Ascending Domination Decomposition of Graphs

K. Lakshmiprabha
Research Scholar, Department of Mathematics, Sri S.R.N.M.College, Sattur - 626 203, Tamil Nadu, INDIA.
E-mail: prabhalakshmi94@yahoo.in
\section*{K. Nagarajan}
Department of Mathematics, Sri S.R.N.M.College,
Sattur - 626 203, Tamil Nadu, INDIA.
E-mail: k_nagarajan_srnmc@yahoo.co.in

Abstract

In this paper, we combine decomposition and domination and introduce the concept Ascending Domination Decomposition ($A D D$) of a graph G. An $A D D$ of a graph G is a collection $\psi=$ $\left\{G_{1}, G_{2}, \ldots, G_{n}\right\}$ of subgraphs of G such that, each G_{i} is connected, every edge of G is in exactly one G_{i} and $\gamma\left(G_{i}\right)=i, 1 \leq i \leq n$. In this paper, we prove K_{n}, W_{n} and $K_{1, n}$ admit $A D D$. We also establish the characterization for the path and cycle that they should admit $A D D$. We also prove that the corona of path, cycle and star admit $A D D$.

Keywords: Domination, decomposition, ascending domination decomposition.
AMS Subject Classification(2010): 05C69, 05C70.

1 Introduction

By a graph, we mean a finite, undirected, non-trivial, connected graph without loops and multiple edges. The order and size of a graph are denoted by p and q respectively. For terms not defined here we refer to Harary [6] .

Definition 1.1. The corona $G_{1} \odot G_{2}$ of two graphs G_{1} and G_{2} is defined as the graph obtained by taking one copy of G_{1} (with p_{1} vertices) and p_{1} copies of G_{2} and then joining the $i^{\text {th }}$ vertex of G_{1} to all the vertices in the $i^{t h}$ copy of G_{2}. In particular, the graph $G \odot K_{1}$ is denoted by G^{+}. The graph P_{n}^{+}is called comb and the graph C_{n}^{+}is called a crown.

The subgraph induced by the subset $S \subseteq V$, is denoted by $<S>$.
The theory of domination is one of the fastest growing areas in graph theory, which has been investigated by Hedetniemi [5], and Walikar et al [8]. A set $D \subseteq V$ of vertices in a graph G is a dominating set if every vertex v in $V-D$ is adjacent to a vertex in D. The minimum cardinality of a dominating set of G is called the domination number of G and is denoted by $\gamma(G)$.

Another important area of graph theory is decomposition of graphs [7]. A decomposition of a graph G is a collection ψ of edge disjoint subgraphs $G_{1}, G_{2}, \ldots, G_{n}$ of G such that every edge of G is in exactly one G_{i}. If each G_{i} is isomorphic to a subgraph H of G, then ψ is called a H-decomposition. Several authors studied various types of decompositions by imposing conditions on G_{i} in the decomposition.

We introduce a concept called Ascending Domination Decomposition ($A D D$) of a graph which is motivated by the concepts of Ascending Subgraph Decomposition ($A S D$) and Continuous Monotonic Decomposition ($C M D$) of a graph. The concept of Ascending Subgraph Decomposition was introduced by Alavi et al [1].

Definition 1.2. [1] A decomposition of G into subgraphs G_{i} (not necessarily connected) such that $\left|E\left(G_{i}\right)\right|=i$ and G_{i} is isomorphic to a proper subgraph of G_{i+1}, is called an Ascending Subgraph Decomposition $(A S D)$.

Definition 1.3. [4] A decomposition $\left\{G_{1}, G_{2}, \ldots, G_{n}\right\}$ of G is said to be a Continuous Monotonic Decomposition (CMD) if each G_{i} is connected and $\left|E\left(G_{i}\right)\right|=i$ for each $i=1,2, \ldots, n$.

The concept of continuous monotonic decomposition was introduced by N. Gnana Dhas [4]. In this paper, we initiate a study on $A D D$.

