Packing Chromatic Number of Cycle Related Graphs

Albert William, S. Roy
Department of Mathematics, Loyola College, Chennai 600 034, INDIA.
E-mail: sroysantiago@gmail.com

Indra Rajasingh

School of Advanced Sciences, VIT University, Chennai 600 127, INDIA.

Abstract

The packing chromatic number $\chi_{\rho}(G)$ of a graph G is the smallest integer k for which there exists a mapping $\pi: V(G) \longrightarrow\{1,2, \ldots, k\}$ such that any two vertices of color i are at distance at least $i+1$. It is a frequency assignment problem used in wireless networks, which is also called Broadcast coloring. It is proved that packing coloring is NP-complete for general graphs and even for trees. In this paper, we give the packing chromatic number for some classes of cycles.

Keywords: Packing chromatic number, $k C_{n}$ - linear, barbell graph, split graph, total graph, crown graph, lollipop, tadpole.
AMS Subject Classification(2010): 05C15.

1 Introduction

Let G be a connected graph and k be an integer, $k \geq 1$. A packing k-coloring of a graph G is a mapping $\pi: V(G) \longrightarrow\{1,2, \ldots, k\}$ such that any two vertices of color i are at distance at least $i+1$. Thus, the vertices of G are partitioned into different color classes $X_{1}, X_{2}, . ., X_{k}$, where every X_{i} is an i-packing of G. The i-packing number of G, denoted by $\rho_{i}(G)$, is the maximum cardinality of an i-packing that occurs in G. The packing chromatic number $\chi_{\rho}(G)$ of G is the smallest integer k for which G has packing k-coloring. The concept of packing coloring emerges from the area of frequency assignment in wireless networks and was introduced by Goddard et al. [8] by the name Broadcast coloring. It has several applications such as resource replacement and biological diversity. The term packing chromatic number was introduced by Bresar [3].

Goddard et al. [8] proved that the packing coloring problem is NP-complete for general graphs and Fiala and Golovach [6] proved that it is NP-complete even for trees. It is proved that packing coloring problem is solvable in polynomial time for graphs whose treewidth and diameter are both bounded [6] and for cographs and split graphs [8]. Sloper [14] studied a special type of packing coloring, called eccentric chromatic coloring and proved that the infinite 3 -regular tree has packing chromatic number 7 . For the infinite planar square lattice $\mathbb{Z}^{2}, 10$ $\leq \chi_{\rho}\left(\mathbb{Z}^{2}\right) \leq 17[5,9]$. The packing coloring of distance graphs were studied in $[4,15]$. For the infinite hexagonal lattice \mathbb{H}, $\chi_{\rho}(\mathbb{H})=7[3]$.

Argiroffo et al. [1, 2] proved that the packing coloring is solvable in polynomial time for the class of $(q, q-4)$ graphs, partner limited graphs and for an infinite subclass of lobsters,
including caterpillars. In $[7,13]$ it is proved that the infinite, planar triangular lattice and the three dimensional square lattice have unbounded packing chromatic number. In this paper, we study the packing chromatic number of $k C_{n}$ - linear, barbell graph, split graph, total graph, crown graph, lollipop and tadpole.

2 Main Results

Lemma 2.1. [8] Let H be a subgraph of G. Then $\chi_{\rho}(H) \leq \chi_{\rho}(G)$.
Lemma 2.2. [8] $\chi_{\rho}\left(C_{n}\right)= \begin{cases}3 & \text { when } n \text { is a multiple of } 4 \\ 4 & \text { when } n \text { is not a multiple of } 4 .\end{cases}$
Lemma 2.3. [8] Let G be a complete graph on n vertices. Then $\chi_{\rho}(G)=n$.
Definition 2.4. A graph is called a $k C_{2 n}$ - linear if it is a connected graph with k blocks, each of which is isomorphic to $C_{2 n}$. Moreover, if u and v are cut-vertices in the same block B_{i}, then $d(u, v)=n$.

Theorem 2.5. For $k C_{2 n}, n \geq 4, \chi_{\rho}\left(k C_{2 n}\right)=3$ when $n \equiv 0 \bmod 4$.
Proof: Case 1: $n=8 r$.
We begin with the cut-vertex common to B_{i}, B_{i+1} and label it as 2 . Label every 4 -sequence of consecutive vertices on B_{i} in the clockwise sense as $2,1,3,1$ beginning from the cut-vertex. See Figure 1(a).

Figure 1: (a) $\chi_{\rho}\left(4 C_{8}\right)=3$ (b) $\chi_{\rho}\left(4 C_{12}\right)=3$.

