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Abstract

Let G = (V,E) be a (p, q) - graph. A shortest path P is called a distant divisor path if l(P )

divides q. Distance divisor graphD(G) of a graphG = (V,E) has the vertex set V = V (G) and two
vertices in D(G) are adjacent if they have the distant divisor path in G. In this paper, we deal with
distant divisor graph of subdivision of some graphs such as path, cycle, star and complete bipartite
graph etc. Further we generalize the concept of antipodal graphs and prove that some distant divisor
graphs are the generalized antipodal graphs. We also deal with the distant divisor graph of some
graphs of diameter 4 and below.
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1 Introduction

By a graph, we mean a finite undirected graph without loops and multiple edges. For terms not

defined here, we refer to Harary[9].

The distance between two vertices in a graph is the length of the shortest path between them. Number

theory [1, 8, 10] has a strong impact on graph theory [5, 7, 9]. Using the divisibility concept in the

number theory, we introduced the new concept called distant divisor graph[12]. In that paper[12], the

distant divisor graphs of some standard graphs such as path, cycle, wheel, star, complete graph, complete

bipartite graph and the like are studied.

We begin with the definitions of some number theoretic functions.

Notations 1.1. Let G be a (p, q)-graph. k1, k2, . . . , kτ denote the positive divisors of q with k1 = 1 and

kτ = q and k1 < k2 . . . < kτ . For q = 12, k1 = 1, k2 = 2, k3 = 3, k4 = 4, k5 = 6 and k6 = 12.

Definition 1.2. A number theoretic function f is said to be multiplicative if f(mn) = f(m)f(n)

whenever gcd(m,n) = 1.

Note that the functions τ and σ are both multiplicative functions.
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Example 1.3. Let m = 3 and n = 8. Then mn = 24 and gcd(3, 8) = 1. τ(24) = 8, τ(3) = 2,

τ(8) = 4 and clearly τ(24) = τ(3) · τ(8).

Also, we have σ(24) = 60, σ(3) = 4 and σ(8) = 15 and clearly σ(24) = σ(3) · σ(8). Hence, τ and σ

are both multiplicative functions.

Definition 1.4. If e = uv is an edge ofG andw is not a vertex ofG, the edge e is said to be subdivided

if it is replaced by edges uw and wv.

Definition 1.5. A subdivision graph S(G) of a graph G is obtained by subdividing each edge of G

only once.

One can easily observe that if G has p vertices and q edges then the subdivision graph S(G) has

p+ q vertices and 2q edges. Subdivision graph of a cycle is a cycle and that of a path is a path.

Definition 1.6. The kth power Gk of a graph G is a graph that has the same set of vertices V (G) and

two vertices are adjacent when their distance in G is at most k. G2 is the square of G and G3 is the cube

of G.

Definition 1.7. [3] Two vertices of a graph are said to be antipodal to each other if the distance between

them is equal to the diameter of the graph.

Definition 1.8. [3] The antipodal graph of a graph G, denoted by A(G), has the vertex set as in G and

two vertices are adjacent in A(G) if and only if they are antipodal in G.

Definition 1.9. [11] Two vertices of a graph are said to be radial to each other if the distance between

them is equal to the radius of the graph.

Definition 1.10. [11] The radial graph of a graph G, denoted by R(G), has the vertex set as in G and

two vertices are adjacent in R(G) if and only if they are radial in G.

Definition 1.11. [7] A graph is called chordal if every cycle of length strictly greater than 3 possesses

a chord , that is, an edge joining two non-consecutive vertices of the cycle.

Definition 1.12. Let G = (V,E) be a (p, q) - graph. A shortest path P is called a distant divisor path if

its length l(P ) divides q.

Definition 1.13. The distance divisor graph D(G) of a graph G = (V,E) has the vertex set V = V (G)

and two vertices in D(G) are adjacent if they have the distant divisor path in G.

Theorem 1.14. [12] For a cycle Cp, D(Cp) ∼= Cp, if p is a prime. If p is not a prime, then D(Cp) is

either (2τ − 3) - regular or (2τ − 2) - regular when p is even or odd respectively.

Theorem 1.15. [12] For a path Pp, q(D(Pp)) =

(τ − 1)[2kτ−1 + 1]− σ(q) + 1 + q, if q is even

τ(q + 1)− σ(q), if q is odd.