2 Main Results

We define Ascending Domination Decomposition ($A D D$) as follows.
Definition 2.1. An ADD of a graph G is a collection $\psi=\left\{G_{1}, G_{2}, \ldots, G_{n}\right\}$ of subgraphs of G such that
(i) Each G_{i} is connected.
(ii) Every edge of G is in exactly one G_{i}
(iii) $\gamma\left(G_{i}\right)=i, 1 \leq i \leq n$.

If a graph G has an $A D D$, we say that G admits Ascending Domination Decomposition.
Example 2.2. An $A D D\left\{G_{1}, G_{2}, G_{3}\right\}$ of a given graph G is given in Figure 1. Note that $\gamma\left(G_{i}\right)=i$ for $i=1,2,3$.

Figure 1(a): A given graph G.

Figure 1(b): An $A D D\left\{G_{1}, G_{2}, G_{3}\right\}$ of G.

Theorem 2.3. For a graph $G, \gamma(G)=1$ if and only if $\psi=\{G\}$ is an ADD.
Proof: The proof is obvious.

Corollary 2.4. K_{n}, W_{n} and $K_{1, n}$ admit $A D D$.
Theorem 2.5. Complete bipartite graph $K_{m, n}$ admits ADD.

Proof: Let $V=X \cup Y$ be a bipartition of $K_{m, n}$ with $|X|=m$ and $|Y|=n$. Let $X=$ $\left\{x_{1}, x_{2}, \ldots, x_{m}\right\}$ and $Y=\left\{y_{1}, y_{2}, \ldots, y_{n}\right\}$. Let G_{1} be a subgraph obtained from $K_{m, n}$ by taking the vertex x_{1} and the edges adjacent to x_{1}. Then $G_{1} \cong K_{1, n}$ and $\gamma\left(G_{1}\right)=1$. We also see that $G_{2}=K_{m, n}-G_{1} \cong K_{m-1, n}$ and $\gamma\left(G_{2}\right)=2$. Hence $\psi=\left\{G_{1}, G_{2}\right\}$ is a $A D D$ for $K_{m, n}$.

Remark 2.6. [8] A path having $3 k-3,3 k-2$ or $3 k-1$ edges has the domination number k.
Using Remark 2.6, we can find bound for q of path if it admits $A D D$.
Theorem 2.7. A path P_{p} has an $A D D \quad \psi=\left\{G_{1}, G_{2}, \ldots, G_{n}\right\}$ if and only if $\frac{3 n^{2}-3 n+2}{2} \leq q \leq \frac{3 n^{2}+n}{2}$.
Proof: Let $P_{p}=v_{1} v_{2} \ldots v_{p}$ be a path with $q=p-1$ edges.
Suppose P_{p} admits $A D D \psi=\left\{G_{1}, G_{2}, \ldots, G_{n}\right\}$.
First, we take the minimum possibility

$$
\begin{aligned}
& G_{1}=v_{1} v_{2} \\
& G_{2}=v_{2} v_{3} v_{4} v_{5} \\
& G_{3}=v_{5} v_{6} v_{7} v_{8} v_{9} v_{10} v_{11} \\
& \vdots \\
& G_{k}=v_{m} v_{m+1} \ldots v_{r} \text { where } m=\frac{3 k^{2}-9 k+10}{2}, r=\frac{3 k^{2}-3 k+4}{2} \\
& \vdots \\
& G_{n}=v_{l} v_{l+1} \ldots v_{p} \text { where } l=\left(\frac{3 n^{2}-9 n+10}{2}\right), p=\frac{3 n^{2}-3 n+4}{2}
\end{aligned}
$$

From Remark 2.6, it is clear that $\gamma\left(G_{i}\right)=i$. So $\psi=\left\{G_{1}, G_{2}, \ldots, G_{n}\right\}$ is an $A D D$.
Then $\sum_{i=1}^{n} q\left(G_{i}\right)=1+3+6+\ldots+3 n-3$

$$
=\frac{3 n^{2}-3 n+2}{2}
$$

For the maximum possibility, we take

$$
\begin{aligned}
& G_{1}=v_{1} v_{2} v_{3} \\
& G_{2}=v_{3} v_{4} v_{5} v_{6} v_{7} v_{8} \\
& G_{3}=v_{8} v_{9} v_{10} v_{11} v_{12} v_{13} v_{14} v_{15} v_{16} \\
& \vdots \\
& G_{k}=v_{m} v_{m+1} \ldots v_{r} \text { where } m=\frac{3 k^{2}-5 k+4}{2}, r=\frac{3 k^{2}+k+2}{2} \\
& \quad \vdots \\
& G_{n}=v_{l} v_{l+1} \ldots v_{p} \text { where } l=\left(\frac{3 n^{2}-5 n+4}{2}\right), p=\frac{3 n^{2}+n+2}{2}
\end{aligned}
$$

