On super edge-antimagic total labeling of generalized extended w-trees

M. Javaid
Department of Mathematics, National University of Computer and
Emerging Sciences, Lahore, PAKISTAN.
E-mail: javaidmath@gmail.com

Abstract

This paper deals with the construction of generalized extended w-trees denoted by $G E w t(n, m, r, k)$ and the existence of a super (a, d)-edge-antimagic total labeling on them for $d \in\{0,1,2\}$.

Keywords: super (a, d)-EAT labeling, w-trees, extended w-trees, generalized extended w-trees. AMS Subject Classification(2010): 05C78.

1 Introduction

Let G be a finite, simple and undirected graph with vertex-set $V(G)$ and edge-set $E(G)$. Moreover, suppose that $|V(G)|=v$ and $|E(G)|=e$. A general reference for graph-theoretic ideas can be seen in [25]. A labeling (or valuation) of a graph is a map that carries graph elements to numbers (usually to positive or non-negative integers). In this paper, the domain will be the set of all vertices and edges and such a labeling is called a total labeling.

Labeling of graphs has its origin in the works of Kotzig and Rosa $[18,19]$. There are several types of graph labelings such as harmonius, cordial, graceful, magic, antimagic and the like. The complete survey of graph labelings can be found in [8]. In this paper, we focus on antimagic total labeling. More details on antimagic total labeling can be found in [1].

Definition 1.1. An (s, d)-edge-antimagic vertex $((s, d)$-EAV) labeling of a graph G is a bijective function $\lambda: V(G) \rightarrow\{1,2, \ldots, v\}$ such that the set of edge-sums of all edges in $G,\{w(x y)=\lambda(x)+\lambda(y)$: $x y \in E(G)\}$, forms an arithmetic progression $\{s, s+d, s+2 d, \ldots, s+(e-1) d\}$, where $s>0$ and $d \geq 0$ are two fixed integers.

Definition 1.2. An (a, d)-edge-antimagic total $((a, d)$-EAT) labeling of a graph G is a bijective function $\lambda: V(G) \cup E(G) \rightarrow\{1,2, \ldots, v+e\}$ such that the set of edge-weights of all edges in $G,\{w(x y)=$ $\lambda(x)+\lambda(x y)+\lambda(y): x y \in E(G)\}$, forms an arithmetic progression $\{a, a+d, a+2 d, \ldots, a+(e-1) d\}$, where $a>0$ and $d \geq 0$ are two fixed integers. If such a labeling exists then G is said to be an (a, d)-EAT graph.

Definition 1.3. An (a, d)-EAT labeling λ is called a super (a, d)-edge-antimagic total (super (a, d) EAT) labeling of G if $\lambda(V(G))=\{1,2, \ldots, v\}$. Thus, a super (a, d)-EAT graph is a graph that admits a super (a, d)-EAT labeling.

[^0]In the above definition, if $d=0$ then a super $(a, 0)$-EAT labeling is called a super edge-magic total (SEMT) labeling and a is called a magic constant. For $d \neq 0, a$ is called minimum edge-weight. The definition of an (a, d)-EAT labeling was introduced by Simanjuntak, Bertault and Miller in [24] as a natural extension of an edge-magic total labeling defined by Kotzig and Rosa. A super (a, d)-EAT labeling is a natural extension of the notion of a super $(a, 0)$-EAT labeling defined by Enomoto, Lladó, Nakamigawa and Ringel [6]. They also proposed the conjecture that every tree is a super $(a, 0)$-EAT graph.

In favour of this conjecture, several authors derived different results on a super (a, d)-EAT labeling for many classes of trees. In particular, stars [21], path-like trees [3] banana trees [9, 23] w-trees [10], extended w-trees [11, 14, 15], subdivided stars [12, 13, 16], caterpillars [22], subdivided caterpillars [17], disjoint union of caterpillars [4], subdivided w-trees [13, 16], fire crackers and unicyclic graphs [23] are proved super (a, d)-EAT graphs. Lee and Shah [20] verified this conjecture by a computer search for trees with at most 17 vertices. However, this conjecture is still open.

The following proposition presents the relation between a (s, d)-EAV labeling and a super (a, d) EAT labeling. It is more important as we use frequently in the new results.