In this paper, we find the structure of the distant divisor graph of subdivision of graphs such as path,

cycle and complete graphs.
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2 Main Results

First we introduce the concept of k-chordal graphs as follows.

Definition 2.1. Two vertices of a (p, q)-graphG are said to be k−chordal to each other if the distance

between them is equal to k.

Definition 2.2. The k − chordal graph of a graph G has the vertex set V = V (G) and two vertices

are said to be adjacent if they are k − chordal in G and is denoted by Ck(G).

Some k − chordal graphs of a given graph G are given in Figure 1.
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Figure 1.

Observation 2.3. Ck(G) ∼= A(G) if and only if k = diamG and Ck(G) ∼= R(G) if and only if

k = radG.

Definition 2.4. The (k1, k2, k3, . . . , kr)- chordal graph of a (p, q) − graph G has the vertex set V =

V (G) and two vertices are said to be adjacent if the distance between them is ki(i = 1, 2, 3, . . . , r) and

k1 < k2 < · · · < kr and it is denoted by C(k1,k2,...,kr)(G). We observe that kr ≤ diam(G).

Observation 2.5. Let G be a (p, q)-graph. Then

1. If k1, k2, . . . , kr are all divisors of q, then C(k1,k2,...,kr)(G) ∼= D(G).

2. C(1,2,...,diam(G))(G) ∼= Kp.

3. C(1,2,...,k)(G) ∼= Gk.

4. If k1, k2, . . . , kr are not consecutive numbers, then C(1,2,3,...,k1,k2,...,kr)(G) contains the subgraph

which is isomorphic to Gk1 .

5. C1(G) ∼= G.

6. C(2,3,...,diam(G))(G) ∼= Ḡ.
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Theorem 2.6. For a path Pp,

q(D(S(Pp))) =



5q + 1, if q is a prime number

2τ(2q + 1)− 3σ(q), if q is an odd composite number

τ(2q + 1)− σ(q) + 1, if q = 2α where α ≥ 1

(α+ 2)τ(q1)(2
α+1q1 + 1)− σ(q1)(2

α+2 − 1), if q = 2αq1 where

q1 is an odd composite number.

Proof: We observe that S(Pp) is also a path of size 2q.

From Theorem 1.15, q(D(Pp)) = (τ − 1)(2kτ−1 + 1)− σ(q) + 1 + q, if q is even.

Case (i): Suppose q is prime.

Then 2q is even, the only divisors of 2q are 1, 2, q and 2q. Since q is a prime,(2, q) = 1.

Hence τ(2q) = τ(2)τ(q) = 4 and σ(2q) = σ(2)σ(q) = 3(q + 1). Here we note that kτ−1 = q. Thus,

q(D(S(Pp))) = (4− 1)(2q + 1)− 3(q + 1) + 1 + 2q = 5q + 1.

Case (ii): Suppose q is odd composite.

Then (2, q) = 1 and τ(2q) = τ(2)τ(q) = 2τ(q) and σ(2q) = σ(2)σ(q) = 3σ(q). Thus, q(D(S(Pp))) =

(2τ − 1)(2q + 1)− σ(2q) + 1 + 2q = (2τ − 1)(2q + 1)− 3σ(q) + 1 + 2q = 2τ(2q + 1)− 3σ(q).

Case (iii): Suppose q is even and is of the form q = 2α where α ≥ 1. Then 2q = 2α+1.

Now τ(q) = τ(2α) = α+ 1 and τ(2q) = τ(2α+1) = α+ 1 + 1 = τ(q) + 1. Note that σ(q) = σ(2α) =

2α+1 − 1 and σ(2q) = σ(2α+1) = 2α+2 − 1 = 2 · 2α+1 − 1 = 2σ(q)− 1.

Thus, q(D(S(Pp))) = (τ + 1−1)(2q+ 1)− (2σ(q)−1) + 1 + 2q = τ(2q+ 1)−2σ(q)−1 + 1 + 2q =

(τ + 1)(2q + 1)− 2σ(q)− 1.

Case (iv): Suppose q = 2αq1 where α ≥ 1 and q1 is an odd composite.

