\}$ and hence the
generalised crown $C_3 \Theta K_{1,n}$ is a square graceful graph. ■

Example 2.9. A square graceful labeling of $C_3 \Theta K_{1,4}$ is shown in Figure 4.

Figure 4: A square graceful labeling of $C_3 \Theta K_{1,4}$

Theorem 2.10. The graph $P_m \Theta nK_1$ $(n \ge 2)$ is a square graceful graph.

Proof: Let $\{u_1, u_2, ..., u_m\}$ be the vertices of path p_m and $\{v_{1_j}, v_{2_j}, ..., v_{n_j}\}$ be the *i*th copy of the null graph nK_1 . Then $\{v_{1_j}, v_{2_j}, ..., v_{n_j}\}$ are the *n* pendent vertices adjacent to the vertex u_j of P_m for $1 \le j \le m$.

Define an injection $f: V(P_m \Theta nK_1) \rightarrow \{0, 1, 2, 3, ..., (mn+m-1)^2\}$ by

$$f(u_j) = \frac{j(j-1)(2j-1)}{6} \text{ if } 1 \le j \le m;$$

$$f(v_{i_j}) = (q - (i-1)m - j + 1)^2 + \frac{j(j-1)(2j-1)}{6} \text{ if } 1 \le i \le n, 1 \le j \le m.$$

Then, f induces a bijection $f_p : E(P_m \Theta nK_1) \to \{1, 4, 9, ..., (mn + m - 1)^2\}$. Hence, $P_m \Theta nK_1$ $(n \ge 2)$ is a square graceful graph.

Example 2.11. A square graceful labeling of $P_5 \Theta 4K_1$ is shown in Figure 5.

Figure 5: A square graceful labeling of $P_5 \Theta 4K_1$.

Corollary 2.12. The comb $P_n \Theta K_1$ is a square graceful graph.

Proof: Let $P_n \Theta K_1$ be the comb graph with 2n vertices. Let $V(P_n \Theta K_1) = \{u_i, v_i : 1 \le i \le n\}$ and $E(P_n \Theta K_1) = \{u_i u_{i+1} : 1 \le i \le n-1 ; u_i v_i : 1 \le i \le n\}$. Define an injection $f: V(P_n \Theta K_1) \to \{0, 1, 2, 3, ..., (2n-1)^2\}$ by $f(u_i) = \frac{i(i-1)(2i-1)}{6}$ if $1 \le i \le n$; $f(v_i) = \frac{i(i-1)(2i-1)}{6} + (q-i+1)^2$ if $1 \le i \le n$.

Then f induces a bijection $f_p : E(P_n \Theta K_1) \to \{1, 4, 9, \dots, (2n-1)^2\}$. Hence, the comb $P_n \Theta K_1$ is a square graceful graph.

Example 2.13. A square graceful labeling of $P_7 \Theta K_1$ is shown in Figure 6.

Figure 6: A square graceful labeling of $P_7 \Theta K_1$.

Theorem 2.14. The graph (P_n, S_m) is a square graceful graph.

Proof: Let $\{u_1, u_2, ..., u_n\}$ be the vertices of path P_n and $\{v_{o_j}, v_{1_j}, v_{2_j}, ..., v_{m_j}\}$ be the vertices of j^{th} copy P_m for $1 \le j \le n$.

Then
$$E((P_n, S_m)) = \begin{cases} u_i \ u_{i+1} & \text{if } 1 \le i \le n-1 \\ u_i \ v_{0_i} & \text{if } 1 \le i \le n \\ v_{o_j} \ v_{i_j} & \text{if } 1 \le i \le m , 1 \le j \le n \end{cases}$$

Define an injection $f: V((P_n, S_m)) \rightarrow \{0, 1, 2, 3, \dots, (mn+2n-1)^2\}$ by

$$\begin{aligned} f(u_i) &= \frac{i(i-1)(2i-1)}{6} & \text{if } 1 \le i \le n ; \\ (f(v_{0_j})) &= (q-j+1)^2 + \frac{j(j-1)(2j-1)}{6} & \text{if } 1 \le j \le n ; \\ f(v_{i_j}) &= (2q-ni-2j+2)(ni) + \frac{j(j-1)(2j-1)}{6} & \text{if } 1 \le i \le m , 1 \le j \le n . \end{aligned}$$

Then, f induces a bijection $f_p: E(P_n, S_m) \rightarrow \{1, 4, 9, \dots, (mn + 2n - 1)^2\}$ and hence (P_n, S_m) is square graceful.

