International Journal of Mathematics and Soft Computing Vol.4, No.1 (2014), 93 - 101.

Some new perspectives on odd sequential graphs

S K Vaidya Saurashtra University, Rajkot - 360 005, Gujarat, INDIA. E-mail: samirkvaidya@yahoo.co.in

Lekha Bijukumar Shanker Sinh Vaghela Bapu Institute of Technology, Gandhinagar, Gujarat, INDIA. E-mail: dbijuin@yahoo.co.in

Abstract

A graph G = (V(G), E(G)) with p vertices and q edges is said to be an odd sequential graph if there is an injection $f : V(G) \rightarrow \{0, 1, ..., q\}$ or if G is a tree then f is an injection f : $V(G) \rightarrow \{0, 1, ..., 2q - 1\}$ such that when each edge xy is assigned the label f(x) + f(y), the resulting edge labels are $\{1, 3, ..., 2q - 1\}$. In this paper we investigate some new families of odd sequential graphs. We also introduce two new concepts namely bi-odd sequential graphs and global odd sequential graphs and some of their characteristics are discussed.

Keywords: Odd sequential labeling, step ladder graph, arbitrary super subdivision of a graph. **AMS Subject Classification(2010):** 05C78.

1 Introduction

By a graph G = (V(G), E(G)) we mean a simple, connected and undirected graph in this paper. The terms not defined here are used in the sense of Harary[3]. In order to maintain the compactness, we give a summary of definitions.

Definition 1.1. Duplication of a vertex v_k of a graph G produces a new graph G_1 by adding a vertex v'_k in such a way that $N(v_k) = N(v'_k)$.

Definition 1.2. Let P_n be a path on n vertices denoted by (1, 1), (1, 2), ..., (1, n) and with n - 1 edges denoted by $e_1, e_2, ..., e_{n-1}$ where e_i is the edge joining the vertices (1, i) and (1, i + 1). On each edge $e_i, i = 1, 2, ..., n - 1$ we erect a ladder with n - (i - 1) steps including the edge e_i . The graph obtained is called *a step ladder graph* and is denoted by $S(T_n)$, where n denotes the number of vertices in the base.

Definition 1.3. [6] Let G = (V(G), E(G)) be a graph and $G_1, G_2, ..., G_n$ be *n* copies of graph *G*. Then the graph obtained by adding an edge between G_i and G_{i+1} , for i = 1, 2, ..., n-1 is called *a path union of G*.

Definition 1.4. Consider *m* copies of stars $K_{1,n}$ then $G = \left[\left\langle K_{1,n}^{(1)} : K_{1,n}^{(2)} : ... : K_{1,n}^{(m)} \right\rangle\right]$ is the graph obtained by joining the apex vertices of the stars $K_{1,n}^{(p-1)}$ and $K_{1,n}^{(p)}$ to a new vertex x_{p-1} where $1 \le p \le m$.

Definition 1.5. The *arbitrary super subdivisions* of a graph G produces a new graph by replacing each edge of G by an arbitrary complete bipartite graph K_{2,m_i} (where m_i is any positive integer) in such a way that the ends of each e_i are merged with the two vertices of 2-vertices part of K_{2,m_i} after removing each edge e_i from the graph G. It is denoted by SS(G).

Definition 1.6. The shadow graph $D_2(G)$ of a connected graph G is obtained by taking two copies of G say G' and G'', then join each vertex u' in G' to the neighbours of the corresponding vertex u'' in G''.

Graph labeling was introduced by Rosa[5] is now one of the fascinating areas of research with applications ranging from social sciences to computer science and from neural network to bio-technology to mention a few. A systematic study on various applications of graph labeling is carried out by Bloom and Golomb[1]. The famous Ringel-Kotzig[4] graceful tree conjecture and many illustrious works on it brought a tide of different labeling techniques like harmonious labeling, odd graceful labeling, edge graceful labeling and the like. For detailed survey on graph labeling and related results we refer to Gallian[2]. The concept of odd sequential labeling was introduced by Singh and Varkey[7] which is defined as follows.