Case 2: $n=8 r+4$.
Label the cut-vertex common to B_{i}, B_{i+1} as 3 or 2 according as i is odd or even respectively. Label every 4-sequence of consecutive vertices on B_{i} in the clockwise sense as $3,1,2,1$ or $2,1,3,1$ beginning from the cut-vertex with label 3 or 2. See Figure 1(b). By Lemma 2.1 and 2.2, $\chi_{\rho}\left(k C_{2 n}\right)=3$.

Definition 2.6. [11] A gear graph is obtained from the wheel W_{n} by adding a vertex between every pair of adjacent vertices of the n-cycle and it is denoted by G_{n}, where n is the number of vertices of wheel graph. G_{n} has $2 n+1$ vertices and $3 n$ edges.

Theorem 2.7. For the gear graph $G_{n}, \chi_{\rho}\left(G_{n}\right)=4$, when n is even.
Proof: Let u and v be the vertices of G_{n} such that $\operatorname{deg}(u)=n$ and $\operatorname{deg}(v)=3$. Color the vertices in the outercycle with the sequence $1213, \cdots$ starting from the vertex v in any direction and fix color 4 to the vertex u. Thus, $\chi_{\rho}\left(G_{n}\right) \leq 4$.

Figure 2: $\chi_{\rho}\left(G_{6}\right)=4$ and $\chi_{\rho}\left(G_{8}\right)=4$.
By Lemma 2.1 and 2.2, $\chi_{\rho}\left(G_{n}\right)=4$.
Definition 2.8. [16] For a graph G, the splitting graph S^{\prime} of G is obtained by adding a new vertex v^{\prime} corresponding to each vertex v of G such that $N(v)=N\left(v^{\prime}\right)$.

Theorem 2.9. Let $K_{1, n}, n \geq 2$ be a star on n vertices. Then $\chi_{\rho}\left(S^{\prime}\left(K_{1, n}\right)\right)=3$.
Proof: Let $v_{1}, v_{2}, \ldots, v_{n}$ be the pendent vertices and v be the apex vertex of $K_{1, n}$ and $u, u_{1}, u_{2}, \ldots, u_{n}$ be the added vertices corresponding to $v, v_{1}, v_{2}, \ldots, v_{n}$ to obtain $S^{\prime}\left(K_{1, n}\right)$.

Figure 3: $\quad \chi_{\rho}\left(S^{\prime}\left(K_{1,7}\right)\right)=3$.
Color the vertices $u_{1}, u_{2}, \ldots, u_{n}$ and $v_{1}, v_{2}, \ldots, v_{n}$ with color 1. Assign color 2 to the vertex u and 3 to the vertex v. Thus $\chi_{\rho}\left(S^{\prime}\left(K_{1, n}\right)\right) \leq 3$. By Lemma 2.1 and $2.2, \chi_{\rho}\left(S^{\prime}\left(K_{1, n}\right)\right)=3$.

Definition 2.10. [12] The n-barbell graph is a simple graph obtained by connecting two copies of a complete graph K_{n} by a bridge and it is denoted by $B\left(K_{n}, K_{n}\right)$.

Theorem 2.11. For $B\left(K_{n}, K_{n}\right), \chi_{\rho}\left(B\left(K_{n}, K_{n}\right)\right)=2 n-2$.
Proof: An n-barbell graph contains two copies of K_{n} namely $1 K_{n}$ and $2 K_{n}$. Let $u v$ be the connecting bridge where $u \in 1 K_{n}$ and $v \in 2 K_{n}$.
We give an algorithm to color $B\left(K_{n}, K_{n}\right)$ using exactly $2 n-2$ colors.

Procedure PACKING COLORING $B\left(K_{n}, K_{n}\right)$
Input: Barbell graph $B\left(K_{n}, K_{n}\right)$
Algorithm:

Step 1: Label the vertex u with color $2 n-2$.
Step 2: Label the vertex v with color $2 n-3$.
Step 3: Label any vertex of $1 K_{n}$ and $2 K_{n}$ with color 1.
Step 4: Label any vertex of $1 K_{n}$ and $2 K_{n}$ with color 2.
Step 5: Label the remaining vertices of $1 K_{n}$ and $2 K_{n}$ with color $3,4, \cdots, 2 n-4$.
Output: $\left.\chi_{\rho}\left(B\left(K_{n}, K_{n}\right)\right)\right)=2 n-2$.

Figure 4: $\left.\chi_{\rho}\left(B\left(K_{4}, K_{4}\right)\right)\right)=6$.