Proposition 1.4. [2] If a (v, e)-graph G has an (s, d)-EAV labeling then
(i) G has a super $(s+v+1, d+1)$-EAT labeling,
(ii) G has a super $(s+v+e, d-1)$-EAT labeling.

2 Construction of generalized extended w-trees

Chen et al. (1997) defined banana trees. Swaminathan, Jeyanthi (2006) and Hussain et al. (2009) proved different results on super $(a, 0)$-edge-antimagic total labeling of banana trees. Javaid et al. (2011) defined w-trees and extended w-trees as new classes of trees and proved that these classes are super (a, d)-edge-antimagic total. In this section, we present the concept of w-trees, extended w-trees and the construction of generalized extended w-trees.

Definition 2.1. [10] Let n be a positive integer. Consider a path P on 5 vertices as $V(P)=\left\{b, c_{1}, w_{1}, c_{2}\right.$, $d\}$. A w-graph $W(n)$, is a graph derived from the path P by hanging n leaves $x_{i}^{1}, x_{i}^{2}, \ldots, x_{i}^{n}$ from each vertex c_{i}. Consider k copies of w-graph $W(n)$ with end vertices $d_{1}, d_{2}, \ldots, d_{k}$ respectively. A w-tree $W t(n, k)$ is obtained by joining all the vertices $d_{1}, d_{2}, \ldots, d_{k}$ to a further vertex a.

Definition 2.2. [11, 14, 15] Let n and r be positive integers. Consider a path P on $2 r+1$ vertices as $V(P)=\left\{b, c_{1}, w_{1}, c_{2}, w_{2}, \ldots, w_{r-2}, c_{r-1}, w_{r-1}, c_{r}, d\right\}$. An extended w-graph $E w(n, r)$, is a graph derived from the path P by hanging n leaves $x_{i}^{1}, x_{i}^{2}, \ldots, x_{i}^{n}$ from each vertex c_{i}. Consider k copies of extended w-graph $E w(n, r)$ with end vertices $d_{1}, d_{2}, \ldots, d_{k}$ respectively. An extended w-trees $\operatorname{Ewt}(n, r, k)$ is obtained by joining all the vertices $d_{1}, d_{2}, \ldots, d_{k}$ to a further vertex a.

Definition 2.3. Let n, m, r and k be positive integers. Consider a path P on r vertices as $V(P)=$ $\left\{c_{1}, c_{2}, \ldots, c_{r}\right\}$ with n hanging leaves $x_{i}^{1}, x_{i}^{2}, \ldots, x_{i}^{n}$ (respectively, m leaves $y^{1}, y^{2}, \ldots, y^{m}$) from each vertex c_{i} if $1 \leq i \leq r-1$ (respectively, if $i=r$). Consider k copies of such path $P_{1}, P_{2}, \ldots, P_{k}$ with $y_{1}^{m}, y_{2}^{m}, \ldots, y_{k}^{m}$ as a last hanging leaf from c_{r} respectively. A generalized extended w-tree is obtained by joining all the vertices $y_{1}^{m}, y_{2}^{m}, \ldots, y_{k}^{m}$ to a further vertex a.

```
Let \(V(G)=\{a\}\)
    \(\cup\left\{c_{s}^{i}: 1 \leq i \leq k, 1 \leq s \leq r\right\}\)
    \(\cup\left\{x_{i s}^{l}: 1 \leq i \leq k, \quad 1 \leq s \leq r-1, \quad 1 \leq l \leq n\right\}\)
    \(\cup\left\{y_{i}^{p}: 1 \leq i \leq k, \quad 1 \leq p \leq m\right\} \quad\) and
\(E(G)=\left\{a y_{i}^{m}: 1 \leq i \leq k\right\}\)
    \(\cup\left\{c_{s-1}^{i} C_{s}^{i}: 1 \leq i \leq k, 1 \leq s \leq r-1\right\}\)
    \(\cup\left\{x_{i s}^{l} c_{s}^{i}: 1 \leq i \leq k, 1 \leq s \leq r-1,1 \leq l \leq n\right\}\)
    \(\cup\left\{y_{i}^{p} c_{r}^{i}: 1 \leq p \leq m, \quad 1 \leq i \leq k\right\}\)
```

be the vertex-set and edge-set of $G \cong G E w t(n, m, r, k)$ respectively. Thus, $v=|V(G)|=k(r n-n+$ $m+r)+1$ and $e=|E(G)|=v-1$.

