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Abstract

Let G be a connected graph with diameter diam(G) and d(x, y) denotes the distance between
any two distinct vertices x, y in G. A radio labeling f of G is an assignment of non negative integer
to the vertices of G satisfying |f(x)− f(y)| ≥diam(G)− d(x, y) + 1. The span of a radio labeling
is the maximum integer assigned to a vertex. The radio number of G denoted by rn(G), is the
minimum possible span. In this paper, we determine the radio number for the prism related graphs,
Dp

n when n = 4k + 2.
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1 Introduction

Radio labeling (multi-level distance labeling) is regarded as an extension of distance two labeling

which is motivated by the channel assignment problem introduced by Hale [2]. It is a non negative

integer with the condition that level of interference should be minimized. It means, for the two cities or

two stations which are geographically very close, there is stronger chance of interference between the

receiving waves. This effect is avoided by allocating such channels in which separation is large enough.

To model this problem, we construct a graph such that each station is represented by a vertex and

there is an edge between two vertices when the geographical locations of the corresponding stations are

very close. Most of the research papers available in this area discuss either how to determine upper

bound of the radio number or the exact value of the radio number for a simple connected graph G .

Let G be a connected graph. The distance d(x, y) between any pair of distinct vertices in G is the

length of the shortest path between them. The diameter ofG, denoted by diam(G) = d, is the maximum

distance between any two vertices in G.

A radio labeling is a one-to-one mapping f : V (G) → Z+
⋃
{0} satisfying the condition |f(x) −

f(y)| ≥ diam(G)+1− d(x, y) for any pair of vertices x, y in G. The largest number in f(V ) is known

as span of f . The minimum span taken over all radio labelings of G is called the radio number of G and

it is denoted by rn(G).

In this paper, we determine the radio number of the graphs Dp
n which is an extension of the prism

graph defined in [1]. For each vertex bi, i = 1, 2, 3, ..., n of the outer cycle introducing a new vertex
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ai and join ai to bi, i = 1, 2, 3, ..., n. Thus V (Dp
n) =

⋃n
i=1{ai, bi, ci}. Here {ci} are the inner cycle

vertices and {bi} are the outer cycle vertices and {ai}, i = 1, 2, 3, ..., n are the vertices pendant to outer

cycle.

The main theorem of this paper is:

Theorem 1.1. For the prism related graphs, Dp
n, n = 4k + 2, k ≥ 2,

rn(Dp
n) =


6k2 + 22k + 8, when k is odd;

6k2 + 22k + 9, when k is even.

Remark 1.2. Note that, the diameter of Dp
n is:

diam(Dp
n) = 2k + 3, when n = 4k + 2.

2 Lower bound for the radio number of prism related graph Dp
n, n = 4k + 2

In this work, we determine the lower bound for the radio number of the prism related graph Dp
n,

n = 4k + 2.

Lemma 2.1. Let Dp
n be the prism related graph, n = 4k + 2. Then the vertices of Dp

n satisfies the

following conditions.

(a) For each vertex {ai : 1 ≤ i ≤ n}, which is a pendant vertex there is exactly one pendant vertex

at a distance d diameter of Dp
n.

(b) For each vertex {ai : 1 ≤ i ≤ n}, which is a pendant vertex there is exactly one vertex on the

inner cycle {ci : 1 ≤ i ≤ n} at a distance d diameter of Dp
n.

(c) For each vertex {ai : 1 ≤ i ≤ n}, which is a pendant vertex there is exactly one vertex on the

outer cycle {bi : 1 ≤ i ≤ n} at a distance d− 1 of Dp
n.

(d) For each vertex {bi : 1 ≤ i ≤ n} on the outer cycle there is exactly one vertex on the inner cycle

at a distance d− 1 of Dp
n.

(e) For each vertex {ci : 1 ≤ i ≤ n} on the inner cycle there is exactly one vertex on the inner cycle

at a distance d− 2 of Dp
n.

(f) For each vertex {bi : 1 ≤ i ≤ n} on the outer cycle there is exactly one vertex on the outer cycle

at a distance d− 2 of Dp
n.