From Remark 2.6, it follows that $\gamma\left(G_{i}\right)=i$ and $\psi=\left\{G_{1}, G_{2}, \ldots, G_{n}\right\}$ is an $A D D$.
Then $\sum_{i=1}^{n} q\left(G_{i}\right)=2+5+8+\ldots+3 n-1$

$$
=\frac{3 n^{2}+n}{2} .
$$

Thus a path P_{p} has an $A D D$ which implies that $\frac{3 n^{2}-3 n+2}{2} \leq q \leq \frac{3 n^{2}+n}{2}$.
Conversely, suppose P_{p} does not admit $A D D$.
Consider the decomposition in (1), which admits $A D D$.

$$
\begin{aligned}
& G_{1}=v_{1} v_{2} v_{3} \\
& G_{2}=v_{3} v_{4} v_{5} v_{6} v_{7} v_{8} \\
& G_{3}=v_{8} v_{9} v_{10} v_{11} v_{12} v_{13} v_{14} v_{15} v_{16} \\
& \vdots \\
& G_{k}=v_{m} v_{m+1} \ldots v_{r} \text { where } m=\left(\frac{3 k^{2}-5 k+4}{2}\right), r=\frac{3 k^{2}+k+2}{2} \\
& \vdots \\
& G_{n}=v_{l} v_{l+1} \ldots v_{p} \text { where } l=\left(\frac{3 n^{2}-5 n+4}{2}\right), p=\frac{3 n^{2}+n+2}{2}
\end{aligned}
$$

First we prove that if we add $1,2, \ldots, n+1$ edges to each G_{i} of ψ then the resulting decomposition does not admit $A D D$.
We add 1,2 or 3 vertices to each G_{i} for $i=1,2, \ldots, n$. then we get $\sum_{i=1}^{n} q\left(G_{i}\right)=\frac{3 n^{2}+n}{2}+n$ or $\frac{3 n^{2}+n}{2}+2 n$ or $\frac{3 n^{2}+n}{2}+3 n$ respectively.
Note that $\gamma\left(G_{i}\right)=i+1$ for $i=1,2, \ldots, n$, which implies that this does not admit $A D D$. Next, if we add 4,5 or 6 vertices to each G_{i} for $i=1,2, \ldots, n$ we get $\sum_{i=1}^{n} q\left(G_{i}\right)=\frac{3 n^{2}+n}{2}+4 n$ or $\frac{3 n^{2}+n}{2}+5 n$ or $\frac{3 n^{2}+n}{2}+6 n$. we have that $\gamma\left(G_{i}\right)=i+2$ for $i=1,2, \ldots, n$ which implies that this does not admit $A D D$. Continuing in this way, at last if we add $(n+1)$ vertices to each G_{i} for $i=1,2, \ldots, n$, we get $\sum_{i=1}^{n} q\left(G_{i}\right)=\frac{3 n^{2}+n}{2}+n(n+1)$.

Note that $\gamma\left(G_{i}\right)=i+\frac{n+1}{3}$ for $i=1,2, \ldots, n$ which implies this does not admit $A D D$. In general, we add $1,2, \ldots$, or $(n+1)$ edges to each G_{i}, for $i=1,2, \ldots, n$, we get $q=\sum_{i=1}^{n} q\left(G_{i}\right)=$ $\frac{3 n^{2}+n}{2}+j n$, for $j=1,2, \ldots, n+1$. But $\frac{3 n^{2}+n}{2}+j n>\frac{3 n^{2}+n}{2}$, for $j=1,2, \ldots, n+1$ which contradicts our assumption that $q \leq \frac{3 n^{2}+n}{2}$.