Definition 1.7. A graph G = (V(G), E(G)) with p vertices and q edges is said to be an *odd sequential* graph if there is an injection $f : V(G) \rightarrow \{0, 1, ..., q\}$ or if G is a tree then f is an injection $f : V(G) \rightarrow \{0, 1, ..., 2q - 1\}$ such that when each edge xy is assigned the label f(x) + f(y), the resulting edge labels are $\{1, 3, ..., 2q - 1\}$.

The graph that admits an odd sequential labeling is known as an *odd sequential graph*. In [7] it has been also proved that the graphs such as combs, grids, stars and rooted trees of level 2 are odd sequential while odd cycles are not.

In this paper we investigate some results on odd sequential labeling and also introduce two new concepts namely bi-odd sequential graphs and global odd sequential graphs.

2 Results on odd sequential labeling

Theorem 2.1. The path P_n admits odd sequential labeling.

Proof: Let v_1, v_2, \ldots, v_n be the vertices of P_n . Define $f: V(P_n) \to \{0, 1, \ldots, 2q-1\}$ as $f(v_i) = i-1$; $1 \le i \le n$. Then f is an odd sequential labeling for P_n . That is, P_n is an odd sequential graph.

Theorem 2.2. The cycle C_n admits odd sequential labeling for $n \equiv 0 \pmod{4}$.

Proof: Let v_1, v_2, \ldots, v_n be the vertices of the cycle C_n . Define $f: V(C_n) \to \{0, 1, \ldots, q\}$ as follows.

$$\begin{split} f(v_1) &= 0, \\ f(v_2) &= 1, \\ f(v_i) &= n - i + 3 \text{ ; for } 3 \leq i \leq \frac{n+4}{2}. \\ \hline \frac{\text{For } \frac{n+6}{2} \leq i \leq n}{f(v_i) = n - i + 1 \text{ ; if } i \text{ is odd.}} \\ &= n - i + 3 \text{ ; if } i \text{ is even.} \end{split}$$

The above defined function f is an odd sequential labeling for C_n for $n \equiv 0 \pmod{4}$. That is, C_n is an odd sequential graph for $n \equiv 0 \pmod{4}$.

Illustration 2.3. The following figure shows an odd sequential labeling of cycle C_{12} .

Figure 1: An odd sequential labeling of C_{12} .

Theorem 2.4. The crown $C_n[\odot] K_1$ is an odd sequential graph for even n.

Proof: Let v_1, v_2, \ldots, v_n be the vertices of the cycle C_n and u_1, u_2, \ldots, u_n be the newly added pendant vertices where n is even. Let G be $C_n[\odot] K_1$ with p = 2n and q = 2n. To define $f : V(G) \rightarrow \{0, 1, \ldots, q\}$ we consider the following two cases.

Case 1: $n \equiv 0 \pmod{4}$. For $1 \le i \le \frac{n}{2} + 1$ $f(v_i) = 2i - 1$; if *i* is odd. = 2i - 2; if *i* is even. For $\frac{n}{2} + 2 \le i \le n$ $f(v_i) = 2i$; if *i* is even. = 2i - 1; if *i* is odd. For $1 \le i \le \frac{n}{2}$ $\overline{f(u_i)} = 2i - 2$; if *i* is odd. = 2i - 1; if i is even. For $\frac{n}{2} + 1 \le i \le n$ $f(u_i) = 2i$; if *i* is odd. = 2i - 1; if i is even. Case 2: $n \equiv 2 \pmod{4}$. For $1 \le i \le \frac{n}{2}$ $f(v_i) = 2i - 2$; if *i* is odd. = 2i - 1; if i is even. $f(v_i) = 2i + 1$; for $i = \frac{n}{2} + 1$ For $\frac{n+4}{2} \le i \le n$ $\overline{f(v_i)} = 2i$; if *i* is odd. =2i-1; if *i* is even. For $1 \le i \le \frac{n}{2} + 1$ $\overline{f(u_i) = 2i - 1}$; if *i* is odd.

= 2i - 2 ; if i is even. $f(u_i) = 2i - 3 \text{ ; for } i = \frac{n}{2} + 2$ $For \frac{n}{2} + 3 \le i \le n$ $f(u_i) = 2i \text{ ; if } i \text{ is even.}$ = 2i - 1 ; if i is odd.

