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Abstract

In this paper, we combine decomposition and domination and introduce the concept Ascending
Domination Decomposition (ADD ) of a graph G . An ADD of a graph G is a collection ψ =

{G1, G2, . . . , Gn} of subgraphs of G such that, each Gi is connected, every edge of G is in
exactly one Gi and γ(Gi) = i , 1 ≤ i ≤ n . In this paper, we prove Kn ,Wn and K1,n admit
ADD . We also establish the characterization for the path and cycle that they should admit ADD .
We also prove that the corona of path, cycle and star admit ADD .
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1 Introduction

By a graph, we mean a finite, undirected, non-trivial, connected graph without loops and multiple

edges. The order and size of a graph are denoted by p and q respectively. For terms not defined here

we refer to Harary [6] .

Definition 1.1. The corona G1 � G2 of two graphs G1 and G2 is defined as the graph obtained by

taking one copy of G1 (with p1 vertices) and p1 copies of G2 and then joining the ith vertex of G1 to

all the vertices in the ith copy of G2 . In particular, the graph G �K1 is denoted by G+ . The graph

P+
n is called comb and the graph C+

n is called a crown.

The subgraph induced by the subset S ⊆ V , is denoted by < S > .

The theory of domination is one of the fastest growing areas in graph theory, which has been investi-

gated by Hedetniemi [5] , and Walikar et al [8] . A set D ⊆ V of vertices in a graph G is a dominating

set if every vertex v in V −D is adjacent to a vertex in D . The minimum cardinality of a dominating

set of G is called the domination number of G and is denoted by γ(G) .

Another important area of graph theory is decomposition of graphs [7]. A decomposition of a graph

G is a collection ψ of edge disjoint subgraphs G1, G2, . . . , Gn of G such that every edge of G is in

exactly one Gi . If each Gi is isomorphic to a subgraph H of G , then ψ is called a H -decomposition.

Several authors studied various types of decompositions by imposing conditions on Gi in the decom-

position.
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We introduce a concept called Ascending Domination Decomposition (ADD ) of a graph which

is motivated by the concepts of Ascending Subgraph Decomposition (ASD ) and Continuous Mono-

tonic Decomposition (CMD ) of a graph. The concept of Ascending Subgraph Decomposition was

introduced by Alavi et al [1].

Definition 1.2. [1] A decomposition of G into subgraphs Gi (not necessarily connected ) such that

|E(Gi)| = i and Gi is isomorphic to a proper subgraph of Gi+1 , is called an Ascending Subgraph

Decomposition(ASD ).

Definition 1.3. [4] A decomposition {G1, G2, . . . , Gn} of G is said to be a Continuous Monotonic

Decomposition (CMD) if each Gi is connected and |E(Gi)| = i for each i=1 , 2 , . . . , n .

The concept of continuous monotonic decomposition was introduced by N. Gnana Dhas [4]. In this

paper, we initiate a study on ADD .

2 Main Results

We define Ascending Domination Decomposition (ADD ) as follows.

Definition 2.1. An ADD of a graph G is a collection ψ = {G1, G2, . . . , Gn} of subgraphs of G such

that

(i) Each Gi is connected.

(ii) Every edge of G is in exactly one Gi

(iii) γ(Gi) = i , 1 ≤ i ≤ n .

If a graph G has an ADD , we say that G admits Ascending Domination Decomposition.

Example 2.2. An ADD {G1, G2, G3} of a given graph G is given in Figure 1. Note that γ(Gi) = i

for i = 1 , 2 , 3 .
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Figure 1(a): A given graph G.
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Figure 1(b): An ADD {G1, G2, G3} of G .
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Theorem 2.3. For a graph G , γ(G) = 1 if and only if ψ = {G} is an ADD.

Proof: The proof is obvious.

Corollary 2.4. Kn,Wn and K1,n admit ADD .

Theorem 2.5. Complete bipartite graph Km,n admits ADD.

Proof: Let V = X ∪ Y be a bipartition of Km,n with |X| = m and |Y | = n . Let X =

{x1, x2, . . . , xm} and Y = {y1, y2, . . . , yn} . Let G1 be a subgraph obtained from Km,n by tak-

ing the vertex x1 and the edges adjacent to x1 . Then G1
∼= K1,n and γ(G1) = 1 . We also see that

G2 = Km,n −G1
∼= Km−1,n and γ(G2) = 2 . Hence ψ = {G1, G2} is a ADD for Km,n .

