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Abstract

The packing chromatic number χρ(G) of a graph G is the smallest integer k for which

there exists a mapping π : V (G) −→ {1, 2, ..., k} such that any two vertices of color i are

at distance at least i + 1. It is a frequency assignment problem used in wireless networks,

which is also called Broadcast coloring. It is proved that packing coloring is NP-complete

for general graphs and even for trees. In this paper, we give the packing chromatic number

for some classes of cycles.
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1 Introduction

Let G be a connected graph and k be an integer, k ≥ 1. A packing k-coloring of a graph G is

a mapping π : V (G) −→ {1, 2, ..., k} such that any two vertices of color i are at distance at least

i + 1. Thus, the vertices of G are partitioned into different color classes X1, X2, .., Xk, where

every Xi is an i-packing of G. The i-packing number of G, denoted by ρi(G), is the maximum

cardinality of an i-packing that occurs in G. The packing chromatic number χρ(G) of G is the

smallest integer k for which G has packing k-coloring. The concept of packing coloring emerges

from the area of frequency assignment in wireless networks and was introduced by Goddard et

al. [8] by the name Broadcast coloring. It has several applications such as resource replacement

and biological diversity. The term packing chromatic number was introduced by Bresar [3].

Goddard et al. [8] proved that the packing coloring problem is NP-complete for general

graphs and Fiala and Golovach [6] proved that it is NP-complete even for trees. It is proved

that packing coloring problem is solvable in polynomial time for graphs whose treewidth and

diameter are both bounded [6] and for cographs and split graphs [8]. Sloper [14] studied a

special type of packing coloring, called eccentric chromatic coloring and proved that the infinite

3-regular tree has packing chromatic number 7. For the infinite planar square lattice Z2, 10

≤ χρ(Z2) ≤ 17 [5, 9]. The packing coloring of distance graphs were studied in [4, 15]. For the

infinite hexagonal lattice H, χρ(H) = 7 [3].

Argiroffo et al. [1, 2] proved that the packing coloring is solvable in polynomial time for

the class of (q, q − 4) graphs, partner limited graphs and for an infinite subclass of lobsters,
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including caterpillars. In [7, 13] it is proved that the infinite, planar triangular lattice and the

three dimensional square lattice have unbounded packing chromatic number. In this paper, we

study the packing chromatic number of kCn - linear, barbell graph, split graph, total graph,

crown graph, lollipop and tadpole.

2 Main Results

Lemma 2.1. [8] Let H be a subgraph of G. Then χρ(H) ≤ χρ(G).

Lemma 2.2. [8] χρ(Cn) =

{
3 when n is a multiple of 4

4 when n is not a multiple of 4.

Lemma 2.3. [8] Let G be a complete graph on n vertices. Then χρ(G) = n.

Definition 2.4. A graph is called a kC2n- linear if it is a connected graph with k blocks, each

of which is isomorphic to C2n. Moreover, if u and v are cut-vertices in the same block Bi, then

d(u, v) = n.

Theorem 2.5. For kC2n, n ≥ 4, χρ(kC2n) = 3 when n ≡ 0 mod 4.

Proof: Case 1: n = 8r.

We begin with the cut-vertex common to Bi, Bi+1 and label it as 2. Label every 4-sequence of

consecutive vertices on Bi in the clockwise sense as 2,1,3,1 beginning from the cut-vertex. See

Figure 1(a).
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Figure 1: (a) χρ(4C8) = 3 (b) χρ(4C12) = 3.

Case 2: n = 8r + 4.

Label the cut-vertex common to Bi, Bi+1 as 3 or 2 according as i is odd or even respectively.

Label every 4-sequence of consecutive vertices on Bi in the clockwise sense as 3,1,2,1 or 2,1,3,1

beginning from the cut-vertex with label 3 or 2. See Figure 1(b). By Lemma 2.1 and 2.2,

χρ(kC2n) = 3.