Proof of correctness: Let $G \simeq B\left(K_{n}, K_{n}\right)$. The diameter of G is 3 , which implies $\rho_{2}(G)=$ 2 and $\rho_{i}(G) \leq 1$ for all integer $i \geq 3$.
Case 1: If vertex u or v is labeled by color 1 , then $n-1$ vertices at distance greater than one from the vertex u or v form a subgraph, which is isomorphic to K_{n-1}. In this case, at most one vertex receives color 1 , because $\rho_{1}\left(K_{n-1}\right)=1$.
Case 2: If a vertex of G except u and v is labeled by color 1 , then n vertices at distance more than one from that vertex received color 1 form a subgraph, which is isomorphic to K_{n}. In this case, at most one vertex receives color 1 , because $\rho_{1}\left(K_{n}\right)=1$.
So, $\rho_{2}(G)=2$. There is a k-coloring of the graph G with $\left|X_{1}\right|=2$ and $\left|X_{2}\right|=2$. As for each of the other $(2 n-4)$ vertices, one new color is necessary, which implies that $\chi_{\rho}\left(B\left(K_{n}, K_{n}\right)\right)=$ $2 n-2$.

Definition 2.12. The graph obtained by joining a pendent edge at each vertex of a cycle C_{n} is called a crown graph denoted by $C_{n} \odot K_{1}$.

Theorem 2.13. For $C_{n} \odot K_{1}, n \geq 6 . \chi_{\rho}\left(C_{n} \odot K_{1}\right) \leq 5$, when $n \equiv 0,2(\bmod 4)$.

Proof: Let the vertices of C_{n} be $u_{1}, u_{2}, \ldots, u_{n}$ and the vertices of pendent edges be $v_{1}, v_{2}, \ldots, v_{n}$ where u_{i} and v_{j} are adjacent for all $i=j$.
Case 1: $n \equiv 0 \bmod 4$. Color the vertices $u_{1}, u_{2}, \ldots, u_{n}$ with the sequence $1213, \cdots$ starting from vertex u_{1} in the clockwise sense and $v_{1}, v_{2}, \ldots, v_{n}$ with the sequence $4151, \cdots$ starting from vertex v_{1} in the clockwise sense. Thus $\chi_{\rho}\left(C_{n} \odot K_{1}\right) \leq 5$.
Case 2: $n \equiv 2 \bmod 4$. Color the vertices $u_{1}, u_{2}, \ldots, u_{n}$ with the sequence $141315, \cdots$ starting from vertex u_{1} in the clockwise sense and $v_{1}, v_{2}, \ldots, v_{n}$ with the sequence $21, \cdots$ starting from vertex v_{1} in the clockwise sense. Thus $\chi_{\rho}\left(C_{n} \odot K_{1}\right) \leq 5$.

Figure 5: $\chi_{\rho}\left(C_{8} \odot K_{1}\right)=5$ and $\chi_{\rho}\left(C_{18} \odot K_{1}\right)=5$.

Definition 2.14. The tadpole graph $T(m, n)$ is obtained from a cycle C_{m} and a path P_{n}, by joining one of the end vertices of P_{n} to a vertex of C_{m}.
Theorem 2.15. For $T(m, n), n \geq 4, \chi_{\rho}(T(m, n))=\left\{\begin{array}{ll}3, & \text { when } m \equiv 0 \bmod 4 \\ 4, & \text { when } m \not \equiv 0 \bmod 4\end{array}\right.$.
Proof: Case 1: $m \equiv 0 \bmod 4$.
Let u be a vertex in $T(m, n)$ with $\operatorname{deg}(u)=3$. Color the vertices of cycle C_{m} with the sequence $2131, \cdots$ starting from the vertex u in the clockwise sense. Let v be a vertex of path P_{n} which is adjacent to vertex u. Color the path P_{n} with the sequence $1213, \cdots$ starting from the vertex v. Thus $\chi_{\rho}(T(m, n)) \leq 3$. By Lemma 2.1 and $2.2, \chi_{\rho}(T(m, n))=3$.

Figure 6: $\chi_{\rho}(T(8,5))=3, \chi_{\rho}(T(6,5))=4, \chi_{\rho}(T(7,5))=4$ and $\chi_{\rho}(T(9,5))=4$.
Case 2: $m \not \equiv 0 \bmod 4$
Let u be a vertex in $T(m, n)$ with $\operatorname{deg}(u)=3$. Color the vertices of cycle C_{m} with color sequence in the clockwise sense starting from vertex u with repeated blocks of $3,1,2,1$ with an adjustment at the very end as shown below:

$$
3121,3121, \ldots, 31214 \text { when } n=4 r+1
$$

$3121,3121, \ldots, 312141$ when $n=4 r+2$
$3121,3121, \ldots, 3121412$ when $n=4 r+3$ starting from the vertex u in the clockwise sense. Let v be the vertex of path P_{n} which is adjacent to vertex u. Color the path
P_{n} with the sequence $1213, \cdots$ starting from the vertex v. Thus $\chi_{\rho}(T(m, n)) \leq 4$.
By Lemmas 2.1 and 2.2, $\chi_{\rho}(T(m, n))=4$.
Definition 2.16. [10] The lollipop graph $L P(n, k)$ is obtained from a complete graph K_{k} and a path P_{n-k+1}, by joining one of the end vertices of P_{n-k+1} to a vertex of K_{k}.