An example of a generalized extended w-tree is shown in Figure 1 for $n=2, m=3, r=4$ and $k=3$.

Figure 1: $\operatorname{GEwt}(2,3,4,3)$

3 Super (a, d)-EAT labeling of generalized extended w-trees

In this section, for different values of d, we prove some results related to a super (a, d)-EAT labeling of generalized extended w-trees denoted by $\operatorname{GEwt}(n, m, r, k)$ under some certain conditions on n, m, r and k.

Theorem 3.1. If $n \geq 1, k \geq 3, r$ even and $m \geq \frac{r}{2}(n+1) k+1$ then $G \cong G E w t(n, m, r, k)$ admits super $(a, 0)$-EAT and super ($\left.a^{\prime}, 2\right)$-EAT labelings.

Proof: Define the vertex-labeling $\lambda: V(G) \rightarrow\{1,2, \ldots, v\}$ as follows:

$$
\lambda(a)=\frac{r}{2}(n+1)+1 .
$$

For $s=1,3, \ldots, r-1$ and $1 \leq l \leq n$,

$$
\lambda\left(c_{s}^{i}\right)=\left\{\begin{array}{lr}
\frac{1}{2}(n+1)(r k+s-1)+2 & \text { for } i=1 \\
\frac{1}{2}(n+1)(r k+r i-2 i-s+1)+m i+i+1 \\
\text { for } 2 \leq i \leq k
\end{array}\right.
$$

and

For $s=2,4, \ldots, r$

$$
\lambda\left(c_{s}^{i}\right)=\left\{\begin{array}{lc}
\frac{1}{2}(n+1) s & \text { for } i=1 \\
\frac{1}{2}(n+1)(i r-s+2)-n+1 & \text { for } 2 \leq i \leq k
\end{array}\right.
$$

For $s=2,4, \ldots, r-2$ and $1 \leq l \leq n$,

$$
\lambda\left(x_{i s}^{l}\right)=\left\{\begin{array}{lc}
\frac{1}{2}(n+1)(r k+s-2)+2+l & \text { for } i=1 \\
\frac{1}{2}(n+1)(r k+r i-2 i-s+2)+(m+1) i+1-l \\
\text { for } 2 \leq i \leq k
\end{array}\right.
$$

For $1 \leq i \leq 2$

$$
\lambda\left(y_{i}^{p}\right)=\left\{\begin{array}{l}
\frac{1}{2}(n+1)(r k+r-2)+m+1+i \quad \text { for } p=m \\
\frac{1}{2}(n+1)(r k+r-2)+m i+i+1-p \\
\text { for } 1 \leq p \leq m-1
\end{array}\right.
$$

For $3 \leq i \leq k$ and $\alpha^{i}=\frac{r}{2}(n+1)(i-2)$;

$$
\lambda\left(y_{i}^{p}\right)=\left\{\begin{aligned}
& \frac{1}{2}(n+1)(2 r i+r k-3 r-2 i+2)+m i-m+i+1 \\
& \text { for } p=m
\end{aligned}\right.
$$

and

$$
\lambda\left(y_{i}^{p}\right)=\left\{\begin{array}{r}
\frac{1}{2}(n+1)(r k+i r-r-2 i+2)+m i-m+i+p \\
\text { for } 1 \leq p \leq \alpha^{i}, \\
\\
\frac{1}{2}(n+1)(r k+i r-r-2 i+2)+m i-m+i+1+p \\
\text { for } \alpha^{i}+1 \leq p \leq m-1 .
\end{array}\right.
$$

The set of all edge-sums generated by the above formula forms a consecutive integer sequence $\left[\frac{r}{2}(n+\right.$ 1) $k+2]+1,\left[\frac{r}{2}(n+1) k+2\right]+2, \cdots,\left[\frac{r}{2}(n+1) k+2\right]+e$, where $s=\left[\frac{r}{2}(n+1) k+2\right]+1$. Consequently, λ is a $(s, 1)$-EAV labeling. Now, by Proposition $1.1, \lambda$ can be extended to a super $(a, 0)$-EAT labeling with magic constant $a=v+e+s=v+v-1+\frac{r}{2}(n+1) k+3=2 v+\frac{r}{2}(n+1) k+2=$ $\frac{k}{2}[5 r(n+1)+4(m-n)]+4$. Similarly, λ can be extended to a super $\left(a^{\prime}, 2\right)$-EAT labeling with minimum edge-weight $a=v+1+s=v+\frac{r}{2}(n+1) k+4=\frac{k}{2}[3 r(n+1)+2(m-n)]+5$.

