Square graceful graphs

T. Tharmaraj
Department of Mathematics, Udaya School of Engineering, Vellamodi, Tamil Nadu, INDIA.
E-mail:trajtr@gmail.com.
P. B. Sarasija
Department of Mathematics, Noorul Islam University, Kumaracoil,
Tamil Nadu, INDIA.
E-mail:sijavk@gmail.com.

Abstract

A (p, q) graph $G(V, E)$ is said to be a square graceful graph if there exists an injection $f: V(G) \rightarrow\left\{0,1,2,3, \ldots, q^{2}\right\}$ such that the induced mapping $f_{p}: E(G) \rightarrow\left\{1,4,9, \ldots, q^{2}\right\}$ defined by $f_{p}(u v)=|f(u)-f(v)|$ is a bijection. The function f is called a square labeling of G. In this paper, we prove that the star $K_{1, n}$, bistar $B_{m, n}$, the graph obtained by the subdivision of the edges of the star $K_{1, n}$, the graph obtained by the subdivision of the central edge of the bistar $B_{m, n}$, the generalised crown $C_{3} \Theta K_{1, n}$, graph $P_{m} \Theta n K_{1}(n \geq 2)$, the comb $P_{n} \Theta K_{1}$, graph $\left(P_{m}, S_{n}\right),(3, t)$ kite graph $(t \geq 2)$ and the path P_{n} are square graceful graphs.

Keywords: Square graceful graph, square graceful labeling.
AMS Subject Classification (2010): 05C69.

1 Introduction

Throughout this paper, by a graph we mean a finite, undirected, simple graph $G(V, E)$ with p vertices and q edges. A detailed survey of graph labeling can be found in [2]. There are different types of graceful labelings like odd graceful labeling, even graceful labeling and skolem - graceful labeling to various classes of graphs. In this paper, we introduce a new graceful labeling called square graceful labeling. We use the following definitions in the subsequent section.

Definition 1.1. A (p, q) graph $G(V, E)$ is said to be a square graceful graph if there exists an injection $f: V(G) \rightarrow\left\{0,1,2,3, \ldots q^{2}\right\}$ such that the induced mapping $f_{p}: E(G) \rightarrow\left\{1,4,9, \ldots, q^{2}\right\}$ defined by $f_{p}(u v)=|f(u)-f(v)|$ is a bijection. The function f is called a square labeling of G.

Definition 1.2.[5] The corona $G_{1} \Theta G_{2}$ of two graphs G_{1} and G_{2} is defined as the graph G obtained by taking one copy of G_{1} (which has p vertices) and p copies of G_{2} and then joining the $i^{\text {th }}$ vertex of G_{1} to every vertex in the $i^{\text {th }}$ copy of G_{2}.
Definition 1.3. [5] A complete biparitite graph $K_{1, n}$ is called a star and it has $n+1$ vertices and n edges.
Definition 1.4. [5] The bistar graph $B_{m, n}$ is the graph obtained from a copy of star $K_{1, m}$ and a copy of star $K_{1, n}$ by joining the vertices of maximum degree by an edge.

Definition 1.5. [3] The graph $\left(P_{m}, S_{n}\right)$ is obtained from m copies of the star graph S_{n} and the path $P_{m}:\left\{u_{1}, u_{2}, \ldots, u_{m}\right\}$ by joining u_{j} with the center of the $j^{\text {th }}$ copy of S_{n} by means of an edge, for $1 \leq j \leq m$.

Definition 1.6. [1] A subdivision of a graph G is a graph that can be obtained from G by a sequence of edge subdivisions.
Definition 1.7. [4] An (n, t)-kite graph, consists of a cycle of length n with a t-edge path (the tail) attached to one vertex.