Remark 2.6. [8] A path having 3k − 3 , 3k − 2 or 3k − 1 edges has the domination number k .

Using Remark 2.6, we can find bound for q of path if it admits ADD .

Theorem 2.7. A path Pp has an ADD ψ ={G1 ,G2 ,. . . ,Gn } if and only if 3n2−3n+2
2 ≤ q ≤ 3n2+n

2 .

Proof: Let Pp = v1v2 . . . vp be a path with q = p− 1 edges.

Suppose Pp admits ADD ψ = {G1, G2, . . . , Gn} .

First, we take the minimum possibility

G1 =v1v2
G2 =v2v3v4v5
G3 =v5v6v7v8v9v10v11

...

Gk = vmvm+1 . . . vr where m= 3k2−9k+10
2 , r = 3k2−3k+4

2
...

Gn = vlvl+1 . . . vp where l =
(
3n2−9n+10

2

)
, p = 3n2−3n+4

2

From Remark 2.6, it is clear that γ(Gi) = i . So ψ = {G1, G2, . . . , Gn} is an ADD . ...(1)

Then
n∑

i=1
q(Gi) = 1 + 3 + 6 + . . .+ 3n− 3

= 3n2−3n+2
2

For the maximum possibility, we take

G1 = v1v2v3

G2 = v3v4v5v6v7v8

G3 = v8v9v10v11v12v13v14v15v16
...

Gk = vmvm+1 . . . vr where m= 3k2−5k+4
2 , r = 3k2+k+2

2
...

Gn = vlvl+1 . . . vp where l =
(
3n2−5n+4

2

)
, p = 3n2+n+2

2 .

From Remark 2.6, it follows that γ(Gi) = i and ψ = {G1, G2, . . . , Gn} is an ADD . ...(2)

Then
n∑

i=1
q(Gi) = 2 + 5 + 8 + . . .+ 3n− 1
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= 3n2+n
2 .

Thus a path Pp has an ADD which implies that 3n2−3n+2
2 ≤ q ≤ 3n2+n

2 .

Conversely, suppose Pp does not admit ADD .

Consider the decomposition in (1), which admits ADD .

G1 = v1v2v3

G2 = v3v4v5v6v7v8

G3 = v8v9v10v11v12v13v14v15v16
...

Gk = vmvm+1 . . . vr where m =
(
3k2−5k+4

2

)
, r = 3k2+k+2

2

...

Gn = vlvl+1 . . . vp where l =
(
3n2−5n+4

2

)
, p = 3n2+n+2

2 .

First we prove that if we add 1, 2, . . . , n + 1 edges to each Gi of ψ then the resulting decomposition

does not admit ADD .

We add 1 , 2 or 3 vertices to each Gi for i = 1, 2, . . . , n . then we get
n∑

i=1
q(Gi) = 3n2+n

2 + n or

3n2+n
2 + 2n or 3n2+n

2 + 3n respectively.

Note that γ(Gi) = i+1 for i = 1, 2, . . . , n , which implies that this does not admit ADD . Next, if we

add 4, 5 or 6 vertices to each Gi for i = 1, 2, . . . , n we get
n∑

i=1
q(Gi) =

3n2+n
2 + 4n or 3n2+n

2 + 5n

or 3n2+n
2 +6n . we have that γ(Gi) = i+2 for i = 1, 2, . . . , n which implies that this does not admit

ADD . Continuing in this way, at last if we add (n + 1) vertices to each Gi for i = 1, 2, . . . , n , we

get
n∑

i=1
q(Gi)= 3n2+n

2 + n(n+ 1) .

Note that γ(Gi) = i+ n+1
3 for i = 1, 2, . . . , n which implies this does not admit ADD .

In general, we add 1, 2, . . . , or(n+ 1) edges to each Gi , for i = 1, 2, . . . , n , we get q =
n∑

i=1
q(Gi) =

3n2+n
2 + jn , for j = 1, 2, . . . , n + 1 . But 3n2+n

2 + jn > 3n2+n
2 , for j = 1, 2, . . . , n + 1 which

contradicts our assumption that q ≤ 3n2+n
2 .

Next, we consider the decomposition in (2) which admits ADD . We remove the last (n− 1) -edges

from Gn , the resulting decomposition does not admit ADD .