Proof: Since n = 4k + 2, there are equal number of vertices on the left and right half of the pendant

vertices. The path from a1 to a2k+2 is of length 2k + 3 as

a1 → b1 → b2 → b3 → ...→ b2k+1 → b2k+2 → a2k+2. This proves (a).

By representing the path in each case (b)− (f) the result follows:

d(a1, c2k+2) = 2k + 3 = d : a1 → b1 → c1 → c2 → ...→ c2k+2.

d(a1, b2k+2) = 2k + 2 = d− 1: a1 → b1 → b2 → b3 → ...→ b2k+2.
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d(b1, c2k+2) = 2k + 2 = d− 1: a1 → b1 → b2 → b3 → ...→ b2k+2.

d(b1, b2k+2) = 2k + 1 = d− 2: b1 → b2 → b3 → ...→ b2k+2.

d(c1, c2k+2) = 2k + 1 = d− 2: c1 → c2 → c3 → c4 → ...→ c2k+2.

The following lemma determines the maximum distance between any three vertices of Dp
n.

Lemma 2.2. Let u, v, w be three vertices of Dp
n.

(a) If all the three vertices are pendant, then d(u, v) + d(v, w) + d(w, u) ≤ 2d+ 2.

(b) If two of the vertices are pendant and one vertex lies on the inner cycle, then d(u, v) + d(v, w) +

d(w, u) ≤ 2d+ 2.

(c) If two of the vertices are on the inner cycle and one vertex lies on the outer cycle, then d(u, v) +

d(v, w) + d(w, u) ≤ 2d− 2.

(d) If one vertex is a pendant vertex, second vertex lies on the outer cycle and third vertex lies on the

inner cycle then d(u, v) + d(v, w) + d(w, u) ≤ 2d.

(e) If two of the vertices are on the outer cycle and one vertex lies on the inner cycle, then d(u, v) +

d(v, w) + d(w, u) ≤ 2d− 2.

Proof: By Lemma 2.1(a), d(a1, a2k+2) = 2k + 3 = d.

Now d(a2k+2, a4k+1) = 2k + 1 = d− 2 and a path of length 2k + 1 between a2k+2 and a4k+1 is

a2k+2 → b(2k+1)+1 → b(2k+1)+2 → ...→ b(2k+1)+2k = b4k+1 → a4k+1,

and d(a4k+1, a1) = 4 as a4k+1 → b4k+1 → b4k+2 → b4k+3 = b0 → a0. Therefore, if u, v, w are three

pendant vertices of Dp
n then d(u, v) + d(v, w) + d(w, u) ≤ 2d+ 2. This completes the proof of (a).

By Lemma 2.1(a), d(a1, a2k+2) = 2k + 3 = d.

For each vertex pendant there is only one vertex on the inner cycle at a distance d. That is, d(a2k+2, c1) =

d, as a2k+2 → b2k+2 → c2k+2 → c(2k+2)+1 → ... → c(2k+2)+2k → c(2k+2)+2k+1 = c1 and

d(c1, a1) = 2. Therefore, d(a1, a2k+2) + d(a2k+2, c1) + d(c1, a1) = d + d + 2 = 2d + 2. Thus,

if u, v, w are three vertices with two pendant vertices and one vertex on the inner cycle of Dp
n, then

d(u, v) + d(v, w) + d(w, u) ≤ 2d+ 2. This completes the proof of (b).

By Lemma 2.1(e), d(c1, c2k+2) = 2k + 1 = d− 2.

For each vertex b1 on the outer cycle there is only one vertex c2k+2 on the inner cycle at a distance d−1.

That is, d(b1, c2k+2) = d− 1. Therefore, d(c1, c2k+2)+d(c2k+2, b1)+d(b1, c1) = d− 2+d− 1+1 =

2d − 2. Thus, if u, v, w are three vertices with two vertices on the inner and one vertex on the outer

cycles of Dp
n, then d(u, v) + d(v, w) + d(w, u) ≤ 2d− 2. This completes the proof of (c).

