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Abstract

Labeling is an interesting technique to assign labels to vertices and edges of a graph under certain
conditions. There are many types of labeling, for example magic, antimagic, graceful, odd graceful,
cordial, radio, sum and mean labeling. This paper deals with different results related to (a, d)-edge-
antimagic total and super (a, d)-edge-antimagic total labelings of a subclass of subdivided stars
denoted by T (n, n+ 2, n+ 5, 2n+ 7, n5, ..., nr), where n ≡ 1 (mod 2), nm = 2m−3(n+ 3) + 1

and 5 ≤ m ≤ r.
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1 Introduction

LetG be a graph with V (G) andE(G) as set of vertices and edges, respectively. Moreover, suppose

that |V (G)| = v and |E(G)| = e. All graphs in this paper are finite, simple and undirected. A general

reference for graph-theoretic ideas can be seen in [27]. A labeling (or valuation) of a graph is a map

that carries graph elements to numbers (usually to positive or non-negative integers). In this paper, the

domain is the set of all vertices and edges and such a labeling is called a total labeling. Some label-

ings use only the vertex-set or the edge-set and we shall call them vertex-labelings or edge-labelings,

respectively.

73



74 M. Javaid, Sajid Mahboob, Abid Mahboob and M. Hussain

Definition 1.1. An (s, d)-edge-antimagic vertex ((s, d)-EAV) labeling of a (v, e)-graph G is a bijective

function λ : V (G) → {1, 2, . . . , v} such that the set of edge-weights of all edges in G, {w(xy) =

λ(x)+λ(y) : xy ∈ E(G)}, forms an arithmetic progression {s, s+d, s+2d, . . . , s+(e−1)d}, where

s > 0 and d ≥ 0 are two fixed integers.

Definition 1.2. A bijection λ : V (G) ∪ E(G)→ {1, 2, ..., v + e} is called an (a, d)-edge-antimagic

total ((a, d)-EAT) labeling of a (v, e)-graph G if the set of edge-weights {λ(x) + λ(xy) + λ(y) : xy ∈
V (G)} forms an arithmetic progression starting at a and having common difference d, where a > 0 and

d ≥ 0 are two fixed integers. A graph that admits an (a, d)-EAT labeling is called an (a, d)-EAT graph.

Definition 1.3. If λ is an (a, d)-EAT labeling such that λ(V (G)) = {1, 2, ..., v} then λ is called a super

(a, d)-EAT labeling and G is known as a super (a, d)-EAT graph.

In the above definition, if d = 0 then a super (a, 0)-EAT labeling is called a super edge-magic total

labeling. Moreover, a is called minimum edge-weight for d ≥ 0 and magic constant for d = 0. The

definition of an (a, d)-EAT labeling was introduced by Simanjuntak, Bertault and Miller in [24] as a nat-

ural extension of magic valuation defined by Kotzig and Rosa [18, 19]. A super (a, d)-EAT labeling is

a natural extension of the notion of super edge-magic labeling defined by Enomoto, Llado, Nakamigawa

and Ringel [5]. They also proposed the conjecture that every tree admits a super (a, 0)-EAT labeling.

Lee and Shah [20] verified this conjecture for trees with at most 17 vertices with the help of computer.

However, in general, this conjecture is still an open problem. The results related to (a, d)-EAT and

super (a, d)-EAT labelings can be found for some particular families of trees, for example banana trees

[7], w-trees [8], extended w-trees [9–11], generalized extended w-trees [12], stars [21], subdivided stars

[13–16, 22, 23, 28, 29], path-like trees [2], caterpillars [18, 25] and subdivided caterpillars [17]. More

details on antimagic labeling can be found in [1, 3, 4, 6, 26].

The notion of a dual labeling has been introduced by Kotzig and Rosa [18]. According to him, if λ

is an (a, 0)-EAT labeling with magic constant a then λ′ is also an (a′, 0)-EAT labeling with magic con-

stant a′ = 3(v+e+1)−a. The labeling is defined as λ′(x) = v+e+1−λ(x) for ever x ∈ V (G)∪E(G).

The following lemma of duality has been studied by Baskoro [4].

Lemma 1.4. [4] If λ is a super (a, 0)-EAT labeling of G with the magic constant a, then the bijection

λ1 : V (G) ∪ E(G)→ {1, 2, ..., v + e} defined by

λ1(x) =


v + 1− λ(x), for x ∈ V (G),

2v + e+ 1− λ(x), for x ∈ E(G).

is also a super (4v + e+ 3− a, 0)-EAT labeling of G.