In both the cases described above the graph under consideration admits an odd sequential labeling. That is, the crown $C_n[\odot] K_1$ is an odd sequential graph when n is even. **Illustration 2.5.** An odd sequential labeling for $C_{12}[\odot] K_1$ is given in *Figure 2*.

Figure 2: An odd sequential labeling for C_{12} [\odot] K_1 .

Theorem 2.6. The graph obtained by the duplication of an arbitrary vertex in an even cycle C_n admits odd sequential labeling.

Proof: Let v_1, v_2, \ldots, v_n be the vertices of the cycle C_n where n is even. Without loss of generality assume that the vertex v_1 is getting duplicated by a new vertex v'_1 . Let G be the resultant graph with p = n + 1 and q = n + 2. To define $f: V(G) \rightarrow \{0, 1, \dots, q\}$ we consider the following two cases. Case 1: $n \equiv 0 \pmod{4}$. $f(v_1) = 3,$ $f(v'_1) = 1 \ f(v_i) = n - i + 4$; for $2 \le i \le \frac{n}{2} + 1$. For $\frac{n}{2} + 2 \le i \le n$: $f(v_i) = n - i$; if i is even. = n - i + 4; if *i* is odd. Case 2: $n \equiv 2 \pmod{4}$. $f(v_1) = 0,$ $f(v_1') = 2,$ $f(v_2) = 1,$ $f(v_i) = n - i + 5$; for $3 \le i \le \frac{n}{2} + 3$. For $\frac{n}{2} + 4 \le i \le n$: $f(v_i) = n - i + 3$; if *i* is odd. = n - i + 5; if *i* is even.

In both the cases f is an odd sequential labeling. That is, the graph obtained by the duplication of an arbitrary vertex in an even cycle C_n admits odd sequential labeling.

Illustration 2.7. An odd sequential labeling for the graph obtained by the duplication of an arbitrary vertex in an even cycle C_{12} is given in *Figure 3*.

Figure 3: An odd sequential labeling for the graph obtained by the duplication of an arbitrary vertex in an even cycle C_{12} .

Theorem 2.8. The step ladder graph is an odd sequential graph.

Proof: Let P_n be a path on n vertices denoted by (1,1), (1,2), ..., (1,n) and with n-1 edges denoted by $e_1, e_2, ..., e_{n-1}$ where e_i is the edge joining the vertices (1,i) and (1,i+1). The step ladder graph $S(T_n)$ has $\frac{n^2+3n-2}{2}$ vertices denoted by (1,1), (1,2), ..., (1,n), (2,1), (2,2), ..., (2,n), (3,1), (3,2), ..., (3,n-1), (4,1), (4,2), ..., (4,n-2), ..., (n,1), (n,2) and $n^2 + n + 2$ edges. In any ordered pair (i, j), i denotes the row (counted from bottom to top) and j denotes the column (from left to right) in which the vertex occurs. Define $f: V(S(T_n)) \to \{0, 1, ..., q\}$ as follows.

 $f(i,j) = n^2 - 2n(i-1) + i(i-2) + j - 1$; for $1 \le i, j \le n$, with $i + j \le n + 2$. Then f provides an odd sequential labeling for $S(T_n)$. That is, $S(T_n)$ is an odd sequential graph.

Illustration 2.9. The *Figure 4* shows an odd sequential labeling for $S(T_6)$.

Figure 4: An odd sequential labeling of $S(T_6)$.

Theorem 2.10. The path union of stars is an odd sequential graph.

Proof: Let v_1, v_2, \ldots, v_n be the vertices of P_n . Consider n copies of star $K_{1,m}$ and let $\{v_{ij}, 1 \le i \le n, 1 \le j \le m\}$ be their corresponding pendant vertices. Let G be the path union graph of n copies of star $K_{1,m}$ with p = n(m+1) and q = n(m+1) - 1. $f : V(G) \to \{0, 1, \ldots, 2q - 1\}$ as follows. For $1 \le i \le n$: $f(v_i) = i(m+1) - 1$; if i is even. = (i-1)(m+1); if i is odd. For $1 \le i \le n, 1 \le j \le m$: $f(v_{ij}) = (i-1)(m+1) + 2j - 1$; if i is odd. = i(m+1) - 2(m-j+1); if i is even.