By Lemma 2.1(c), d(a1, b2k+2) = 2k+2 = d−1. For each vertex on the outer cycle there is exactly

one vertex on the inner cycle at a distance d − 1, that is, d(b2k+2, c1) = d − 1. Also, d(c1, a1) = 2.

Therefore, d(a1, b2k+2) + d(b2k+2, c1) + d(c1, a1) = d− 1+ d− 1+ 2 = 2d. Thus, if u, v, w are three

vertices with one pendant vertex, second vertex on the outer cycle and third vertex on the inner cycle of

Dp
n, then d(u, v) + d(v, w) + d(w, u) ≤ 2d. This completes the proof of (d).

The proof of (e) is similar as (c).
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Lemma 2.3. Let f be a radio labeling of Dp
n, n = 4k + 2 and k ≥ 2.

(a) Suppose {xi : 1 ≤ i ≤ n} is the set of pendant vertices and f(xi) < f(xj) whenever i < j. Then,

|f(xi+2)− f(xi)| ≥ φ(n) where φ(n) = k + 2.

(b) Suppose {yi : 1 ≤ i ≤ n} is the set of vertices on the outer and inner cycles and f(yi) < f(yj)

whenever i < j. Then, |f(yi+2)− f(yi)| ≥ ψ(n) where ψ(n) = k + 4.

Proof: Let {xi, xi+1, xi+2} be any set of three pendant vertices of Dp
n. Applying the radio condition to

each pair in the vertex set {xi, xi+1, xi+2} and take the sum of these inequalities.

|f(xi+1)− f(xi)| ≥ diam(G)− d(xi+1, xi) + 1

|f(xi+2)− f(xi+1)| ≥ diam(G)− d(xi+2, xi+1) + 1

|f(xi+2)− f(xi)| ≥ diam(G)− d(xi+2, xi) + 1

|f(xi+1) − f(xi)| + |f(xi+2) − f(xi+1)| + |f(xi+2) − f(xi)| ≥ 3 · diam(G) + 3 − d(xi+1, xi) −
d(xi+2, xi+1)− d(xi+2, xi).

We drop the absolute sign because f(xi) < f(xi+1) < f(xi+2) and by using Lemma 2.2, we have

2[f(xi+2)− f(xi)] ≥ 3 + 3d− (2d+ 2) = d+ 1 [f(xi+2)− f(xi)] ≥ d+1
2 = 2k+4

2 = k + 2.

Thus, φ(n) = k + 2. This completes the proof of (a).

Let {yi, yi+1, yi+2} be any set of three vertices on the outer and inner cycles of Dp
n. Applying radio

condition to each pair in the above manner and by using Lemma 2.2(c) and (e), we get

2[f(yi+2)− f(yi)] ≥ 3 + 3d− 2d+ 2 = d+ 5

[f(xi+2)− f(xi)] ≥ d+5
2 = 2k+3+5

2 = k + 4. Thus, ψ(n) = k + 4.

Theorem 2.4. For the prism related graph, Dp
n, n = 4k + 2 and k ≥ 2,

rn(Dp
n) ≥

{
6k2 + 22k + 8, when k is odd;

6k2 + 22k + 9, when k is even.

Proof: A prism related graph Dp
n has 3n vertices. First we divide set of all vertices into three subsets

{a1, a2, a3, ..., an}, {b1, b2, b3, ..., bn} and {c1, c2, c3, ..., cn}. Let f be a distance labeling for Dp
n. We

order the vertices ofDp
n which are pendant to the outer cycle by x1, x2, x3, ..., xn with f(xi) < f(xi+1)

and the vertices on the outer and inner cycles by y1, y2, y3, ..., y2n with f(yi) < f(yi+1), diam(Dp
n) =

d = 2k + 3.

For i = 1, 2, 3, ...n− 1, set di = d(xi, xi+1) and fi = f(xi+1)− f(xi).
Then, fi ≥ d− di + 1 for all i.