Now, we consider the following proposition which establishes the relation between (s, d)-EAV and

(a, d)-EAT labelings:
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Proposition 1.5. [2] If a (v, e)-graph G has an (s, d)-EAV labeling then

(i) G has a super (s+ v + 1, d+ 1)-EAT labeling,

(ii) G has a super (s+ v + e, d− 1)-EAT labeling.

2 Important Results

In this section, we define the concept of a subdivided star and present the values for the bounds of

the antimagic labeling parameters a and d. At the end, we state some known results related to a super

(a, d)-EAT labeling of different subclasses of subdivided stars.

Definition 2.1. Let ni ≥ 1, 1 ≤ i ≤ r, and r ≥ 2. A subdivided star T (n1, n2, ..., nr) is a tree

obtained by inserting ni − 1 vertices to each of the ith edge of the star K1,r. Moreover suppose that

V (G) = {c} ∪ {xlii | 1 ≤ i ≤ r ; 1 ≤ li ≤ ni} is the vertex-set and E(G) = {c x1i | 1 ≤ i ≤r} ∪
{xlii x

li+1
i | 1 ≤ i ≤ r ; 1 ≤ li ≤ ni − 1} is the edge-set of the subdivided star G ∼= T (n1, n2, ..., nr)

then v = |V (G)| =
r∑

i=1
ni + 1 and e = |E(G)| =

r∑
i=1

ni.

Bača and Miller [3] stated a necessary condition for a graph to be super (a, d)-EAT, which provides

an upper bound on the parameter d. Let a (v, e)-graph G be a super (a, d)-EAT. The minimum possible

edge-weight is at least v + 4. The maximum possible edge-weight is no more than 3v + e − 1. Thus

a+(e−1)d ≤ 3v+e−1 or d ≤ 2v+e−5
e−1 . For any subdivided star, where v = e+1, it follows that d ≤ 3.

Ngurah et al. [22] found lower and upper bounds of the magic constant a for a subclass of the subdivided

stars, which is stated as below.

Lemma 2.2. If T (n1, n2, n3) is a super (a, 0)-EAT graph, then 1
2l (5l

2+3l+6) ≤ a ≤ 1
2l (5l

2+11l−6),

where l =
3∑

i=1
ni.

The lower and upper bounds of the magic constant a for a subclass of subdivided stats established

by Salman et al. [23] are given below.

Lemma 2.3. If T (n, n, ..., n)︸ ︷︷ ︸
n−times

is a super (a, 0)-EAT graph, then 1
2l (5l

2 + (9 − 2n)l + n2 − n) ≤ a ≤

1
2l (5l

2 + (2n+ 5)l + n− n2), where l = n2.

For d = 0, Javaid [16] proved the lower and upper bounds of the magic constant a for the most

extended subclasses of the subdivided stars denoted by T (n1, n2, n3, ..., nr) with any ni ≥ 1 for 1 ≤
i ≤ r, which are presented in the following lemma:

Lemma 2.4. If T (n1, n2, n3, ..., nr) is a super (a, 0)-EAT graph, then 1
2l (5l

2+(9−2r)l+(r2− r)) ≤

a ≤ 1
2l (5l

2 + (5 + 2r)l − (r2 − r)), where l =
r∑

i=1
ni.

For d ∈ {0, 1, 2, 3}, Javaid and Akhlaq [15] proved the following lower and upper bounds of the

minimum edge-weight a on the same class of subdivided stars:
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Lemma 2.5. If T (n1, n2, n3, ..., nr) has a super (a, d)-EAT labeling, then 1
2l (5l

2 + r2− 2lr+9l− r−

(l − 1)ld) ≤ a ≤ 1
2l (5l

2 − r2 + 2lr + 5l + r − (l − 1)ld), where l =
r∑

i=1
ni and d ∈ {0, 1, 2, 3}.

Many authors have proved the antimagicness for subdivided stars. Lu [28, 29] called the subdivided

star T (n1, n2, n3) as a three-path tree and proved that it is a super (a, 0)-EAT graph if n1 and n2 are

odd with n3 = n2 + 1 or n3 = n2 + 2. Ngurah et al. [22] proved that the subdivided star T (n1, n2, n3)

is also a super (a, 0)-EAT graph if n3 = n2 + 3 or n3 = n2 + 4. Salman et al. [23] found a super

(a, 0)-EAT labeling on the subdivided stars T (n1, n2, n3, ..., nr), where n1 = n2 = n3 = ... = nr =

2 or 3. Javaid et al. [14] proved the existence of a super (a, 0)-EAT labeling on the subdivided stars

T (n, n, n, n), T (n, n, n − 1, n) and T (n, n,m,m), where n, m are odd. Moreover, Javaid et al. [15]

proved the following results:

• For r ≥ 5 and even n ≥ 4, T (n, n + 2, n + 5, 2n + 7, n5, ..., nr) admits a super (a, d)-EAT

labeling, where d ∈ {0, 2}, nm = 2m−3(n+ 3) + 1 and 5 ≤ m ≤ r [15].