In this paper, we prove that the star $K_{1, n}$, bistar $B_{m, n}$, the graph obtained by the subdivision of the edges of the star $K_{1, n}$, the graph obtained by the subdivision of the central edge of the bistar $B_{m, n}$, the generalised crown $C_{3} \Theta K_{1, n}$, graph $P_{m} \Theta n K_{1}(n \geq 2)$, the comb $P_{n} \Theta K_{1}$, graph $\left(P_{m}, S_{n}\right)$, $(3, t)$ kite graph $(t \geq 2)$ and the path P_{n} are square graceful graphs.

2 Main Results

Theorem 2.1. The star $K_{1, n}$ is square graceful for all n.
Proof: Let $V\left(K_{1, n}\right)=\left\{u_{i} / 1 \leq i \leq n+1\right\}$. Let $E\left(K_{1, n}\right)=\left\{u_{n+1} u_{i} / 1 \leq i \leq n\right\}$.Define an injection $f: V\left(K_{1, n}\right) \rightarrow\left\{0,1,2,3, \ldots, n^{2}\right\} \quad$ by $\quad f\left(u_{i}\right)=i^{2}$ if $1 \leq i \leq n \quad$ and $f\left(u_{n+1}\right)=0$. Then f induces a bijection $f_{p}: E\left(K_{1, n}\right) \rightarrow\left\{1,4,9, \ldots, n^{2}\right\}$.
Example 2.2. A square graceful labeling of star $K_{1,12}$ is shown in Figure 1.

Figure 1: A square graceful labeling of star $K_{1,12}$.

Theorem 2.3. The graph obtained by the subdivision of the edges of the star $K_{1, \mathrm{n}}$ is a square graceful graph.

Proof: Let G be the graph obtained by the subdivision of the edges of the star $K_{1, n}$. Let $V(G)=\left\{v, u_{i}, w_{i} / 1 \leq i \leq n\right\} \quad$ and $\quad E(G)=\left\{v w_{i}, w_{i} u_{i} / 1 \leq i \leq n\right\}$. Define an injection $f: V(G) \rightarrow\left\{0,1,2,3, \ldots, 4 n^{2}\right\}$ by $f\left(w_{i}\right)=(2 n+1-i)^{2}$ for $1 \leq i \leq n, f\left(u_{i}\right)=n(3 n+2-2 i)$ for $1 \leq i \leq n$, $f(v)=0$. Then, f induces a bijection $f_{p}: E(G) \rightarrow\left\{1,4,9, \ldots, 4 n^{2}\right\}$ and hence the subdivision of the edges of the star $K_{1, n}$ is a square graceful graph.

Example 2.4. A square graceful labeling of the graph obtained by the subdivision of the edges of the star $K_{1,5}$ is shown in Figure 2.

Figure 2: A square graceful labeling of the graph obtained by the subdivision of the edges of the star $K_{1,5}$

Theorem 2.5. Every bistar $B_{m, n}$ is a square graceful graph.
Proof: Let $B_{m, n}$ be the bistar graph with $m+n+2$ vertices. Let $V\left(B_{m, n}\right)=$ $\left\{u_{i}, v_{j} / 1 \leq i \leq m+1,1 \leq j \leq n+1\right\}$ and $E\left(B_{m, n}\right)=\left\{u_{i} u_{m+1}, v_{j} v_{n+1}, u_{m+1} v_{n+1} / 1 \leq i \leq m, 1 \leq j \leq n\right\}$.

Case (i): $m>n$.
Define an injection $f: V\left(B_{m, n}\right) \rightarrow\left\{0,1,2,3, \ldots,(m+n+1)^{2}\right\} \quad$ by

$$
\begin{aligned}
& f\left(u_{i}\right)=(m+n+2-i)^{2} \text { if } 1 \leq i \leq m ; f\left(u_{m+1}\right)=0 ; \\
& f\left(v_{j}\right)=(n+2-j)^{2}+1 \text { if } 1 \leq j \leq n ; f\left(v_{n+1}\right)=1 .
\end{aligned}
$$