Theorem 2.17. For lollipop graph $L P(n, k), \chi_{\rho}(L P(n, k))=n$.
Proof: Let u be the vertex in $\operatorname{LP}(n, k)$ with $\operatorname{deg}(u)=n$. Give color n to the vertex u and colors 1 to $n-1$ to the remaining vertices in K_{k}.

Figure 7: $\chi_{\rho}(L P(6,2))=6$.
Let v be the vertex of path P_{n-k+1} which is adjacent to the vertex u. Color the path P_{n-k+1} with the sequence $1213, \cdots$ starting from the vertex v. Thus $\chi_{\rho}(L P(n, k)) \leq n$.
By Lemma 2.1 and 2.3, $\chi_{\rho}(L P(n, k))=n$.

Acknowledgment

This work is supported by Maulana Azad Fellowship F1-17.1/2011/MANF-CHR-TAM-2135 of the University Grants Commission, New Delhi, India.

References

[1] G. Argiroffo, G. Nasini and P. Torres, The Packing Coloring of Lobsters and Partner Limited Graphs, Discrete Applied Mathematics. Preprint (2012).
[2] G. Argiroffo, G. Nasini and P. Torres, The Packing Coloring Problem for ($q, q-4$) Graphs, Combinatorial Optimization, Lecture Notes in Computer Science 7422(2012), 309-319.
[3] B. Brešar, S. Klavžar and D. F. Rall, On the Packing Chromatic Number of Cartesian Products, Hexagonal Lattice and Trees, Discrete Appl. Math, 155 (2007), 2303-2311.
[4] J. Ekstein, P. Holub and B. Lidický, Packing Chromatic Number of Distance Graphs, Discrete Applied Mathematics, 160 (2012), 518-524.
[5] J. Fiala, S. Klavžar, B. Lidický, The Packing Chromatic Number of Infinite Product G, European J. Combin., 30 (5) (2009), 1101-1113.
[6] J. Fiala and P. A. Golovach, Complexity of the packing chromatic problem for trees, Discrete Appl. Math., 158 (2010), 771-778.
[7] A. Finbow and D. F. Rall, On the Packing Chromatic Number of Some Lat- tices, Discrete Appl. Math. 158 (2010), 1224-1228.
[8] W. Goddard, S.M. Hedetniemi, S.T. Hedetniemi, J.M. Harris and D.F. Rall, Broadcast Chromatic Numbers of Graphs, Ars Combin. 86 (2008) 33-49.
[9] P. Holub, R. Soukal, A Note on Packing Chromatic Number of the Square Lattice, Electronic Journal of Combinatorics, 17 (2010), Note 17.
[10] A.Ilič, On the Extremal Properties of the Average Eccentricity, arXiv:1106.2987v1 [math.CO] 15 Jun 2011.
[11] R. M. J. Jothi and A. Amutha, Analysation of Super Strongly Perfect Graphs in Certain Graphs, Proceedings of National Conference on Mathematical Sciences and Applications, Karunya University, Coimbatore, India, March 14-15, 2013.
[12] G. Jothilakshmi, A. P. Pushpalatha, S. Vallirani and K. SathyaBama, $\gamma_{w c}$-excellent Graphs, Proceedings of National Conference on Mathematical Sciences and Applications, Karunya University, Coimbatore, India, March 14-15, 2013.
[13] D. Rall, B. Brešar, A. Finbow and S. Klavžar, On the Packing Chromatic Number of Trees, Cartesian Products and Some Infinite Graphs, Electronic Notes in Discrete Mathematics, 30 (2008), 571.
[14] C. Sloper, An Eccentric Coloring of Trees, Australas. J. Combin. 29 (2004), 309-321.
[15] O. Togni, On Packing Colorings of Distance Graphs, arXiv:1011.0971v1 [cs.DM] 3 Nov 2010.
[16] S K Vaidya and P L Vihol, Discussion on Some Interesting Topics in Graph Theory, Ph.D Thesis, Saurashtra University, Rajkot, April 2011.