Even, if we rearrange the edges in this decomposition in any order it is not an ADD. Hence, q =
n∑

i=1
q(Gi)= 3n2−3n+2

2 − (n− 1) = 3n2−5n+4
2 < 3n2−3n+2

2 , which is a contradiction. Hence Pp admits

ADD .

Corollary 2.8. If 3n2+n
2 < q < 3n2+3n+2

2 , then Pp does not admit ADD .

Theorem 2.9. A cycle Cp has an ADD ψ = {G1, G2, . . . , Gn} if and only if 3n2−3n+2
2 ≤ q ≤ 3n2+n

2 .

Proof: The proof is the same as in Theorem 2.7.

Theorem 2.10. P+
p has an ADD ψ = {G1, G2, . . . , Gn} if and only if Pp has n(n+1)

2 vertices.

Proof: Let Pp = {v1, v2, . . . , vp} be a path. If we attach the vertices v′1, v
′
2, . . . , v

′
p to v1, v2, . . . , vp

respectively, then we get P+
p .
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Suppose p = n(n+1)
2 .

Let G1 =< {v1, v′1} >
G2 =< {v1, v2, v3, v′2, v′3} >
G3 =< {v3, v4, v5, v6, v′4, v′5, v′6} >

...

Gn =
〈
{vl, vl+1, . . . vp, v

′
l+1, . . . , v

′
p}
〉

Clearly γ(Gi) = i for i=1 , 2 ,. . . ,n .

We observe that the minimum dominating set of Gn has n vertices and Pp has 1 + 2 + 3 + . . . +

n= n(n+1)
2 vertices . Clearly γ(Gi) = i, for i = 1 , 2 , . . . , n and hence ψ = {G1, G2, . . . , Gn} is an

ADD of P+
p .

Conversely, suppose P+
p has an ADD .

Suppose Pp does not have n(n+1)
2 vertices.

Then we have the following two possibilities.

(i) Suppose we add j vertices for j = 1 , 2 , . . . , or n in Pp . By the above, after constructing

{G1 ,G2 , . . . , Gn }, we have j remaining vertices where j = 1 , 2 , . . . , or n . But, we cannot adjust

these vertices in the minimum dominating sets of Gi , otherwise {G1, G2, . . . , Gn} would not be an

ADD for P+
p .

If these j vertices ( j = 1 , 2, . . . , or n ) alone contribute a subgraph Gkj , then γ(Gkj )= j for j

= 1 , 2 , . . . , n . Then {G1, G2, . . . , Gn, Gkj} would not be an ADD .

This is a contradiction to our assumption.

(ii) Suppose we remove 1 , 2 , . . . , or n − 1 vertices in Pp . By the above, after construct-

ing {G1, G2, . . . , Gn} , we have j remaining vertices where j = n − 1 , n − 2 , . . . , or n − (n −
1) in Gn . But we cannot adjust these vertices in the minimum dominating sets of Gi , otherwise

{G1, G2, . . . , Gn} would not be an ADD for P+
p .

If these j vertices ( j = n − 1 , n − 2 , . . . , 2 , or 1 ) alone contribute a subgraph Gkj , then

γ(Gkj )= j for i = n − 1 , n − 2 , . . . , 2 or 1 . Then {G1, G2, . . . , Gn−1, Gkj} would not be an

ADD , which is a contradiction to our assumption.

Example 2.11. An ADD {G1, G2, G3, G4} of P+
10 is given in Figure 2.
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Figure 2: An ADD {G1, G2, G3, G4} of P+
10 .
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Theorem 2.12. Cp
+ has an ADD ψ = {G1, G2, . . . , Gn} if and only if Cp has either n(n+1)

2 or
n(n+1)

2 − 1 vertices.

Proof: Let Cp = v1v2 . . . vp be a cycle. If we attach the vertices v
′
1, v

′
2, . . . , v

′
p to v1, v2, . . . , vp re-

spectively, then we get Cp
+.

Case (i) : Suppose p = n(n+1)
2 .

To prove C+
p has an ADD .

Let G1 =< {v1, v2, v3, v′2} >
G2 =< {v3, v4, v5, v′3, v′4} >
G3 =< {v5, v6, v7, v8, v′5, v′6, v′7} >

...