Case (ii): $m<n$.
Define an injection $f: V\left(B_{m, n}\right) \rightarrow\left\{0,1,2,3, \ldots,(m+n+1)^{2}\right\} \quad$ by

$$
\begin{aligned}
& f\left(u_{i}\right)=(m+2-i)^{2} \text { if } 1 \leq i \leq m ; f\left(u_{m+1}\right)=1, \\
& f\left(v_{j}\right)=(m+n+2-j)^{2}+1 \text { if } 1 \leq j \leq n ; f\left(v_{n+1}\right)=0 .
\end{aligned}
$$

Case (iii): $m=n$.
Define an injection $f: V\left(B_{n, n}\right) \rightarrow\left\{0,1,2,3, \ldots,(2 n+1)^{2}\right\}$ by

$$
\begin{aligned}
& f\left(u_{n+1}\right)=0 ; f\left(u_{i}\right)=(2 n+2-i)^{2} \text { if } 1 \leq i \leq n ; \\
& f\left(v_{j}\right)=(n+2-j)^{2}+1 \text { if } 1 \leq j \leq n ; f\left(v_{n+1}\right)=1 .
\end{aligned}
$$

In all the above three cases, f induces a bijection $f_{p}: E\left(B_{m . n}\right) \rightarrow\left\{1,4,9, \ldots,(m+n+1)^{2}\right\}$.
Theorem 2.6. The graph obtained by the subdivision of the central edge of the bistar $B_{m, n}$ is a square graph.
Proof: Let G be the graph obtained by the subdivision of the central edge of the bistar $B_{m, n}$.
Let $V(G)=\left\{w, u_{i}, v_{j} / 1 \leq i \leq m+1,1 \leq j \leq n+1\right\}$. Then $E(G)=\left\{u_{i} u_{m+1}, v_{j} v_{n+1}, \quad w u_{m+1}, w v_{n+1} /\right.$ $1 \leq i \leq m, 1 \leq j \leq n\}$.

Case (i): $m>n$.
Define an injection $f: V(G) \rightarrow\left\{0,1,2,3, \ldots,(m+n+2)^{2}\right\}$ by

$$
\begin{aligned}
& f\left(u_{m+1}\right)=(m+n+2)^{2}, f\left(v_{n+1}\right)=(m+n+1)^{2} ; f(w)=0 ; \\
& f\left(u_{i}\right)=(2 m+2 n+3-i)(1-i) \text { if } 1 \leq i \leq m ; f\left(v_{j}\right)=(2 m+2 n+2-j) j \text { if } m+1 \leq j \leq m+n .
\end{aligned}
$$

Case (ii): $m<n$.
Define an injection $f: V(G) \rightarrow\left\{0,1,2,3, \ldots,(m+n+2)^{2}\right\}$ by

$$
\begin{aligned}
& f\left(u_{m+1}\right)=(m+n+1)^{2} ; f\left(v_{n+1}\right)=(m+n+2)^{2} ; f(w)=0 ; \\
& f\left(u_{i}\right)=(2 m+2 n+2-i) i \text { if } n+1 \leq i \leq m+n ; f\left(v_{j}\right)=(2 m+2 n+3-j)(2+j) \text { if } 1 \leq j \leq m .
\end{aligned}
$$

Case (iii): $m=n$.
Define an injection $f: V(G) \rightarrow\left\{0,1,2,3, \ldots,(2 n+2)^{2}\right\} \quad$ by

$$
\begin{aligned}
& f\left(u_{n+1}\right)=(2 n+2)^{2} ; f\left(v_{n+1}\right)=(2 n+1)^{2} ; f(w)=0 ; \\
& f\left(u_{i}\right)=2(4 n+3-2 i) i \text { if } 1 \leq i \leq n ; \\
& f\left(v_{j}\right)=(4 n+3-2 j)(2 j-1) \text { if } 1 \leq j \leq n .
\end{aligned}
$$

In all the above three cases, f induces a bijection $f_{p}: E(G) \rightarrow\left\{1,4,9, \ldots,(m+n+2)^{2}\right\}$.
Example 2.7. A square graceful labeling of bistar $B_{5,3}$ is shown in Figure 3.