Theorem 3.2. If $n \geq 1, k \geq 3, r$ even, $m \geq \frac{r}{2}(n+1) k+1$ and v even then $G \cong G E w t(n, m, r, k)$ admits a super $\left(a^{\prime \prime}, 1\right)$-EAT labeling.

Proof: Define $V(G), E(G)$ and $\lambda: V(G) \rightarrow\{1,2, \ldots, v\}$ as in Theorem 3.1. It follows that the set of edge-sums $A=\left\{a_{i} ; 1 \leq i \leq e\right\}$, where $a_{i}=\left[\frac{r}{2}(n+1) k+2\right]+i$ constitutes an arithmetic sequence with common difference 1 . Consequently, the set of edge-labels is $B=\left\{b_{j} ; 1 \leq j \leq e\right\}$, where $b_{j}=v_{j}+1$. Now, the set of edge-weights is defined as $C=\left\{a_{2 i-1}+b_{e-i+1} ; 1 \leq i \leq\right.$ $\left.\frac{e+1}{2}\right\} \cup\left\{a_{2 j}+b_{\frac{e-1}{2}-j+1} ; 1 \leq j \leq \frac{e+1}{2}-1\right\}$. It is easy to see that C constitute an arithmetic sequence with $d=1$ and $a^{2}=s+\frac{3}{2} v=\frac{1}{2}[4 k r(n+1)+3 k(m-n)+3]=\frac{k}{2}[4 r(n+1)+3(m-n)]+\frac{9}{2}$. Since, all the vertices receive the smallest labels, λ is a super $\left(a^{\prime \prime}, 1\right)$-EAT labeling.

An illustration of the labeling schemes presented in Theorem 3.1 and 3.2 is given in Figure 2.

Figure 2: $\operatorname{GEwt}(2,19,4,3)$
Here, for $n=2, r=4$, and $k=3$, we have $m \geq \frac{r}{2}(n+1) k+1=\frac{4}{2}(2+1) 3+1=19$, that is $m \geq 19$. So for $m=19$, the generalized extended w-tree is $G \operatorname{Ewt}(2,19,4,3)$ with $v=k(r n-n+m+r)+1=88$. As a consequence of the vertex-labeling which is formulated in Theorem 3.1, Figure 2 gives the set of
edge-sums $\{21,22,23, \ldots, 107\}$ as a sequence of consecutive integers starting from $s=21$. Thus, the generalized extended w-tree $G E w t(2,19,4,3)$ admits a $(21,1)$-EAV labeling. Consequently, we have a super $(a, 0)$-EAT labeling with $a=v+e+s=88+87+21=196$, a super $\left(a^{\prime}, 2\right)$-EAT labeling with $a^{\prime}=v+1+s=88+1+21=110$ and a super $\left(a^{\prime \prime}, 1\right)$-EAT labeling with $a^{\prime \prime}=s+\frac{3}{2} v=153$ of the generalized extended w-tree $\operatorname{GEwt}(2,19,4,3)$. The values of a, a^{\prime} and $a^{\prime \prime}$ also can be verified by $a=\frac{k}{2}[5 r(n+1)+4(m-n)]+4=196, a^{\prime}=\frac{k}{2}[3 r(n+1)+2(m-n)]+5=110$ and $a^{\prime \prime}=\frac{k}{2}[4 r(n+1)+3(m-n)]+\frac{9}{2}=153$.

Theorem 3.3. If $n \geq 1, k \geq 3, r$ odd and $m \geq \frac{r-1}{2}(n+1) k+k+1$ then $G \cong G E w t(n, m, r, k)$ admits super $(a, 0)$-EAT and super ($a^{\prime}, 2$)-EAT labelings.