Example 2.15. A square graceful labeling of (P_5, S_3) is shown in Figure 7.

Figure 7: A square graceful labeling of (P_5, S_3) .

Theorem 2.16. (3,*t*) kite graph is square graceful for $t \ge 2$.

Proof: Let $\{v_1, v_2, v_3\}$ be the three vertices of a cycle C_3 and $\{u_1, u_2, \dots, u_t\}$ be the *t* vertices of the tail with v_1 adjacent to u_1 . Therefore, the size of *G* is q = 3 + t. We prove the theorem in two cases. **Case (i):** t = 2.

Define a bijection $f: V(G) \rightarrow \{0, 1, 2, 3, \dots, (3+t)^2\}$ as follows.

 $f(v_1) = 0$, $f(v_2) = 16$, $f(v_3) = 25$, $f(u_1) = 4$ and $f(u_2) = 3$. Case (ii): t > 2.

Define a bijection $f: V(G) \rightarrow \{0, 1, 2, 3, \dots, (3+t)^2\}$ as follows.

$$\begin{split} f(u_i) &= \sum_{j=1}^{l} (-1)^{j+1} \left[q - j + 1 \right]^2 \ if \ 1 \le i \le q - 5 \ ; \\ f(u_{t-1}) &= \sum_{j=1}^{q-5} (-1)^{j+1} \left[q - j + 1 \right]^2 - 4 \ ; \\ f(u_t) &= \sum_{j=1}^{q-5} (-1)^{j+1} \left[q - j + 1 \right]^2 - 5 \ ; \ f(v_1) = 0 \ , \ f(v_2) = 16 \ , \ f(v_3) = 25 \end{split}$$

In both the cases f induces a bijection $f_p: E(G) \to \{1, 4, 9, \dots, (3+t)^2\}$ and hence (3, t) kite graph is square graceful for $t \ge 2$.

Example 2.17. A square graceful labeling of (3,3) kite is shown in Figure 8.

Figure 8: A square graceful labeling of (3,3) kite.

Theorem 2.18. Every path P_n is a square graceful graph.

Proof: Let P_n be a path graph with n vertices $\{u_1, u_2, \dots, u_n\}$. Let $E(P_n) = \{u_i u_{i+1} / 1 \le i \le n-1\}$.

Define an injection $f: V((P_n) \to \{0, 1, 2, 3, ..., (n-1)^2\}$ by

 $f(u_1) = 0$ and $f(u_{i+1}) = \sum_{j=1}^{i} (-1)^{j+1} (n-j)^2$ for $1 \le i \le n-1$. Then f induces a bijection $f_p: E(P_n) \to \{1, 4, 9, \dots, (n-1)^2\}$. Hence, every path P_n is a square graceful graph.

References

- [1] Diari Indriati, On γ -Labeling of (n,t)-Kite Graph, Jurnal Matematika & Sains, Vol.16, No.3(2011), 129-132.
- [2] J. A. Gallian, *A dynamic survey of graph labeling*, The Electronic journal of Combinatorics, 16(2013), # DS6.

- [3] F. Harary, Graph Theory, Addison-Wesley, Reading, Massachusetts, 1972.
- [4] K. Murugan and A. Subramanian, *Labeling of Subdivided Graphs*, American J. of Mathematics and Sciences, Vol.1, No.1(2012), 143-149.
- [5] Selvam Avadayappan and R. Vasuki, *New Families of Mean Graphs*, International J. Math. Combin, Vol.2 (2010), 68-80.