Figure 3: A square graceful labeling of $B_{5,3}$.

Theorem 2.8. The generalised crown $C_{3} \Theta K_{1, n}$ is a square graceful graph.

Proof: Let $\left\{v_{1}, v_{2}, v_{3}, u_{i_{1}}, u_{i_{2}}, \ldots, u_{i_{n}}\right\}$ be the vertices of $C_{3} \Theta K_{1, n}$. Here $\left\{v_{1}, v_{2}, v_{3}\right\}$ are the vertices of C_{3} and $u_{i_{1}}, u_{i_{2}}, \ldots, u_{i_{n}}$ are the vertices of the $i^{\text {th }}$ copy of $K_{1, n}$ adjacent to v_{i} for $i=1,2,3$ and the size of the graph is $q=3 n+3$.

Define an injection $f: V\left(C_{3} \Theta K_{1, n}\right) \rightarrow\left\{0,1,2,3, \ldots,(3 n+3)^{2}\right\} \quad$ by $f\left(v_{1}\right)=0 ; f\left(v_{2}\right)=25 ; f\left(v_{3}\right)=16 ; f\left(u_{i_{j}}\right)=(3 n+4-j)^{2}$ if $1 \leq j \leq n ;$
$f\left(u_{2_{j}}\right)=(2 n+4-j)^{2}+25$ if $1 \leq j \leq n ; f\left(u_{3_{j}}\right)=(n+4-j)^{2}+16$ if $1 \leq j \leq n-2 ; f\left(u_{3_{(n-1)}}\right)=20$ and $f\left(u_{3_{n}}\right)=17$. Then f induces a bijection $f_{p}: E\left(C_{3} \Theta K_{1, n}\right) \rightarrow\left\{1,4,9, \ldots .,(3 n+3)^{2}\right\}$ and hence the generalised crown $C_{3} \Theta K_{1, n}$ is a square graceful graph.

Example 2.9. A square graceful labeling of $C_{3} \Theta K_{1,4}$ is shown in Figure 4.

Figure 4: A square graceful labeling of $C_{3} \Theta K_{1,4}$

Theorem 2.10. The graph $P_{m} \Theta n K_{1}(n \geq 2)$ is a square graceful graph.
Proof: Let $\left\{u_{1}, u_{2}, \ldots \ldots, u_{m}\right\}$ be the vertices of path p_{m} and $\left\{v_{1_{j}}, v_{2_{j}}, \ldots, v_{n_{j}}\right\}$ be the $i^{\text {th }}$ copy of the null graph $n K_{1}$. Then $\left\{v_{1_{j}}, v_{2_{j}}, \ldots, v_{n_{j}}\right\}$ are the n pendent vertices adjacent to the vertex u_{j} of P_{m} for $1 \leq j \leq m$.
Define an injection $f: V\left(P_{m} \Theta n K_{1}\right) \rightarrow\left\{0,1,2,3, \ldots,(m n+m-1)^{2}\right\}$ by

$$
\begin{aligned}
& f\left(u_{j}\right)=\frac{j(j-1)(2 j-1)}{6} \text { if } 1 \leq j \leq m \\
& f\left(v_{i_{j}}\right)=(q-(i-1) m-j+1)^{2}+\frac{j(j-1)(2 j-1)}{6} \text { if } 1 \leq i \leq n, 1 \leq j \leq m
\end{aligned}
$$

Then, f induces a bijection $f_{p}: E\left(P_{m} \Theta n K_{1}\right) \rightarrow\left\{1,4,9, \ldots,(m n+m-1)^{2}\right\}$. Hence, $P_{m} \Theta n K_{1} \quad(n \geq 2)$ is a square graceful graph.