Gn =< {vl, vl+1, . . . , vp, v1, v
′
l, v
′
l+1, . . . , v

′
p, v
′
1} >

The minimum dominating set of Gn has n vertices and Cp has 1+ 2+ 3+ . . .+ n= n(n+1)
2 vertices.

Clearly γ(Gi) = i for i = 1 , 2 , . . . , n and hence ψ = {G1, G2, . . . , Gn} is an ADD of C+
p .

Case (ii) : Suppose p = n(n+1)
2 − 1 .

Let G1 =< {v1, v2} >
G2 =< {v2, v3, v4, v5, v′2, v′3} >
G3 =< {v4, v5, v6, v7, v′4, v′5, v′6, v′7} >

...

Gn =< {vl, vl+1, . . . , vp, v1, v
′
l, v
′
l+1, . . . , v

′
p, v
′
1} >

Note that, the minimum dominating set of Gn has n vertices.

We have already taken {v1} as a minimum dominating set of G1 and therefore it has been counted in

the total number of vertices in Cp . We see that v1 is one of the elements of the minimum dominating

set of Gn . Thus G1 and Gn have the same vertex v1 in their respective dominating sets and so we

subtract 1 from the total number of vertices in Cp .

Note that Cp has (1 + 2 + 3 + . . . + n) − 1= n(n+1)
2 − 1 vertices. Clearly γ(Gi) = i for i = 1 ,

2 , . . . , n . Thus ψ = {G1, G2, . . . , Gn} is an ADD of C+
p .

Conversely, suppose C+
p has an ADD

To prove Cp has n(n+1)
2 or n(n+1)

2 − 1 vertices. Suppose Cp does not have n(n+1)
2 and n(n+1)

2 − 1

vertices.

Case (iii) : Cp does not have n(n+1)
2 vertices.

We have the following possibilities.

(i) Suppose we add j vertices for j = 1 , 2 , . . . , or n − 1 in Cp , as in the case (i) , after

constructing {G1, G2, . . . , Gn} , we have j remaining vertices where j = 1 , 2 , . . . , or n − 1 . But,

we cannot adjust these vertices in the minimum dominating sets of Gi , otherwise {G1, G2, . . . , Gn}
would not be an ADD for C+

p .

If these j vertices ( j = 1 , 2 , . . . , or n − 1 ) alone contribute a subgraph Gkj , then γ(Gkj )= j

for j = 1 , 2 , . . . , or n− 1 . Then {G1, G2, . . . , Gn, Gkj} would not be an ADD .

This is a contradiction to our assumption.

(ii) Suppose we remove 2 , 3 , . . . , or n−1 vertices in Cp . As in the case (i) , after constructing

{ G1 ,G2 ,. . . ,Gn }, we have j remaining vertices where j =n−2 , n−3 , . . . , or n−(n−1) in Gn . But
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we cannot adjust these vertices in the minimum dominating sets of Gi , otherwise {G1, G2, . . . , Gn}
would not be an ADD for C+

p .

If these j vertices ( j = n − 2 , n − 3 , . . . , or n − (n − 1) ) alone contribute a subgraph Gkj ,

then γ(Gkj )= j for j = n − 2 , n − 3 , . . . , or n − (n − 1) . Then {G1, G2, . . . , Gn−1, Gkj} would

be not an ADD .

This is a contradiction to our assumption.

Case (iv) : Cp does not have n(n+1)
2 − 1 vertices.

We have the following possibilities.

(i) Suppose we add j vertices for j = 2 , 3 , . . . , or n in Cp , as in the case (ii) ,after constructing

{G1, G2, . . . , Gn} , we have j remaining vertices where j = 2 , 3 , . . . , or n . But, we cannot adjust

these vertices in the minimum dominating sets of Gi , otherwise {G1, G2, . . . , Gn} would not be an

ADD for C+
p .

If these j vertices ( j = 2 , 3 , . . . , or n ) alone contribute a subgraph Gkj , then γ(Gkj )= j for j

= 2 , 3 , . . . , or n . Then {G1, G2, . . . , Gn, Gkj} would not be an ADD for C+
p .

This is a contradiction to our assumption.

(ii) Suppose we remove 1 , 2 , 3 , . . . , or n − 2 vertices in Cp , as in the case (ii) , after

constructing {G1, G2, . . . , Gn} , we have j remaining vertices where j = n − 1 , n − 2 , . . . , or

n − (n − 2) in Gn . But we cannot adjust these vertices in the minimum dominating sets of Gi ,

otherwise {G1, G2, . . . , Gn} would not be an ADD for C+
p .