Next, we consider the decomposition in (2) which admits $A D D$. We remove the last $(n-1)$-edges from G_{n}, the resulting decomposition does not admit $A D D$.

Even, if we rearrange the edges in this decomposition in any order it is not an ADD. Hence, $q=$ $\sum_{i=1}^{n} q\left(G_{i}\right)=\frac{3 n^{2}-3 n+2}{2}-(n-1)=\frac{3 n^{2}-5 n+4}{2}<\frac{3 n^{2}-3 n+2}{2}$, which is a contradiction. Hence P_{p} admits $A D D$.

Corollary 2.8. If $\frac{3 n^{2}+n}{2}<q<\frac{3 n^{2}+3 n+2}{2}$, then P_{p} does not admit $A D D$.
Theorem 2.9. A cycle C_{p} has an $\operatorname{ADD} \psi=\left\{G_{1}, G_{2}, \ldots, G_{n}\right\}$ if and only if $\frac{3 n^{2}-3 n+2}{2} \leq q \leq \frac{3 n^{2}+n}{2}$.
Proof: The proof is the same as in Theorem 2.7.
Theorem 2.10. P_{p}^{+}has an ADD $\psi=\left\{G_{1}, G_{2}, \ldots, G_{n}\right\}$ if and only if P_{p} has $\frac{n(n+1)}{2}$ vertices.
Proof: Let $P_{p}=\left\{v_{1}, v_{2}, \ldots, v_{p}\right\}$ be a path. If we attach the vertices $v_{1}^{\prime}, v_{2}^{\prime}, \ldots, v_{p}^{\prime}$ to $v_{1}, v_{2}, \ldots, v_{p}$ respectively, then we get P_{p}^{+}.

Suppose $p=\frac{n(n+1)}{2}$.
Let $\quad G_{1}=<\left\{v_{1}, v_{1}^{\prime}\right\}>$
$G_{2}=<\left\{v_{1}, v_{2}, v_{3}, v_{2}^{\prime}, v_{3}^{\prime}\right\}>$
$G_{3}=<\left\{v_{3}, v_{4}, v_{5}, v_{6}, v_{4}^{\prime}, v_{5}^{\prime}, v_{6}^{\prime}\right\}>$
\vdots
$G_{n}=\left\langle\left\{v_{l}, v_{l+1}, \ldots v_{p}, v_{l+1}^{\prime}, \ldots, v_{p}^{\prime}\right\}\right\rangle$
Clearly $\gamma\left(G_{i}\right)=i$ for $i=1,2, \ldots, n$.
We observe that the minimum dominating set of G_{n} has n vertices and P_{p} has $1+2+3+\ldots+$ $n=\frac{n(n+1)}{2}$ vertices. Clearly $\gamma\left(G_{i}\right)=i$, for $i=1,2, \ldots, n$ and hence $\psi=\left\{G_{1}, G_{2}, \ldots, G_{n}\right\}$ is an $A D D$ of P_{p}^{+}.
Conversely, suppose P_{p}^{+}has an $A D D$.
Suppose P_{p} does not have $\frac{n(n+1)}{2}$ vertices.
Then we have the following two possibilities.
(i) Suppose we add j vertices for $j=1,2, \ldots$, or n in P_{p}. By the above, after constructing $\left\{G_{1}, G_{2}, \ldots, G_{n}\right\}$, we have j remaining vertices where $j=1,2, \ldots$, or n. But, we cannot adjust these vertices in the minimum dominating sets of G_{i}, otherwise $\left\{G_{1}, G_{2}, \ldots, G_{n}\right\}$ would not be an $A D D$ for P_{p}^{+}.

If these j vertices $(j=1,2, \ldots$, or $n)$ alone contribute a subgraph $G_{k_{j}}$, then $\gamma\left(G_{k_{j}}\right)=j$ for j $=1,2, \ldots, n$. Then $\left\{G_{1}, G_{2}, \ldots, G_{n}, G_{k_{j}}\right\}$ would not be an $A D D$.
This is a contradiction to our assumption.
(ii) Suppose we remove $1,2, \ldots$, or $n-1$ vertices in P_{p}. By the above, after constructing $\left\{G_{1}, G_{2}, \ldots, G_{n}\right\}$, we have j remaining vertices where $j=n-1, n-2, \ldots$, or $n-(n-$ 1) in G_{n}. But we cannot adjust these vertices in the minimum dominating sets of G_{i}, otherwise $\left\{G_{1}, G_{2}, \ldots, G_{n}\right\}$ would not be an $A D D$ for P_{p}^{+}.