Example 2.11. A square graceful labeling of $P_{5} \Theta 4 K_{1}$ is shown in Figure 5.

Figure 5: A square graceful labeling of $P_{5} \Theta 4 K_{1}$.
Corollary 2.12. The comb $P_{n} \Theta K_{1}$ is a square graceful graph.
Proof: Let $P_{n} \Theta K_{1}$ be the comb graph with $2 n$ vertices. Let $V\left(P_{n} \Theta K_{1}\right)=\left\{u_{i}, v_{i}: 1 \leq i \leq n\right\}$ and $E\left(P_{n} \Theta K_{1}\right)=\left\{u_{i} u_{i+1}: 1 \leq i \leq n-1 ; u_{i} v_{i}: 1 \leq i \leq n\right\}$.

Define an injection $f: V\left(P_{n} \Theta K_{1}\right) \rightarrow\left\{0,1,2,3, \ldots .,(2 n-1)^{2}\right\}$ by

$$
\begin{aligned}
& f\left(u_{i}\right)=\frac{i(i-1)(2 i-1)}{6} \text { if } 1 \leq i \leq n ; \\
& f\left(v_{i}\right)=\frac{i(i-1)(2 i-1)}{6}+(q-i+1)^{2} \text { if } 1 \leq i \leq n .
\end{aligned}
$$

Then f induces a bijection $f_{p}: E\left(P_{n} \Theta K_{1}\right) \rightarrow\left\{1,4,9, \ldots .,(2 n-1)^{2}\right\}$. Hence, the comb $P_{n} \Theta K_{1}$ is a square graceful graph.

Example 2.13. A square graceful labeling of $P_{7} \Theta K_{1}$ is shown in Figure 6.

Figure 6: A square graceful labeling of $P_{7} \Theta K_{1}$.

Theorem 2.14. The graph $\left(P_{n}, S_{m}\right)$ is a square graceful graph.
Proof: Let $\left\{u_{1}, u_{2}, \ldots \ldots, u_{n}\right\}$ be the vertices of path P_{n} and $\left\{v_{o_{j}}, v_{1_{j}}, v_{2_{j}}, \ldots, v_{m_{j}}\right\}$ be the vertices of $j^{\text {th }}$ copy P_{m} for $1 \leq j \leq n$.
Then $E\left(\left(P_{n}, S_{m}\right)\right)=\left\{\begin{array}{l}u_{i} u_{i+1} \text { if } 1 \leq i \leq n-1 \\ u_{i} v_{0_{i}} \text { if } 1 \leq i \leq n \\ v_{o_{j}} v_{i_{j}} \text { if } 1 \leq i \leq m, 1 \leq j \leq n\end{array}\right.$
Define an injection $f: V\left(\left(P_{n}, S_{m}\right)\right) \rightarrow\left\{0,1,2,3, \ldots .,(m n+2 n-1)^{2}\right\}$ by
$f\left(u_{i}\right)=\frac{i(i-1)(2 i-1)}{6}$ if $1 \leq i \leq n ;$
$\left(f\left(v_{0_{j}}\right)=(q-j+1)^{2}+\frac{j(j-1)(2 j-1)}{6}\right.$ if $1 \leq j \leq n$;
$f\left(v_{i_{j}}\right)=(2 q-n i-2 j+2)(n i)+\frac{j(j-1)(2 j-1)}{6}$ if $1 \leq i \leq m, 1 \leq j \leq n$.
Then, f induces a bijection $f_{p}: E\left(P_{n}, S_{m}\right) \rightarrow\left\{1,4,9, \ldots,(m n+2 n-1)^{2}\right\}$ and hence $\left(P_{n}, S_{m}\right)$ is square graceful.

Example 2.15. A square graceful labeling of $\left(P_{5}, S_{3}\right)$ is shown in Figure 7.