Proof: Define the vertex-labeling $\lambda: V \rightarrow\{1,2, \ldots, v\}$ as follows:

$$
\lambda(a)=\frac{r-1}{2}(n+1)+2 .
$$

For $s=1,3, \ldots, r$

$$
\lambda\left(c_{s}^{i}\right)= \begin{cases}\frac{1}{2}(n+1)(s-1)+1 & \text { for } i=1 \\ \frac{1}{2}(n+1)(r i-i-s+1)+i+1 & \\ & \text { for } 2 \leq i \leq k\end{cases}
$$

For $s=1,3, \ldots, r-2$ and $1 \leq l \leq n$,

$$
\lambda\left(x_{i s}^{l}\right)=\left\{\begin{array}{r}
\frac{1}{2}(n+1)(k r-k+s-1)+k+1+l \quad \text { for } i=1 \\
\frac{1}{2}(n+1)(r k+i r-k-i-s+1)+m i+k+2-l \\
\text { for } 2 \leq i \leq k
\end{array}\right.
$$

For $s=2,4, \ldots, r-1$ and $1 \leq l \leq n$,

$$
\lambda\left(c_{s}^{i}\right)=\left\{\begin{array}{c}
\frac{1}{2}(n+1)(k r-k+s-2)+k+n+2 \quad \text { for } i=1, \\
\frac{1}{2}(n+1)(r k+i r-k-i-s+2)+m i-n+k+1 \\
\text { for } 2 \leq i \leq k,
\end{array}\right.
$$

and

$$
\lambda\left(x_{i s}^{l}\right)=\left\{\begin{array}{lr}
\frac{1}{2}(n+1)(s-2)+1+l & \text { for } i=1 \\
\frac{1}{2}(n+1)(r i-i-s+2)+i+1-l \\
\text { for } 2 \leq i \leq k
\end{array}\right.
$$

For $1 \leq i \leq 2$

$$
\lambda\left(y_{i}^{p}\right)=\left\{\begin{array}{r}
\frac{1}{2}(n+1)(r k+r-k-1)+m+k+i \quad \text { for } p=m, \\
\frac{1}{2}(n+1)(r k+r-k-1)+m i+i+k-p \\
\text { for } 1 \leq p \leq m-1 .
\end{array}\right.
$$

For $3 \leq i \leq k$ and $\alpha^{i}=\frac{r-1}{2}(n+1)(i-2)-2+i$;

$$
\lambda\left(y_{i}^{p}\right)=\left\{\begin{array}{c}
\frac{1}{2}(n+1)(2 r i+r k-3 r-2 i-k+3)+m i-m+i+k \\
\text { for } p=m .
\end{array}\right.
$$

and

$$
\lambda\left(y_{i}^{p}\right)=\left\{\begin{array}{r}
\frac{1}{2}(n+1)(r k+i r-r-k-i+1)+m i-m+k+1+p \\
\text { for } 1 \leq p \leq \alpha^{i}, \\
\frac{1}{2}(n+1)(r k+i r-r-k-i+1)+m i-m+k+2+p \\
\text { for } \alpha^{i}+1 \leq p \leq m-1 .
\end{array}\right.
$$

The set of all edge-sums generated by the above formulae forms a consecutive integer sequence $\left[\frac{r-1}{2}(n+\right.$ 1) $k+k+2]+1,\left[\frac{r-1}{2}(n+1) k+k+2\right]+2, \cdots,\left[\frac{r-1}{2}(n+1) k+k+2\right]+e$, where $s=\left[\frac{r-1}{2}(n+1) k+k+2\right]+1$. Consequently, λ is a $(s, 1)$-EAV labeling. Now, by Proposition 1.1, λ can be extended to a super ($a, 0$)EAT labeling with magic constant $a=v+e+s=2 v-1+\frac{r-1}{2}(n+1) k+k+3=2 v+\frac{r-1}{2}(n+1) k+$ $k+2=\frac{k}{2}[5(r n-n+r)+4 m+1]+4$. Similarly, λ can be extended to a super $\left(a^{\prime}, 2\right)$-EAT labeling with minimum edge-weight $a^{\prime}=v+1+s=v+\frac{r-1}{2}(n+1) k+4=\frac{k}{2}[3(r n-n+r)+2 m+1]+4$.

Theorem 3.4. For $n \geq 1, k \geq 3, r$ odd, $m \geq \frac{r-1}{2}(n+1) k+k+1$ and v even then $G \cong$ $G E w t(n, m, r, k)$ admits a super $\left(a^{\prime \prime}, 1\right)$-EAT labeling.