If these j vertices $(j=n-1, n-2, \ldots, 2$, or 1$)$ alone contribute a subgraph $G_{k_{j}}$, then $\gamma\left(G_{k_{j}}\right)=j$ for $i=n-1, n-2, \ldots, 2$ or 1 . Then $\left\{G_{1}, G_{2}, \ldots, G_{n-1}, G_{k_{j}}\right\}$ would not be an $A D D$, which is a contradiction to our assumption.

Example 2.11. An $A D D\left\{G_{1}, G_{2}, G_{3}, G_{4}\right\}$ of P_{10}^{+}is given in Figure 2.

Figure 2: $A n A D D\left\{G_{1}, G_{2}, G_{3}, G_{4}\right\}$ of P_{10}^{+}.

Theorem 2.12. $C_{p}{ }^{+}$has an $A D D \psi=\left\{G_{1}, G_{2}, \ldots, G_{n}\right\}$ if and only if C_{p} has either $\frac{n(n+1)}{2}$ or $\frac{n(n+1)}{2}-1$ vertices.
Proof: Let $C_{p}=v_{1} v_{2} \ldots v_{p}$ be a cycle. If we attach the vertices $v_{1}^{\prime}, v_{2}^{\prime}, \ldots, v_{p}^{\prime}$ to $v_{1}, v_{2}, \ldots, v_{p}$ respectively, then we get $C_{p}{ }^{+}$.
Case (i): Suppose $p=\frac{n(n+1)}{2}$.
To prove C_{p}^{+}has an $A D D$.
Let $\quad G_{1}=<\left\{v_{1}, v_{2}, v_{3}, v_{2}^{\prime}\right\}>$

$$
G_{2}=<\left\{v_{3}, v_{4}, v_{5}, v_{3}^{\prime}, v_{4}^{\prime}\right\}>
$$

$$
G_{3}=<\left\{v_{5}, v_{6}, v_{7}, v_{8}, v_{5}^{\prime}, v_{6}^{\prime}, v_{7}^{\prime}\right\}>
$$

$$
\vdots
$$

$$
G_{n}=<\left\{v_{l}, v_{l+1}, \ldots, v_{p}, v_{1}, v_{l}^{\prime}, v_{l+1}^{\prime}, \ldots, v_{p}^{\prime}, v_{1}^{\prime}\right\}>
$$

The minimum dominating set of G_{n} has n vertices and C_{p} has $1+2+3+\ldots+n=\frac{n(n+1)}{2}$ vertices. Clearly $\gamma\left(G_{i}\right)=i$ for $i=1,2, \ldots, n$ and hence $\psi=\left\{G_{1}, G_{2}, \ldots, G_{n}\right\}$ is an $A D D$ of C_{p}^{+}.
Case (ii): Suppose $p=\frac{n(n+1)}{2}-1$.
Let $\quad G_{1}=<\left\{v_{1}, v_{2}\right\}>$ $G_{2}=<\left\{v_{2}, v_{3}, v_{4}, v_{5}, v_{2}^{\prime}, v_{3}^{\prime}\right\}>$ $G_{3}=<\left\{v_{4}, v_{5}, v_{6}, v_{7}, v_{4}^{\prime}, v_{5}^{\prime}, v_{6}^{\prime}, v_{7}^{\prime}\right\}>$

$$
G_{n}=<\left\{v_{l}, v_{l+1}, \ldots, v_{p}, v_{1}, v_{l}^{\prime}, v_{l+1}^{\prime}, \ldots, v_{p}^{\prime}, v_{1}^{\prime}\right\}>
$$

Note that, the minimum dominating set of G_{n} has n vertices.
We have already taken $\left\{v_{1}\right\}$ as a minimum dominating set of G_{1} and therefore it has been counted in the total number of vertices in C_{p}. We see that v_{1} is one of the elements of the minimum dominating set of G_{n}. Thus G_{1} and G_{n} have the same vertex v_{1} in their respective dominating sets and so we subtract 1 from the total number of vertices in C_{p}.