Definition 2.6. [11] A gear graph is obtained from the wheel Wn by adding a vertex between

every pair of adjacent vertices of the n-cycle and it is denoted by Gn, where n is the number of

vertices of wheel graph. Gn has 2n+ 1 vertices and 3n edges.

Theorem 2.7. For the gear graph Gn, χρ(Gn) = 4, when n is even.

Proof: Let u and v be the vertices of Gn such that deg(u) = n and deg(v) = 3. Color the

vertices in the outercycle with the sequence 1213,· · · starting from the vertex v in any direction

and fix color 4 to the vertex u. Thus, χρ(Gn) ≤ 4.
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Figure 2 : χρ(G6) = 4 and χρ(G8) = 4.

By Lemma 2.1 and 2.2, χρ(Gn) = 4.

Definition 2.8. [16] For a graph G, the splitting graph S′ of G is obtained by adding a new

vertex v′ corresponding to each vertex v of G such that N(v) = N(v′).

Theorem 2.9. Let K1,n, n ≥ 2 be a star on n vertices. Then χρ(S
′(K1,n)) = 3.

Proof: Let v1, v2, ..., vn be the pendent vertices and v be the apex vertex ofK1,n and u, u1, u2, ..., un

be the added vertices corresponding to v, v1, v2, ..., vn to obtain S′(K1,n).
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Figure 3: χρ(S
′(K1,7)) = 3.

Color the vertices u1, u2, ..., un and v1, v2, ..., vn with color 1. Assign color 2 to the vertex u and

3 to the vertex v. Thus χρ(S
′(K1,n)) ≤ 3. By Lemma 2.1 and 2.2, χρ(S

′(K1,n)) = 3.

Definition 2.10. [12] The n-barbell graph is a simple graph obtained by connecting two copies

of a complete graph Kn by a bridge and it is denoted by B(Kn,Kn).

Theorem 2.11. For B(Kn,Kn), χρ(B(Kn,Kn)) = 2n− 2.

Proof: An n-barbell graph contains two copies of Kn namely 1Kn and 2Kn. Let uv be the

connecting bridge where u ∈ 1Kn and v ∈ 2Kn.

We give an algorithm to color B(Kn,Kn) using exactly 2n− 2 colors.

Procedure PACKING COLORING B(Kn,Kn)

Input: Barbell graph B(Kn,Kn)

Algorithm:
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Step 1: Label the vertex u with color 2n− 2.

Step 2: Label the vertex v with color 2n− 3.

Step 3: Label any vertex of 1Kn and 2Kn with color 1.

Step 4: Label any vertex of 1Kn and 2Kn with color 2.

Step 5: Label the remaining vertices of 1Kn and 2Kn with color 3,4,· · ·, 2n− 4.

Output: χρ(B(Kn,Kn))) = 2n− 2.

1 1

5 6

3

2

4

2

Figure 4: χρ(B(K4,K4))) = 6.

Proof of correctness: Let G ' B(Kn,Kn). The diameter of G is 3, which implies ρ2(G) =

2 and ρi(G) ≤ 1 for all integer i ≥ 3.

Case 1: If vertex u or v is labeled by color 1, then n− 1 vertices at distance greater than one

from the vertex u or v form a subgraph, which is isomorphic to Kn−1. In this case, at most one

vertex receives color 1, because ρ1(Kn−1) = 1.

Case 2: If a vertex of G except u and v is labeled by color 1, then n vertices at distance more

than one from that vertex received color 1 form a subgraph, which is isomorphic to Kn. In this

case, at most one vertex receives color 1, because ρ1(Kn) = 1.

So, ρ2(G) = 2. There is a k-coloring of the graph G with |X1| = 2 and |X2| = 2. As for each

of the other (2n− 4) vertices, one new color is necessary, which implies that χρ(B(Kn,Kn)) =

2n− 2.

Definition 2.12. The graph obtained by joining a pendent edge at each vertex of a cycle Cn

is called a crown graph denoted by Cn �K1.