• For any r ≥ 5 and even n ≥ 4, T (n, n + 2, n + 5, 2n + 7, n5, ..., nr) admits a super (a, 1)-EAT

labeling, where v = |V (G)| is even nm = 2m−3(n+ 3) + 1 and 5 ≤ m ≤ r [15].

In the present paper, we prove the existence of (a, d)-EAT and super (a, d)-EAT labelings on the same

class of subdivided stars T (n, n + 2, n + 5, 2n + 7, n5, ..., nr) but under the certain condition of n ≡
1 (mod 2).

3 Super (a, d)-EAT labeling of subdivided stars

In this section, we prove some results related to (a, d)-EAT and super (a, d)-EAT labelings of the

subdivided stars for different values of d.

Theorem 3.1. For r ≥ 5 and n ≡ 1 (mod 2), G ∼= T (n1, n2, n3, n4, n5, ..., nr) admits a super

(a, 0)-EAT labeling with a = v + e + s and a super (a, 2)-EAT labeling with a = v + s + 1, where

v = |V (G)|, s = 5n+21
2 +

r∑
m=5

[2m−4(n+ 3) + 1], n1 = n, n2 = n+ 2, n3 = n+ 5, n4 = 2n+ 7 and

nm = 2m−3(n+ 3) + 1 for 5 ≤ m ≤ r.

Proof: If v = |V (G)| and e = |E(G)| then v = (5n + 15) +
r∑

m=5
[2m−3(n + 3) + 1] and e = v − 1.

Throughout the labeling take 1 ≤ li ≤ ni and 1 ≤ i ≤ r. Define λ : V (G)→ {1, 2, ..., v} as follows:

λ(c) = (3n+ 9) +
r∑

m=5

[2m−4(n+ 3) + 1].

Case (i): li ≡ 1 (mod 2).

For 1 ≤ i ≤ 2,

λ(u) =


n+2−l1

2 , for u = xl11 ,

n+4+l2
2 , for u = xl22 ,
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For i = 3,

λ(u) =


n+3
2 , for u = x13,

3n+12−l3
2 , for u = xl33 ,

For i = 4,

λ(u) =
{

5n+18−l4
2 , for u = xl44 ,

and for 5 ≤ i ≤ r,

λ(xlii ) =
5n+ 17

2
+

i∑
m=5

[2m−4(n+ 3) + 1]− li − 1

2
.

Case (ii): li ≡ 0 (mod 2) and α = 5n+17
2 +

r∑
m=5

[2m−4(n+ 3) + 1].

For i = 1, 2, 3, 4,

λ(u) =



(α+ n−1
2 )− l1−2

2 , for u = xl11 ,

(α+ n+3
2 ) + l2−2

2 , for u = xl22 ,

(α+ 3n+7
2 )− l3−2

2 , for u = xl33 ,

(α+ 5n+13
2 )− l4−2

2 , for u = xl44 ,

and for 5 ≤ i ≤ r,

λ(xlii ) = (α+
5n+ 13

2
) +

i∑
m=5

[2m−4(n+ 3)]− li − 2

2
.

The set of all edge-sums generated by the above formulas forms a consecutive integer sequence

s = (α+ 1) + 1, (α+ 1) + 2, · · · , (α+ 1) + e. It follows that λ is an (s, 1)-EAV labeling. Therefore,

by Proposition 1.1, λ can be extended to a super (a, 0)-EAT labeling with a = s + v + e = 25n+79
2 +

1
4

r∑
m=5

[2m−2(5n + 15) + 12] and to a super (a, 2)-EAT labeling with a = s + v + 1 = 15n+53
2 +

1
2

r∑
m=5

[2m−3(3n+ 9) + 4].

Theorem 3.2. For r ≥ 5, n ≡ 1 (mod 2) and v = |V (G)| even, G ∼= T (n1, n2, n3, n4, n5, ..., nr)

admits a super (a, 1)-EAT labeling with a = s + 3
2v, where s = 5n+21

2 +
r∑

m=5
[2m−4(n + 3) + 1],

n1 = n, n2 = n+ 2, n3 = n+ 5, n4 = 2n+ 7 and nm = 2m−3(n+ 3) + 1 for 5 ≤ m ≤ r.

Proof: Suppose that V (G), E(G) and λ are defined as in the proof of Theorem 3.1. It follows that the

edge-sums of all the edges of G constitute an arithmetic sequence s = α+2, α+3, · · · , α+1+ e with

common difference 1, where α = 5n+17
2 +

r∑
m=5

[2m−4(n+3)+1]. We denote it byA = {ai; 1 ≤ i ≤ e}.