Note that C_{p} has $(1+2+3+\ldots+n)-1=\frac{n(n+1)}{2}-1$ vertices. Clearly $\gamma\left(G_{i}\right)=i$ for $i=1$, $2, \ldots, n$. Thus $\psi=\left\{G_{1}, G_{2}, \ldots, G_{n}\right\}$ is an $A D D$ of C_{p}^{+}.

Conversely, suppose C_{p}^{+}has an $A D D$
To prove C_{p} has $\frac{n(n+1)}{2}$ or $\frac{n(n+1)}{2}-1$ vertices. Suppose C_{p} does not have $\frac{n(n+1)}{2}$ and $\frac{n(n+1)}{2}-1$ vertices.
Case (iii): C_{p} does not have $\frac{n(n+1)}{2}$ vertices.
We have the following possibilities.
(i) Suppose we add j vertices for $j=1,2, \ldots$, or $n-1$ in C_{p}, as in the case (i), after constructing $\left\{G_{1}, G_{2}, \ldots, G_{n}\right\}$, we have j remaining vertices where $j=1,2, \ldots$, or $n-1$. But, we cannot adjust these vertices in the minimum dominating sets of G_{i}, otherwise $\left\{G_{1}, G_{2}, \ldots, G_{n}\right\}$ would not be an $A D D$ for C_{p}^{+}.

If these j vertices $(j=1,2, \ldots$, or $n-1)$ alone contribute a subgraph $G_{k_{j}}$, then $\gamma\left(G_{k_{j}}\right)=j$ for $j=1,2, \ldots$, or $n-1$. Then $\left\{G_{1}, G_{2}, \ldots, G_{n}, G_{k_{j}}\right\}$ would not be an $A D D$.
This is a contradiction to our assumption.
(ii) Suppose we remove $2,3, \ldots$, or $n-1$ vertices in C_{p}. As in the case (i), after constructing $\left\{G_{1}, G_{2}, \ldots, G_{n}\right\}$, we have j remaining vertices where $j=n-2, n-3, \ldots$, or $n-(n-1)$ in G_{n}. But
we cannot adjust these vertices in the minimum dominating sets of G_{i}, otherwise $\left\{G_{1}, G_{2}, \ldots, G_{n}\right\}$ would not be an $A D D$ for C_{p}^{+}.

If these j vertices $(j=n-2, n-3, \ldots$, or $n-(n-1))$ alone contribute a subgraph $G_{k_{j}}$, then $\gamma\left(G_{k_{j}}\right)=j$ for $j=n-2, n-3, \ldots$, or $n-(n-1)$. Then $\left\{G_{1}, G_{2}, \ldots, G_{n-1}, G_{k_{j}}\right\}$ would be not an $A D D$.
This is a contradiction to our assumption.
Case (iv) : C_{p} does not have $\frac{n(n+1)}{2}-1$ vertices.
We have the following possibilities.
(i) Suppose we add j vertices for $j=2,3, \ldots$, or n in C_{p}, as in the case ($i i$) , after constructing $\left\{G_{1}, G_{2}, \ldots, G_{n}\right\}$, we have j remaining vertices where $j=2,3, \ldots$, or n. But, we cannot adjust these vertices in the minimum dominating sets of G_{i}, otherwise $\left\{G_{1}, G_{2}, \ldots, G_{n}\right\}$ would not be an $A D D$ for C_{p}^{+}.