By Lemma 2.3(a), the span of a distance labeling f of Dp
n for the pendant vertices is,

f(xn) =

n−1∑
i=1

fi = f1 + f2 + f3 + ....+ fn−2 + fn−1

= [f(x2)− f(x1)] + [f(x3)− f(x2)] + ...+ [f(xn−1)− f(xn−2)] + [f(xn)− f(xn−1)]

= (f1 + f2) + (f3 + f4)) + (f5 + f6) + ...+ (fn−3 + fn−2) + fn−1

=

n−2
2∑

i=1

(f2i−1 + f2i) + fn−1
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≥ n− 2

2
φ(n) + 1.

Thus, f(xn) ≥ 2k2 + 4k + 1.

Applying Lemma 2.1 and Lemma 2.3(b) to the vertices xn−1, xn, y1 such that f(xn−1) < f(xn) <

f(y1), we obtain |f(y1)− f(xn−1)| ≥ k + 2. That is, f(y1) ≥ 2k2 + 5k + 2.

Case 1: k is odd.

By Lemma 2.3(b), the span of a distance labeling f of Dp
n for the vertices on the outer and inner cycles

is

f(y2n)− f(y1) =
2n−1∑
i=1

f ′i = (f ′1 + f ′2) + (f ′3 + f ′4) + ...+ (f ′2n−3 + f ′2n−2) + f ′2n−1

=

2n−2
2∑

i=1

(f ′2i−1 + f ′2i) + f ′2n−1

≥ 2n− 2

2
ψ(n) + 2

f(y2n)− f(y1) ≥
2n− 2

2
(k + 4) + 2

f(y2n) ≥ 4k2 + 17k + 6 + f(y1)

f(y2n) ≥ 6k2 + 22k + 8.

Case 2: When k is even.

By Lemma 2.3(b), the span of a distance labeling f of Dp
n for the vertices on the outer and inner cycles

is

f(yn)− f(y1) =
n−1∑
i=1

f ′i = (f ′1 + f ′2) + (f ′3 + f ′4) + ...+ (f ′n−3 + f ′n−2) + f ′n−1

=

n−2
2∑

i=1

(f ′2i−1 + f ′2i) + f ′2n−1

≥ n− 2

2
ψ(n) + 2

f(yn)− f(y1) ≥
n− 2

2
(k + 4) + 2

f(yn) ≥ 2k2 + 8k + 2 + f(y1)

f(yn) ≥ 4k2 + 13k + 4.

Now, f(yn+1)− f(yn−1) ≥ k + 5 and hence we have

f(yn+1) ≥ k + 5 + 4k2 + 13k + 2 = 4k2 + 14k + 7.

f(y2n)− f(yn+1) =

2n−1∑
i=n+1

f ′i

= (f ′n+1 + f ′n+2) + (f ′n+3 + f ′n+4) + ...+ (f ′2n−3 + f ′2n−2) + f ′2n−1



108 Saima Nazeer and Imrana Kousar

=

2n−2
2∑

i=n+1

(f ′2i−1 + f ′2i) + f ′2n−1

≥ n− 2

2
ψ(n) + 2

= 2k2 + 8k + 2

≥ 6k2 + 22k + 9.
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Figure 1: Ordinary labeling and Radio labeling for Dp
22.

3 An upper bound for the radio number of the prism related graph Dp
n , n = 4k + 2

To complete the proof of Theorem 1.1, it remains to find the distance labeling f for Dp
n with span

equal to the desired numbers.

Case 1: When k is odd.

The labeling is generated by the pair of sequences namely,

the distance gap sequence

D = (d1, d2, d3, ...., dn−1)

D′ = (d′1, d
′
2, d
′
3, ..., d

′
2n−1)

and the color gap sequence

F = (f1, f2, f3, ...., fn−1)

F ′ = (f ′1, f
′
2, f
′
3, ..., f

′
2n−1).

The distance gap sequence for the pendant vertices D is given by:

di =


2k + 3, if i is odd;

k + 3, if i is even.

The distance gap sequence for the outer and inner cycles vertices D′ is given by:
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d′i =


2k + 2, if i is odd;

k + 2, if i is even.

For each i, we have d(xi, xi+1) = di, d(yi, yi+1) = d′i and

d′ = d(xn, y1) = k + 3.

The color gap sequence F for the pendant vertices is given by:

fi =


1, if i is odd;

k + 1, if i is even.