Then 2q = 2α+1q1 and τ(q) = τ(2αq1) = τ(2α)τ(q1). Since (2α, q1) = 1, τ(2α)τ(q1) = (α+ 1)τ(q1)

and τ(2q) = (α+ 2)τ(q1). Now, σ(q) = σ(2αq1) = σ(2α)σ(q1).

Since (2α, q1) = 1, σ(2α)σ(q1) = (2α+1 − 1)σ(q1) and σ(2q) = (2α+2 − 1)σ(q1). Also note that

kτ−1 = 2αq1. Thus,

q(D(S(Pp))) = [(α+ 2)τ(q1)− 1] (2 · 2αq1 + 1)− (2α+2 − 1)σ(q1) + 1 + 2α+1q1

= [(α+ 2)τ(q1)− 1] (2α+1q1 + 1)− (2α+2 − 1)σ(q1) + 1 + 2α+1q1

= (α+ 2)τ(q1)2
α+1q1 − (α+ 2)τ(q1)− 2α+2σ(q1) + σ(q1)

= (α+ 2)τ(q1)(2
α+1q1 + 1)− σ(q1)(2

α+2 − 1).

Theorem 2.7. For a cycle Cp,

q(D(S(Cp))) =



5p, if p is prime

p(4τ − 3), if p is odd composite

p(2τ − 1), if p = 2α where α ≥ 1

p [(2α+ 4)τ(p1)− 3] , if p = 2αp1 where p1 is odd composite
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Proof: Observe that S(Cp) is also a cycle of size 2q = 2p.

From Theorem 1.14, it is clear that,q(D(Cp)) = p(2τ−3)
2 if p is even.

Case(i): Suppose p is prime.

Then τ(2p) = 2τ(p) = 2τ = 4. Thus, q(D(S(Cp))) = 2p(2·4−3)
2 = 5p.

Case(ii): Suppose p is odd composite.

Then τ(2p) = τ(2)τ(p) = 2τ. Thus, q(D(S(Cp))) = 2p(2·2τ−3)
2 = p(4τ − 3).

Case(iii): Suppose p is even and p = 2α where α ≥ 1.

Then 2p = 2α+1 and τ(2p) = α+ 1 + 1 = τ + 1.

Thus, q(D(S(Cp))) = 2p(2(τ+1)−3)
2 = p(2τ − 1).

Case(iv): Suppose p = 2αp1 where α ≥ 1 and p1 is an odd composite.

Then, 2p = 2α+1 and τ(2p) = (α+ 2)τ(p1).

Thus, q(D(S(Cp)) = 2p[2(α+2)τ(p1)−3]
2 = p [(2α+ 4)τ(p1)− 3].

Theorem 2.8. For a complete graph Kp,

D(S(Kp)) ∼=



S(Kp)
2, if 2q � 0 (mod 3) and 2q � 0 (mod 4)

S(Kp)
3, if 2q ∼= 0 (mod 3) and 2q � 0 (mod 4)

C(1,2,4)(S(Kp)), if 2q � 0 (mod 3) and 2q ∼= 0 (mod 4)

Kp+q, if 2q ∼= 0 (mod 3) and 2q ∼= 0 (mod 4).

Proof: Let v1, v2, . . . , vp be the vertices of Kp and u1, u2, . . . , uq be the subdivisional vertices of Kp.

Note that, S(Kp) has p + q vertices and 2q edges and diam S(Kp) = 4, Then, we check only for the

numbers1, 2, 3 and 4 if they are divisors of 2q.

In S(Kp), we observe that

(i) d(vi, vj) = 2, for all i 6= j

(ii) d(vi, uj) = either 1 or 3 where i = 1, 2, . . . , p, j = 1, 2, . . . , q.

(iii) d(ui, uj) = either 2 or 4, for all i 6= j.

From the above observations, we have the following four cases.

Case(i): Suppose 2q � 0 (mod 3) and 2q � 0 (mod 4).

Then, the divisors of 2q are only 1 and 2. So, we join the vertices u and v such that d(u, v) ≤ 2. It

follows that, D(S(Kp)) ∼= S(Kp)
2.

Case (ii): Suppose 2q ∼= 0(mod 3) and 2q � 0(mod 4).