If these j vertices $(j=2,3, \ldots$, or $n)$ alone contribute a subgraph $G_{k_{j}}$, then $\gamma\left(G_{k_{j}}\right)=j$ for j $=2,3, \ldots$, or n. Then $\left\{G_{1}, G_{2}, \ldots, G_{n}, G_{k_{j}}\right\}$ would not be an $A D D$ for C_{p}^{+}.
This is a contradiction to our assumption.
(ii) Suppose we remove $1,2,3, \ldots$, or $n-2$ vertices in C_{p}, as in the case (ii), after constructing $\left\{G_{1}, G_{2}, \ldots, G_{n}\right\}$, we have j remaining vertices where $j=n-1, n-2, \ldots$, or $n-(n-2)$ in G_{n}. But we cannot adjust these vertices in the minimum dominating sets of G_{i}, otherwise $\left\{G_{1}, G_{2}, \ldots, G_{n}\right\}$ would not be an $A D D$ for C_{p}^{+}.

If these j vertices $(j=n-1, n-2, \ldots$, or $n-(n-2))$ alone contribute a subgraph $G_{k_{j}}$, then $\gamma\left(G_{k_{j}}\right)=j$ for $j=n-1, n-2, \ldots$, or $n-(n-2)$. Then $\left\{G_{1}, G_{2}, \ldots, G_{n-1}, G_{k_{j}}\right\}$ would be not an $A D D$. This is a contradiction to our assumption.

Example 2.13. An $A D D\left\{G_{1}, G_{2}, G_{3}, G_{4}\right\}$ of C_{10}^{+}for $\frac{n(n+1)}{2}$ vertices is given in Figure 3 .

Figure 3: $A n A D D\left\{G_{1}, G_{2}, G_{3}, G_{4}\right\}$ of C_{10}^{+}.

Example 2.14. An $A D D\left\{G_{1}, G_{2}, G_{3}, G_{4}\right\}$ of C_{9}^{+}for $\frac{n(n+1)}{2}-1$ vertices is given in Figure 4.

Figure 4: An $A D D\left\{G_{1}, G_{2}, G_{3}, G_{4}\right\}$ of C_{9}^{+}.
Theorem 2.15. $K_{1, p}^{+}$has an $A D D \psi=\left\{G_{1}, G_{2}, \ldots, G_{n}\right\}$ if and only if $K_{1, p}$ has either $\frac{n(n+1)}{2}$ or $\frac{n(n+1)}{2}-1$ pendent vertices.

Proof: Let v be the central vertex and $u, v_{1}, v_{2}, \ldots, v_{p}$ be the pendent vertices of $K_{1, p}$. If we attach the vertices $v_{1}^{\prime}, v_{2}^{\prime}, \ldots, v_{p}^{\prime}$ to $v_{1}, v_{2}, \ldots, v_{p}$ respectively, then we get $K_{1, p}^{+}$.
Case (i) : Suppose $K_{1, p}$ has $\frac{n(n+1)}{2}$ pendent vertices.
Let $\quad G_{1}=<\left\{v, v_{1}, v_{1}^{\prime}\right\}>$

$$
\begin{aligned}
& G_{2}=<\left\{v, v_{2}, v_{3}, v_{2}^{\prime}, v_{3}^{\prime}\right\}> \\
& G_{3}=<\left\{v, v_{4}, v_{5}, v_{6}, v_{4}^{\prime}, v_{5}^{\prime}, v_{6}^{\prime}\right\}>
\end{aligned}
$$

$$
\vdots
$$

$$
G_{n}=<\left\{v, v_{l}, v_{l+1}, \ldots, v_{p}, v_{l}^{\prime}, v_{l+1}^{\prime}, \ldots, v_{p}^{\prime}\right\}>
$$

The minimum dominating set of G_{n} has n vertices and C_{p} has $1+2+3+\ldots+n=\frac{n(n+1)}{2}$ vertices. Clearly, $\gamma\left(G_{i}\right)=i$ for $i=1,2, \ldots, n$. Thus $\psi=\left\{G_{1}, G_{2}, \ldots, G_{n}\right\}$ is an $A D D$ of $K_{1, p}^{+}$.
Case (ii): Suppose $K_{1, p}$ has $\frac{n(n+1)}{2}-1$ pendent vertices.
To prove that $K_{1, p}$ has an $A D D$.
Let

$$
\begin{aligned}
& G_{1}=<\left\{v_{1}, v_{1}^{\prime}\right\}> \\
& G_{2}=<\left\{v, v_{1}, v_{2}, v_{2}^{\prime}\right\}> \\
& G_{3}=<\left\{v, v_{3}, v_{4}, v_{5}, v_{3}^{\prime}, v_{4}^{\prime}, v_{5}^{\prime}\right\}> \\
& \vdots \\
& G_{n}=<\left\{v, v_{l}, v_{l+1}, \ldots, v_{p}, v_{l}^{\prime}, v_{l+1}^{\prime}, \ldots, v_{p}^{\prime}\right\}>
\end{aligned}
$$