The above defined function f provides an odd sequential labeling for the path union of stars. That is, the path union of stars is an odd sequential graph.

Illustration 2.11. The following figure shows an odd sequential labeling for the path union of four copies of star $K_{1,4}$.

Figure 5: An odd sequential labeling of the path union of four copies of star $K_{1,4}$.

Theorem 2.12. The graph $G = \left[\left\langle K_{1,n}^{(1)} : K_{1,n}^{(2)} : \dots : K_{1,n}^{(m)} \right\rangle \right]$ admits odd sequential labeling.

Proof: Consider *m* copies of star $K_{1,n}$ and let *G* be the graph $G = \left[\left\langle K_{1,n}^{(1)} : K_{1,n}^{(2)} : ... : K_{1,n}^{(m)} \right\rangle\right]$. Let $V(G) = \{v_1; i = 1, 2, ...m, v_{ij}; i = 1, 2, ...m, j = 1, 2, ...m, x_i; i = 1, 2, ...m - 1\}$ and $E(G) = \{v_i v_{ij}; i = 1, 2, ...m, j = 1, 2, ...m, v_i x_i; i = 1, 2, ...m - 1\}$ and $E(G) = \{v_i v_{ij}; i = 1, 2, ...m, j = 1, 2, ...m, v_i x_i; i = 1, 2, ...m - 1\}$ so that p = m(n+2) - 1 and q = m(n+2) - 2. Define $f : V(G) \to \{0, 1, ..., 2q - 1\}$ as follows. $f(v_i) = 2i - 2; 1 \le i \le m,$ $f(v_{1j}) = 2j - 1; 1 \le j \le n,$ $f(v_{ij}) = 2i(n+1) - 2(n-j) - 3, 2 \le i \le m; 1 \le j \le n$ $f(x_i) = 2i(n+1) - 1; 1 \le i \le m - 1.$

The above defined function f provides an odd sequential labeling for $\left[\left\langle K_{1,n}^{(1)}:K_{1,n}^{(2)}:\ldots:K_{1,n}^{(m)}\right\rangle\right]$. That is, the graph $\left[\left\langle K_{1,n}^{(1)}:K_{1,n}^{(2)}:\ldots:K_{1,n}^{(m)}\right\rangle\right]$ is an odd sequential graph.

Illustration 2.13. *Figure 6* shows an odd sequential labeling for the graph $\left[\left\langle K_{1,4}^{(1)}:K_{1,4}^{(2)}:K_{1,4}^{(3)}\right\rangle\right]$.

Figure 6: An odd sequential labeling of $\left[\left\langle K_{1,4}^{(1)}: K_{1,4}^{(2)}: K_{1,4}^{(3)} \right\rangle\right]$.

Theorem 2.14. The graph $SS(P_n)$ admits odd sequential labeling.

Proof: Let P_n be the path containing n vertices v_1, v_2, \ldots, v_n and n-1 edges. Let e_i denotes the edge $v_i v_{i+1}$ in P_n . For $1 \le i \le n-1$ each edge e_i of path P_n is replaced by a complete bipartite graph K_{2,m_i} where m_i is any positive integer. Let u_{ij} be the vertices of the m_i vertices part of K_{2,m_i} where $1 \le i \le n-1, 1 \le j \le m_i$. Define $f: V(SS(P_n)) \to \{0, 1, \ldots, q\}$ as follows. $f(v_1) = 0,$

$$f(v_i) = 2 \sum_{k=1}^{i-1} m_k; 2 \le i \le n,$$

$$f(u_{1j}) = 2j - 1; 1 \le j \le m_1,$$

$$f(u_{ij}) = 2 \sum_{k=1}^{i-1} m_k + 2j - 1; 2 \le i \le n, 1 \le j \le m_i.$$

In view of the above defined labeling pattern f is an odd sequential labeling for $SS(P_n)$. That is, $SS(P_n)$ is an odd sequential graph.

Illustration 2.15. An odd sequential labeling for $SS(P_5)$ is shown in Figure 7.

Figure 7: An odd sequential labeling of $SS(P_5)$.

Theorem 2.16. The graph $D_2(K_{1,n})$ is an odd sequential graph.