Then the divisors of 2q are 1, 2 and 3 only. So, we join the vertices u and v such that d(u, v) ≤ 3. It

follows that, D(S(Kp)) ∼= S(Kp)
3.

Case(iii): Suppose 2q �0(mod 3) and 2q ∼= 0(mod 4).

Then the divisors of 2q are 1, 2 and 4 only. So, we join the vertices u and v such that d(u, v) ≤ 2 and

d(u, v) = 4. For d(u, v) ≤ 2, we see that D(S(Kp)) contains a subgraph S(Kp)
2.

For d(u, v) = 4 we observe that D(S(Kp)) contains the subgraph induced by the subdivisional vertices

u1, u2, . . . , uq, which is complete.
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Thus, D(S(Kp)) ∼= C(1,2,4)(S(Kp)).

Case(iv): Suppose 2q ∼= 0(mod 3) and 2q ∼= 0(mod 4).

Then the divisors of 2q are 1,2,3 and 4. Hence all the paths of S(Kp) are distant divisor paths and so

we join all vertices of S(Kp).

Hence, D(S(Kp)) ∼= Kp+q.

Corollary 2.9. For a complete graph Kp,

q(D(S(Kp)))=



p(p2−1)
2 , if 2q � 0(mod3) and 2q � 0(mod4)

p(p−1)(2p−1)
2 , if 2q ∼= 0(mod3) and 2q � 0(mod4)

p4−2p3+11p2−10p
8 , if 2q � 0(mod3) and 2q ∼= 0(mod4)

(p−1)p(p+1)(p+2)
8 , if 2q ∼= 0(mod3) and 2q ∼= 0(mod4)

Proof: Let v1, v2, . . . , vp be the vertices of Kp and let u1, u2, . . . , uq be the subdivisional vertices of

Kp.

The following table shows the number of vertices having the distance 1, 2, 3 or 4 from the vertices

of D(S(Kp)) which is very useful to find the degree of vertices of D(S(Kp)) and hence the number of

edges.

Vertex v Distance d Number of vertices having distance d from v

1 p− 1

vi 2 p− 1

3 q − (p− 1)

4 0

1 2

ui 2 2(p−2)

3 p−2

4 q−2(p−2)-1

From the table it is found that, in S(Kp),the number of vertices having distance 1 from vi is p − 1 and

that of distance 2 from vi is also p− 1 and that of distance 3 from vi is q − (p− 1) and that of distance

4 from vi is 0. The number of vertices having distance 1 from ui is 2 and that of distance 2 from ui is

2(p− 2) and that of distance 3 from ui is p− 2 and that of distance 4 from ui is q − 2(p− 2)− 1.

Case(i): Suppose 2q � 0(mod3) and 2q � 0(mod4).

Then the divisors of 2q are 1 and 2 only.

Hence in D(S(Kp)), d(vi) = 2(p − 1), for i = 1, 2, 3, . . . , p and d(ui) = 2(p − 2) + 2, for i =

1, 2, 3, . . . , q. Thus, q(D(S(Kp))) = p·2(p−1)+q·[2(p−2)+2]
2 = (p− 1)(p+ q) = p(p2−1)

2 .

Case (ii): Suppose 2q ∼= 0(mod3) and 2q � 0(mod4).

Then the divisors of 2q are 1, 2 and 3 only.

Thus, in D(S(Kp)), d(vi) = 2(p − 1) + q − (p − 1) = p + q − 1, for i = 1, 2, 3, . . . , p and d(ui) =
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2(p− 2) + 2 + p− 2 = 3p− 4, for i = 1, 2, 3, . . . , q.

Thus, q(D(S(Kp))) = p(p+q−1)+q(3p−4)
2 = p(p−1)+4q(p−1)

2 = p(p−1)(2p−1)
2 .

Case(iii): Suppose 2q � 0(mod3) and 2q ∼= 0(mod4).

Then the divisors of 2q are 1, 2 and 4 only.

Thus, in D(S(Kp)), d(vi) = 2(p− 1), for i = 1, 2, 3, . . . , p and d(ui) = q + 1, for i = 1, 2, 3, . . . , q.

Hence, q(D(S(Kp)))=p·2(p−1)+q(q+1)
2 = p4−2p3+11p2−10p

8 .