The minimum dominating set of G_{n} has n vertices.
Clearly, $\gamma\left(G_{i}\right)=i$ for $i=1,2, \ldots, n$. Thus $\psi=\left\{G_{1}, G_{2}, \ldots, G_{n}\right\}$ is an $A D D$ of $K_{1, p}^{+}$.

Conversely, suppose $K_{1, p}^{+}$has an $A D D$.
To prove $K_{1, p}$ has either $\frac{n(n+1)}{2}$ or $\frac{n(n+1)}{2}-1$ pendent vertices.
Suppose $K_{1, p}$ does not have $\frac{n(n+1)}{2}$ and $\frac{n(n+1)}{2}-1$ pendent vertices.
Case (iii): $K_{1, p}$ does not have $\frac{n(n+1)}{2}$ pendent vertices.
Then we have the following possibilities.
(i) Suppose we add j pendent vertices for $j=1,2, \ldots$, or n in $K_{1, p}$, as in the case (iii) of Theorem 2.12, we get a contradiction.
(ii) Suppose we remove $2,3, \ldots$, or $n-1$ pendent vertices in $K_{1, p}$, as in the case (iii) of Theorem 2.12, again we get a contradiction.

Case (iv): $K_{1, p}$ does not have $\frac{n(n+1)}{2}-1$ vertices.
Then we have the following possibilities.
(i) Suppose we add j vertices for $j=2,3, \ldots$, or n in $K_{1, p}$, as in the proof of case ($i v$)
Theorem 2.12, we get a contradiction to our assumption.
(ii) Suppose we remove $1,2,3, \ldots$, or $n-2$ pendent vertices in $K_{1, p}$, as in the proof of case (iv) of Theorem 2.12, we get a contradiction to our assumption.

Example 2.16. An $A D D\left\{G_{1}, G_{2}, G_{3}, G_{4}\right\}$ of $K_{1,10}^{+}$for $\frac{n(n+1)}{2}$ vertices is given below.

Figure 5: An $A D D\left\{G_{1}, G_{2}, G_{3}, G_{4}\right\}$ of $K_{1,10}^{+}$.
Example 2.17. An $A D D\left\{G_{1}, G_{2}, G_{3}, G_{4}\right\}$ of $K_{1,9}^{+}$for $\frac{n(n+1)}{2}-1$ vertices is given below.

Figure 6: An $A D D\left\{G_{1}, G_{2}, G_{3}, G_{4}\right\}$ of $K_{1,9}^{+}$.

References

[1] Y. Alavi, A. J. Boals, G. Chartrand, P. Erdos and O. R. Oellermann, The Ascending Subgraph Decomposition Problem, Cong. Number., 8(1987), 7-14.
[2] J. A. Bondy and U. S. R. Murty, Graph Theory with Application, (1977).
[3] G. Chartrand and L. Lesniak, Graphs and Digraphs, Chapman Hall CRC. (2004).
[4] N. Gnana Dhas and J. Paulraj Joseph, Continuous Monotonic Decomposition of Graphs, IJOMAS Vol.16, No.3(2000), 333-344.
[5] T. W. Haynes, S. T. Hedetniemi and P. J. Slater, Fundamentals of domination in graphs , Marcel Dekkar, Inc.(1998).
[6] F. Harary, Graph Theory, Addison - Wesley publishing Company Inc, USA, (1969).
[7] Juraj Bosak, Decomposition of Graphs, Kluwer Academic Publishers, 1990.
[8] H. B. Walikar, B. D. Acharya and E. Sampathkumar, Recent developments in the theory of domination in graphs MRI Lecture Notes No 1, The Mehta Research Institute,(1979).