If these j vertices ( j = n − 1 , n − 2 , . . . , or n − (n − 2) ) alone contribute a subgraph Gkj ,

then γ(Gkj )= j for j = n − 1 , n − 2 , . . . , or n − (n − 2) . Then {G1, G2, . . . , Gn−1, Gkj} would

be not an ADD . This is a contradiction to our assumption.

Example 2.13. An ADD {G1, G2, G3, G4 } of C+
10 for n(n+1)

2 vertices is given in Figure 3.
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Figure 3: An ADD {G1, G2, G3, G4 } of C+
10 .
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Example 2.14. An ADD {G1, G2, G3, G4} of C+
9 for n(n+1)

2 − 1 vertices is given in Figure 4.
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Figure 4: An ADD {G1, G2, G3, G4} of C+
9 .

Theorem 2.15. K+
1,p has an ADD ψ = {G1, G2, . . . , Gn} if and only if K1,p has either n(n+1)

2 or
n(n+1)

2 − 1 pendent vertices.

Proof: Let v be the central vertex and u, v1, v2, . . . , vp be the pendent vertices ofK1,p . If we attach

the vertices v
′
1, v

′
2, . . . , v

′
p to v1, v2, . . . , vp respectively, then we get K+

1,p.

Case (i) : Suppose K1,p has n(n+1)
2 pendent vertices.

Let G1 =< {v, v1, v′1} >
G2 =< {v, v2, v3, v′2, v′3} >
G3 =< {v, v4, v5, v6, v′4, v′5, v′6} >
...

Gn =< {v, vl, vl+1, . . . , vp, v
′
l, v
′
l+1, . . . , v

′
p} > .

The minimum dominating set of Gn has n vertices and Cp has 1+ 2+ 3+ . . .+ n= n(n+1)
2 vertices.

Clearly, γ(Gi) = i for i = 1 , 2 , . . . , n . Thus ψ = {G1, G2, . . . , Gn} is an ADD of K+
1,p .

Case (ii) : Suppose K1,p has n(n+1)
2 − 1 pendent vertices.

To prove that K1,p has an ADD .

Let G1 =< {v1, v′1} >
G2 =< {v, v1, v2, v′2} >
G3 =< {v, v3, v4, v5, v′3, v′4, v′5} >
...

Gn =< {v, vl, vl+1, . . . , vp, v
′
l, v
′
l+1, . . . , v

′
p} >

The minimum dominating set of Gn has n vertices.

Clearly, γ(Gi) = i for i = 1 , 2 , . . . , n . Thus ψ = {G1, G2, . . . , Gn} is an ADD of K+
1,p .
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Conversely, suppose K+
1,p has an ADD .

To prove K1,p has either n(n+1)
2 or n(n+1)

2 − 1 pendent vertices.

Suppose K1,p does not have n(n+1)
2 and n(n+1)

2 − 1 pendent vertices.

Case (iii) : K1,p does not have n(n+1)
2 pendent vertices.

Then we have the following possibilities.

(i) Suppose we add j pendent vertices for j = 1 , 2 ,. . . , or n in K1,p , as in the case (iii) of

Theorem 2.12, we get a contradiction.

(ii) Suppose we remove 2 , 3 , . . . , or n−1 pendent vertices in K1,p, as in the case (iii) of Theorem

2.12, again we get a contradiction.

Case (iv) : K1,p does not have n(n+1)
2 − 1 vertices.

Then we have the following possibilities.

(i) Suppose we add j vertices for j = 2 , 3 , . . . , or n in K1,p , as in the proof of case (iv)

Theorem 2.12, we get a contradiction to our assumption.

(ii) Suppose we remove 1 , 2 , 3 , . . . , or n−2 pendent vertices in K1,p , as in the proof of case (iv)

of Theorem 2.12, we get a contradiction to our assumption.

Example 2.16. An ADD {G1, G2, G3, G4} of K+
1,10 for n(n+1)

2 vertices is given below.
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Figure 5: An ADD {G1, G2, G3, G4} of K+
1,10 .

Example 2.17. An ADD {G1, G2, G3, G4} of K+
1,9 for n(n+1)

2 − 1 vertices is given below.
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Figure 6: An ADD {G1, G2, G3, G4} of K+
1,9 .
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