Case(iv): Suppose 2q ∼= 0(mod3) and 2q ∼= 0(mod4).

Then the divisors of 2q are 1, 2, 3 and 4. In this case, D(S(Kp)) ∼= Kp+q.

Thus, q(D(S(Kp))) = (p+q)(p+q−1)
2 = (p−1)p(p+1)(p+2)

8 .

Example 2.10.
Case(i): Consider the graph K11.

Here p = 11 and q = 55 and S(K11)has 66 vertices and 110 edges.

We note that 110 �0(mod 3) and 110 �0(mod 4). Thus, q(D(S(K11))) = 11(112−1)
2 = 660.

Case(ii): Consider the graph K6.

Here p = 6 and q = 15 and so S(K6) has 21 vertices and 30 edges.

Since 30 ∼= 0(mod3) and 30 � 0(mod4), we have q(D(S(K6))) = 6(6−1)(2(6)−1)
2 = 165.

Case (iii): Consider the graph K5.

Here p = 5 and q = 10 and so S(K5) has 15 vertices and 20 edges.

Since 20 �0(mod 3) and 20 ∼=0(mod 4), we have q(D(S(K5))) = 54−2(53)+11(52)−10(5)
8 = 75.

Case(iv): Consider the graph K4.

Here p = 4 and q = 6 and so S(K4) has 10 vertices and 12 edges.

Then 12 ∼= 0(mod 3) and 12 ∼=0(mod 4). Then clearly D(S(K4)) ∼= K10.

Thus, q(D(S(K4))) = (4−1)4(4+1)(4+2)
8 = 45.

Now we establish Theorem 2.8 for the complete bipartite graph.

Theorem 2.11. For a complete bipartite graph Km,n,

D(S(Km,n)) ∼=



S(Km,n)2, if 2mn � 0(mod 3) and 2mn � 0(mod 4)

S(Km,n)3, if 2mn ∼= 0(mod 3) and 2mn � 0(mod 4)

C(1,2,4)(S(Km,n)), if 2mn � 0(mod 3) and 2mn ∼= 0(mod 4)

Km+n+mn, if 2mn ∼= 0 (mod 3) and 2mn ∼= 0(mod 4).

Proof: Let v1, v2, . . . , vm, vm+1, . . . , vm+n be the vertices of Km,n and u1, u2, . . . , umn be the sub-

divisional vertices of Km,n. Note that, S(Km,n) has m + n + mn vertices and 2mn edges and

diamS(Km,n) = 4. Then, we check only the numbers 1, 2, 3 and 4 if they are the divisors of 2mn.

In S(Km,n), we observe that

(i) d(vi, vj)= either 2 or 4, for i 6= j

(ii) d(vi, uj)= either 1 or 3, for i = 1, 2, . . . ,m+ n, j = 1, 2, . . . ,mn

(iii)d(ui, uj)= either 2 or 4 for i 6= j.
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We note that the situations are the same as in Theorem 2.8.

Hence, the result follows from Theorem 2.8.

Now we calculate the edges of the distant divisor graph of subdivision of complete bipartite graphKm,n.

Corollary 2.12. For a complete bipartite graph Km,n,

q(D(S(Km,n))) =



mn(m+n+4)
2 , if 2mn � 0( mod 3) and 2mn � 0( mod 4)

3mn(m+n)
2 , if 2mn ∼= 0( mod 3) and 2mn � 0( mod 4)

mn(mn+5)+m(m−1)+n(n−1)
2 , if 2mn � 0( mod 3) and 2mn ∼= 0( mod 4)

(m+n+mn)(m+n+mn−1)
2 , if 2mn ∼= 0( mod 3) and 2mn ∼= 0( mod 4).

Proof: Let X = {x1, x2, . . . , xm} and Y = {y1, y2, . . . , yn} be the bipartition of V (Km,n) and

v11, v12, . . . , v1n, v21, v22, . . . , v2n, . . . , vm1, vm2, . . . , vmn be the subdivisional vertices of S(Km,n).

We observe that vij be the subdivision vertex of the edge xiyj .

The following table shows the number of vertices having the distance 1, 2, 3 or 4 from the vertices of

D(S(Km,n)) which is very useful to find the degree of vertices of D(S(Km,n)) and hence the number

of edges.