Proof: Let $K'_{1,n}$ and $K''_{1,n}$ be two copies of star $K_{1,n}$. Let $v', v'_1, v'_2, \ldots, v'_n$ be the vertices of $K'_{1,n}$ and $v'', v''_1, v''_2, \ldots, v''_n$ be the vertices of $K''_{1,n}$ where v', v'' be the corresponding apex vertices. Define $f: V(D_2(K_{1,n})) \rightarrow \{0, 1, \ldots, q\}$ as follows. f(v'') = 0, $f(v''_i) = 2i - 1; 1 \le i \le n,$ $f(v') = 4n \ f(v'_i) = 4n - 2i + 1; 1 \le i \le n.$ The above defined function f is an odd sequential labeling for $D_2(K_{1,n})$. That is, $D_2(K_{1,n})$ is an odd sequential graph.

Illustration 2.17. An odd sequential labeling of $D_2(K_{1,4})$ is shown in *Figure 8*.

Figure 8: An odd sequential labeling for $D_2(K_{1,4})$.

3 Bi-odd sequential and global odd sequential graphs

Definition 3.1. A graph G is said to be a bi-odd sequential graph if both G and its line graph L(G) admit odd sequential labeling.

Theorem 3.2. The path P_n for all n and the cycle C_n for $n \equiv 0 \pmod{4}$ are bi-odd sequential graphs.

Proof: $L(P_n)$ and $L(C_n)$ are isomorphic to P_n and C_n respectively. Hence the theorem follows in view of Theorem 2.1 and Theorem 2.2.

Theorem 3.3. A tree is bi-odd sequential if and only if it is a path.

Proof: Let G be a tree which is bi-odd sequential. Then G and its line graph L(G) admit odd sequential labeling. But all the trees with $p \ge 4$ except P_n contain atleast one $K_{1,3}$ and $L(K_{1,3})$ is C_3 which is a forbidden sub graph for a graph to be odd sequential. Therefore, a tree is bi-odd sequential if it is path P_n .

Conversely let the tree be path P_n . In view of Theorem 3.2, P_n is bi-odd sequential.

Definition 3.4. A graph G is said to be a global odd sequential graph if both G and its complement G^c admit odd sequential labeling.

Theorem 3.5. P_4 is the only global odd sequential graph.

Proof: Let G be an odd sequential graph with p vertices. Consider the following two cases. **Case 1:** p < 6.

Then G^c is either a totally disconnected graph, $2K_2$ or a graph contains C_3 except for P_4 and these three graphs fail to be odd sequential. Since P_4 is a self complementary graph it is an odd sequential graph.

100

Case 2: $p \ge 6$.

According to Ramsey theory, if G is a graph with $p \ge 6$, then either G or G^c contains a triangle. Since all the odd cycles are forbidden sub graphs for a graph to be odd sequential, any graph with $p \ge 6$ can not be a global odd sequential graph.

From the above two cases, it is clear that P_4 is the only global odd sequential graph.

4 Concluding Remarks

This paper presents some new families of odd sequential graphs and the new concepts namely bi-odd sequential graphs and global odd sequential graphs. We also establish a characterisation for bi-odd sequential graph. We also show that P_4 is the only global odd sequential graph.

Acknowledgement: The authors are highly thankful to the anonymous referee for the constructive comments and suggestions.

References

- [1] G.S. Bloom and S.W. Golomb, *Applications of numbered undirected graphs*, Proceeding of IEEE, 65(4)(1977), 562-570.
- [2] J A Gallian, A dynamic survey of graph labeling, The Electronics Journal of Combinatorics, 18(2011) #DS6.
- [3] F Harary, Graph theory, Addison Wesley, Reading, Massachusetts, 1972.
- [4] G Ringel, *Problem 25, Theory of graphs and its applications*, Proc. Symposium Smolenice 1963, Prague (1964), 162.
- [5] A Rosa, *On certain valuation of the vertices of a graph*, Theory of graphs, International Symposium, Rome, July (1966), Gorden and Breach, New York and Dunod Paris(1967), 349-355.
- [6] S C Shee and Y S Ho, *The cordiality of the path union of n copies of a graph*, Discrete Mathematics, 151(1996), 221-229.
- [7] G S Singh and T K M Varkey, On odd sequential and bi sequential graphs, Preprint.