Figure 7: A square graceful labeling of $\left(P_{5}, S_{3}\right)$.
Theorem 2.16. (3,t) kite graph is square graceful for $t \geq 2$.
Proof: Let $\left\{v_{1}, v_{2}, v_{3}\right\}$ be the three vertices of a cycle C_{3} and $\left\{u_{1}, u_{2}, \ldots \ldots, u_{t}\right\}$ be the t vertices of the tail with v_{1} adjacent to u_{1}. Therefore, the size of G is $q=3+t$. We prove the theorem in two cases.
Case (i): $t=2$.
Define a bijection $f: V(G) \rightarrow\left\{0,1,2,3, \ldots,(3+t)^{2}\right\}$ as follows.
$f\left(v_{1}\right)=0, f\left(v_{2}\right)=16, f\left(v_{3}\right)=25, f\left(u_{1}\right)=4$ and $f\left(u_{2}\right)=3$.
Case (ii): $t>2$.
Define a bijection $f: V(G) \rightarrow\left\{0,1,2,3, \ldots,(3+t)^{2}\right\}$ as follows.

$$
\begin{aligned}
& f\left(u_{i}\right)=\sum_{j=1}^{i}(-1)^{i+1}[q-j+1]^{2} \text { if } 1 \leq i \leq q-5 \\
& f\left(u_{t-1}\right)=\sum_{j=1}^{q-5}(-1)^{j+1}[q-j+1]^{2}-4 ; \\
& f\left(u_{t}\right)=\sum_{j=1}^{q-5}(-1)^{j+1}[q-j+1]^{2}-5 ; \quad f\left(v_{1}\right)=0, f\left(v_{2}\right)=16, f\left(v_{3}\right)=25 .
\end{aligned}
$$

In both the cases f induces a bijection $f_{p}: E(G) \rightarrow\left\{1,4,9, \ldots \ldots,(3+t)^{2}\right\}$ and hence $(3, t)$ kite graph is square graceful for $t \geq 2$.

Example 2.17. A square graceful labeling of $(3,3)$ kite is shown in Figure 8.

Figure 8: A square graceful labeling of $(3,3)$ kite.
Theorem 2.18. Every path P_{n} is a square graceful graph.
Proof: Let P_{n} be a path graph with n vertices $\left\{u_{1}, u_{2}, \ldots ., u_{n}\right\}$. Let $E\left(P_{n}\right)=\left\{u_{i} u_{i+1} / 1 \leq i \leq n-1\right\}$.
Define an injection $f: V\left(\left(P_{n}\right) \rightarrow\left\{0,1,2,3, \ldots . .,(n-1)^{2}\right\}\right.$ by
$f\left(u_{1}\right)=0 \quad$ and $\quad f\left(u_{i+1}\right)=\sum_{j=1}^{i}(-1)^{j+1}(n-j)^{2} \quad$ for $1 \leq i \leq n-1$. Then f induces a bijection $f_{p}: E\left(P_{n}\right) \rightarrow\left\{1,4,9, \ldots \ldots,(n-1)^{2}\right\}$. Hence, every path P_{n} is a square graceful graph.

References

[1] Diari Indriati, On γ-Labeling of (n, t)-Kite Graph, Jurnal Matematika \& Sains, Vol.16, No.3(2011), 129-132.
[2] J. A. Gallian, A dynamic survey of graph labeling, The Electronic journal of Combinatorics,16(2013), \# DS6.
[3] F. Harary, Graph Theory, Addison-Wesley, Reading, Massachusetts, 1972.
[4] K. Murugan and A. Subramanian, Labeling of Subdivided Graphs, American J. of Mathematics and Sciences, Vol.1, No.1(2012), 143-149.
[5] Selvam Avadayappan and R. Vasuki, New Families of Mean Graphs, International J. Math. Combin, Vol. 2 (2010), 68-80.