Vertex v Distance d Number of vertices having distance d from v

1 n

xi 2 n

3 mn− n
4 m− 1

1 m

yj 2 m

3 mn−m
4 n− 1

1 2

vij 2 m+ n− 2

3 m+ n− 2

4 mn−m− n+ 1

From the above table it is found that, in S(Km,n), the number of vertices having distance 1 from xi is n

and that of distance 2 from xi is also n and that of distance 3 from xi is (mn− n) and that of distance

4 from xi is m− 1.

The number of vertices having distance 1 from yj is m and that of distance 2 from yj is also m and

that of distance 3 from yj is (mn−m) and that of distance 4 from yj is n− 1.

The number of vertices having distance 1 from vij is 2 and that of distance 2 from vij is m+ n− 2

and that of distance 3 from vij is also m+ n− 2 and that of distance 4 from vij is mn−m− n+ 1.

Case(i): Suppose 2mn � 0(mod 3) and 2mn � 0(mod 4).
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Then the divisors of 2q are 1 and 2 only.

Hence in D(S(Km,n)), d(xi) = 2n, for i = 1, 2, 3, . . . ,m, d(yj) = 2m, for j = 1, 2, 3, . . . , n and

d(vij) = m+ n, for i = 1, 2, 3, . . . ,m, j = 1, 2, 3, . . . , n.

Thus, q(D(S(Km,n))) = m(2n)+n(2m)+mn(m+n)
2 = mn(m+n+4)

2 .

Case(ii): Suppose 2mn ∼= 0(mod 3) and 2mn � 0(mod 4).

Then the divisors of 2q are 1, 2 and 3 only.

Hence inD(S(Km,n)), d(xi) = mn+n, for i = 1, 2, 3, . . . ,m, d(yj) = mn+m, for j = 1, 2, 3, . . . , n

and d(vij) = 2(m+ n− 1), for i = 1, 2, 3, . . . ,m, j = 1, 2, 3, . . . , n.

Thus, q(D(S(Km,n))) = m(mn+n)+n(mn+m)+mn(2(m+n−1))
2 = m2n+mn+mn2+mn+2m2n+2mn2−2mn

2 =
3mn(m+n)

2 .

Case(iii): Suppose 2mn ∼= 0(mod 4) and 2mn � 0(mod 3).

The divisors of 2q are 1, 2 and 4 only.

Hence in D(S(Km,n)), d(xi) = 2n + m − 1, for i = 1, 2, 3, . . . ,m, d(yj) = 2m + n − 1, for

j = 1, 2, 3, . . . , n and d(vij) = mn+ 1, for i = 1, 2, 3, . . . ,m, j = 1, 2, 3, . . . , n.

Thus, q(D(S(Km,n))) = m(2n+m−1)+n(2m+n−1)+mn(mn+1)
2 = 2mn+m2−m+2mn+n2−n+m2n2+mn

2 =
mn(mn+5)+m(m−1)+n(n−1)

2 .

Case(iv): Suppose 2mn ∼= 0(mod 3) and 2mn ∼= 0(mod 4).

Then the divisors of 2q are 1, 2 and 4 only. Hence, D(S(Km,n)) ∼= Km+n+mn.

Thus, q(D(S(Km,n))) = (m+n+mn)+(m+n+mn−1)
2 .

Corollary 2.13. For K1,p,

D(S(K1,p)) ∼=



S(K1,p)
2, if 2q � 0(mod 3) and 2q � 0(mod 4)

S(K1,p)
3, if 2q ∼= 0 (mod 3) and 2q � 0(mod 4)

C(1,2,4)(S(K1,p)), if 2q � 0(mod 3) and 2q ∼= 0(mod 4)

K2p+1, if 2q ∼= 0(mod 3) and 2q ∼= 0(mod 4).

Corollary 2.14. For K1,p,

q(D(S(K1,p))) =



p(p+5)
2 , if 2q � 0(mod 3) and 2q � 0(mod4)

3
2p(p+ 1), if 2q ∼= 0(mod 3) and 2q � 0(mod4)

p(p+ 2), if 2q � 0(mod 3) and 2q ∼= 0(mod4)

p(2p+ 1), if 2q ∼= 0(mod 3) and 2q ∼= 0(mod4).
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