Theorem 2.13. For Cn �K1, n ≥ 6. χρ(Cn �K1) ≤ 5, when n ≡ 0,2 (mod 4).

Proof: Let the vertices of Cn be u1, u2, ..., un and the vertices of pendent edges be v1, v2, ..., vn

where ui and vj are adjacent for all i = j.

Case 1: n ≡ 0 mod 4. Color the vertices u1, u2, ..., un with the sequence 1213,· · · starting from

vertex u1 in the clockwise sense and v1, v2, ..., vn with the sequence 4151,· · · starting from vertex

v1 in the clockwise sense. Thus χρ(Cn �K1) ≤ 5.

Case 2: n ≡ 2 mod 4. Color the vertices u1, u2, ..., un with the sequence 141315,· · · starting

from vertex u1 in the clockwise sense and v1, v2, ..., vn with the sequence 21,· · · starting from

vertex v1 in the clockwise sense. Thus χρ(Cn �K1) ≤ 5.
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Figure 5: χρ(C8 �K1) = 5 and χρ(C18 �K1) = 5.

Definition 2.14. The tadpole graph T (m,n) is obtained from a cycle Cm and a path Pn, by

joining one of the end vertices of Pn to a vertex of Cm.

Theorem 2.15. For T (m,n), n ≥ 4, χρ(T (m,n)) =

{
3, when m ≡ 0 mod 4

4, when m 6≡ 0 mod 4
.

Proof: Case 1: m ≡ 0 mod 4.

Let u be a vertex in T (m,n) with deg(u) = 3. Color the vertices of cycle Cm with the sequence

2131,· · · starting from the vertex u in the clockwise sense. Let v be a vertex of path Pn which

is adjacent to vertex u. Color the path Pn with the sequence 1213,· · · starting from the vertex

v. Thus χρ(T (m,n)) ≤ 3. By Lemma 2.1 and 2.2, χρ(T (m,n)) = 3.
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Figure 6: χρ(T(8,5)) = 3,χρ(T(6,5)) = 4,χρ(T(7,5)) = 4 and χρ(T(9,5)) = 4.

Case 2: m 6≡ 0 mod 4

Let u be a vertex in T (m,n) with deg(u) = 3. Color the vertices of cycle Cm with color sequence

in the clockwise sense starting from vertex u with repeated blocks of 3,1,2,1 with an adjustment

at the very end as shown below:

3121,3121,...,31214 when n = 4r + 1

3121,3121,...,312141 when n = 4r + 2

3121,3121,...,3121412 when n = 4r + 3 starting from the vertex u in the

clockwise sense. Let v be the vertex of path Pn which is adjacent to vertex u. Color the path
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Pn with the sequence 1213,· · · starting from the vertex v. Thus χρ(T (m,n)) ≤ 4.

By Lemmas 2.1 and 2.2, χρ(T (m,n)) = 4.

Definition 2.16. [10] The lollipop graph LP (n, k) is obtained from a complete graph Kk and

a path Pn−k+1, by joining one of the end vertices of Pn−k+1 to a vertex of Kk.

Theorem 2.17. For lollipop graph LP (n, k), χρ(LP (n, k)) = n.

Proof: Let u be the vertex in LP (n, k) with deg(u) = n. Give color n to the vertex u and

colors 1 to n− 1 to the remaining vertices in Kk.

1
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6 3

Figure 7: χρ(LP (6, 2)) = 6.

Let v be the vertex of path Pn−k+1 which is adjacent to the vertex u. Color the path Pn−k+1

with the sequence 1213,· · · starting from the vertex v. Thus χρ(LP (n, k)) ≤ n.

By Lemma 2.1 and 2.3, χρ(LP (n, k)) = n.
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[4] J. Ekstein, P. Holub and B. Lidický, Packing Chromatic Number of Distance Graphs, Dis-

crete Applied Mathematics, 160 (2012), 518-524.
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