Consequently, the set of edge-labels is B = {bj ; 1 ≤ j ≤ e}, where bj = vj + 1. Define the set of

edge-weights C = {a2i−1 + be−i+1 ; 1 ≤ i ≤ e+1
2 } ∪ {a2j + b e−1

2
−j+1 ; 1 ≤ j ≤ e+1

2 − 1}. It is
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easy to see that C constitutes an arithmetic sequence with d = 1 and a = s + 3v
2 = (10n + 33) +

1
2

r∑
m=5

[2m−1(n + 3) + 5]. Since all the vertices receive the smallest labels, λ is a super (a, 1)-EAT

labeling.

As a consequence of Lemma 1.4, and Theorem 3.1, we have the following corollary:

Corollary 3.3. For n ≡ 1 (mod 2) and r ≥ 5, G ∼= T (n, n + 2, n + 5, 2n + 7, n5, ..., nr) admits

a super (a, 0)-EAT labeling with the magic constant a = 25n+76
2 +

r∑
m=5

[2m−4(5n + 15) + 2], where

nm = 2m−3(n+ 3) + 1 and 5 ≤ m ≤ r.

Now by the concept of dual labeling of (a, 0)-EAT labeling stated by Kotzig and Rosa, we have the

following corollaries from Theorem 3.3 and the Corollary 3.1:

Corollary 3.4. For n ≡ 1 (mod 2) and r ≥ 5, G ∼= T (n, n + 2, n + 5, 2n + 7, n5, ..., nr) admits an

(a, 0)-EAT labeling with the magic constant a = 35n+101
2 +

r∑
m=5

[2m−4(7n + 21) + 3], where nm =

2m−3(n+ 3) + 1 and 5 ≤ m ≤ r.

Corollary 3.5. For n ≡ 1 (mod 2) and r ≥ 5, G ∼= T (n, n + 2, n + 5, 2n + 7, n5, ..., nr) admits

an (a, 0)-EAT labeling with the magic constant a = 25n+75
2 +

r∑
m=5

[2m−4(5n + 15) + 2], where nm =

2m−3(n+ 3) + 1 and 5 ≤ m ≤ r.

In the following theorem, we construct another (a, 0)-EAT labeling:

Theorem 3.6. For r ≥ 5 and n ≡ 1 (mod 2), G ∼= T (n1, n2, n3, n4, n5, ..., nr) admits an (a, 0)-

EAT labeling with a = v + e + s − 1, where v = |V (G)| s = 5n+19
2 +

r∑
m=5

[2m−3(n + 3) + 2],

n1 = n, n2 = n+ 2, n3 = n+ 5, n4 = 2n+ 7 and nm = 2m−3(n+ 3) + 1 for 5 ≤ m ≤ r.

Proof: Suppose that V (G), E(G) and λ are defined as in the proof of Theorem 3.1. Now we define f

as follows:

f(x) = 2λ(x)− 1 for all x ∈ V (G).

Consequently, all the vertices receive the odd labels and the set of edge-sums S = {f(x) + f(y) : xy ∈
E(G)} forms an arithmetic progression starting from 5n+19

2 +
r∑

m=5
[2m−3(n + 3) + 2] with common

difference 2. If we define

f(xy) = (15n+ 47) +

r∑
m=5

[2m−4(3n+ 9) + 4]− λ(x)− λ(y).

Thus, we have an (a, 0)-EAT labeling with magic constant a = v + e + s − 1 = (15n + 47) +
r∑

m=5
[2m−4(3n+ 9) + 4].

As a consequence of Theorem 3.6 and the concept of Kotzig and Rosa related to a dual labeling, we

have the following corollary:
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Corollary 3.7. For n ≡ 1 (mod 2) and r ≥ 5, G ∼= T (n, n + 2, n + 5, 2n + 7, n5, ..., nr) admits a

super (a, 0)-EAT labeling with the magic constant a = (45n+ 43) +
r∑

m=5
[2m−4(9n+ 27) + 2], where

nm = 2m−3(n+ 3) + 1 and 5 ≤ m ≤ r.

4 Conclusion

In this paper, we show that a subclass of trees, namely subdivided star denoted by T (n, n+ 2, n+

5, 2n + 7, n5, ..., nr) admits (a, d)-EAT and super (a, d)-EAT labelings, where n ≡ 1 (mod 2), and

nm = 2m−3(n + 3) + 1 for 5 ≤ m ≤ r. However, for different values of the minimum edge-weight a

and ni, problem is still open.
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