The color gap sequence F ′ for the outer and inner cycles vertices is given by:

f ′i =


2, if i is odd;

k + 2, if i is even.

f ′ = f(y1)− f(xn) = k + 1.

The position function p : V (DP
n ) = {ai, bi, ci : 1 ≤ i ≤ n} → {x1, x2, ..., xn, y1, y2, ..., y2n} is

defined as follows.

For i = 1, 2, ..., 2k + 1, p(a3i−2) = x2i−1, p(a3i+5) = x2i.

where as, for i = 1, 2, 3, ..., n, p(c11i−3) = y2i−1, p(b11i−10) = y2i.

span off = f1 + f2 + f3+, ..., fn−2 + fn−1 + f ′ + f ′1 + f ′2 + f ′3+, ..., f
′
2n−2 + f ′2n−1

= [(f1 + f3 + f5+, ...,+fn−1)] + [(f2 + f4 + f6+, ...,+fn−2)] + f ′

+[(f ′1 + f ′3 + f ′5+, ...,+f
′
2n−1)] + [(f ′2 + f ′4 + f ′6+, ...,+f

′
2n−2)]

=
n

2
(1) +

n− 2

2
(k + 1) + k + 1 +

2n

2
(2) +

2n− 2

2
(k + 2)

= 6k2 + 22k + 8.

Case 2: When k is even.

The labeling is generated by the two sequences namely,

the distance gap sequences

D = (d1, d2, d3, ...., dn−1)

D′ = (d′1, d
′
2, d
′
3, ..., d

′
n−1, d

′
n+1, ..., d

′
2n−1)

and the color gap sequences

F = (f1, f2, f3, ...., fn−1)

F ′ = (f ′1, f
′
2, f
′
3, ..., f

′
n−1, f

′
n+1, ..., f

′
2n−1).

The distance gap sequences D for the pendant vertices is given by:
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di =


2k + 3, if i is odd;

k + 3, if i is even.

The distance gap sequences D′ for the outer and inner cycles vertices is given by:

d′i =


2k + 2, if i is odd;

k + 2, if i is even.

For each i, we have d(xi, xi+1) = di, d(yi, yi+1) = d′i and d′ = d(xn, y1) = k+3, d′′ = d(yn, yn+1) =

k + 3.

The color gap sequences F and F ′ are given by

fi =


1, if i is odd;

k + 1, if i is even.

f ′i =


2, if i is odd;

k + 2, if i is even.

and

f ′ = f(y1)− f(xn) = k + 1, f ′′ = f(yn+1)− f(yn) = k + 3.

The position function p : V (DP
n ) = {ai, bi, ci : 1 ≤ i ≤ n} → {x1, x2, ..., xn, y1, y2, ..., y2n} is

defined as follows.

For i = 1, 2, ..., 2k + 1,

p(a4i−3) = x2i−1,

p(a4i+6) = x2i,

p(c14i−3) = y2i−1,

p(b14i−12) = y2i.

However, for i = 2k + 1, 2k + 2, ..., n, p(c14i−2) = y2i−1, p(b14i−11) = y2i.

span off = f1 + f2+, ..., fn−2 + fn−1 + f ′ + f ′1 + f ′2+, ..., f
′
n−1 + f ′′ + f ′n+1+, ..., f

′
2n−1

= [(f1 + f3 + f5+, ...,+fn−1)] + [(f2 + f4 + f6+, ...,+fn−2)] + f ′

+[(f ′1 + f ′3 + f ′5+, ...,+f
′
n−1)] + f ′′ + [(f ′2 + f ′4 + f ′6+, ...,+f

′
n−2)]

[(f ′n+1 + f ′n+3 + f ′5+, ...,+f
′
2n−1)] + [(f ′n+2 + f ′n+4 + f ′n+6+, ...,+f

′
2n−2)]

=
n

2
(1) +

n− 2

2
(k + 1) + k + 1 +

n

2
(2) +

n− 2

2
(k + 2) + k + 3 +

n

2
(2) +

n− 2

2
(k + 2)

= 6k2 + 22k + 9.
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Figure 2: Ordinary labeling and Radio labeling for Dp
18.
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