Proof: Define $V(G), E(G)$ and $\lambda: V(G) \rightarrow\{1,2, \ldots, v\}$ as in Theorem 3.3. It follows that the set of edge-sums $A=\left\{a_{i} ; 1 \leq i \leq e\right\}$, where $\left.a_{i}=\frac{r-1}{2}(n+1) k+k+2\right]+i$ constitute an arithmetic sequence with common difference 1. Consequently, the set of edge-labels is $B=\left\{b_{j} ; 1 \leq j \leq e\right\}$, where $b_{j}=v_{j}+1$. Now, the set of edge-weights is define as $C=\left\{a_{2 i-1}+b_{e-i+1} ; 1 \leq i \leq\right.$ $\left.\frac{e+1}{2}\right\} \cup\left\{a_{2 j}+b_{\frac{e-1}{2}-j+1} ; 1 \leq j \leq \frac{e+1}{2}-1\right\}$. It is easy to see that C constitute an arithmetic sequence with $d=1$ and $a^{\prime \prime}=s+\frac{3}{2} v=\frac{k}{2}[4(r n-n+r)+3 m+1]+\frac{9}{2}$. Since, all the vertices receive the smallest labels, λ is a super $\left(a^{\prime \prime}, 1\right)$-EAT labeling.

4 Acknowledgement

The author is deeply indebted to the anonymous referee for his valuable comments which improved the original version of this paper.

References

[1] M. Baca and M. Miller, Super Edge-Antimagic Graphs, Brown Walker Press, Boca Raton, Florida USA, (2008).
[2] M. Baca, Y. Lin, M. Miller and R. Simanjuntak, New constructions of magic and antimagic graph labelings, Utilitas Math., 60(2001), 229-239.
[3] M. Baca, Y. Lin, and F. A. Muntaner-Batle, Super edge-antimagic labeling of path like-trees, Utilitas Math., 73 (2007), 117-128.
[4] M. Baca, Dafik, M. Miller and J. Ryan, Edge-antimagic total labeling of disjoint union of caterpillars, J. Combin. Math. Combin. Comput., 65, (2008), 610.
[5] W. C. Chen, H. I. Lü and Y. N. Yeh, Operations of interlaced trees and graceful trees, Southeast Asian Bull. Math., 21(1997), 337-348.
[6] H. Enomoto, A. S. Llado, T. Nakamigawa and G. Ringle, Super edge-magic graphs, SUT J. Math., 34 (1980),105-109.
[7] R. M. Figueroa-Centeno, R. Ichishima and F. A. Muntaner-Batle, The place of super edge-magic labeling among other classes of labeling, Discrete Math., 231(2001), 153-168.
[8] J. A. Gallian, A dynamic survey of graph labeling, The Electronic J. of Combin., (2012).
[9] M. Hussain, E. T. Baskoro and Slamin, On super edge-magic total labeling of banana trees, Utilitas Math., 79, (2009), 243-251.
[10] M. Javaid, M. Hussain, K. Ali and K. H. Dar, Super edge-magic total labeling on w-trees, Utilitas Math., 86(2011), 183-191.
[11] M. Javaid, A. A. Bhatti and M. Hussain, On (a,d)-edge-atimagic total labeling of extended wtrees, Utilitas Math., 87 (2012), 293-303.
[12] M. Javaid and A. A. Bhatti, On super (a,d)-edge-atimagic total labeling of subdivided stars, Ars. Combinatoria, 105 (2012), 503-512.
[13] M. Javaid, M. Hussain, K. Ali and H. Shaker, On super edge-magic total labeling on subdivision of trees, Utilitas Math., 89 (2012), 169-177.
[14] M. Javaid, A. A. Bhatti, M. Hussain and K. Ali, Super edge-magic total labeling on forest of extended w-trees, Utilitas Math. - to appear.
[15] M. Javaid, A. A. Bhatti and M. Hussain, Further results on super edge-magic total labeling of extended w-trees, Utilitas Math. - to appear.
[16] M. Javaid and A. A. Bhatti, On super (a, d)-EAT labeling of subdivided stars and w-trees, Utilitas Math. - to appear.
[17] M. Javaid, A. A. Bhatti and M. Hussain, On super (a, d)-edge-atimagic total labeling of subdivided caterpillar, Utilitas Math., to appear.
[18] A. Kotzig and A. Rosa, Magic valuation of complete graphs, Centre de Recherches Mathematiques, Universite de Montreal, (1972): CRM-175.
[19] A. Kotzig and A Rosa, Magic valuations of finite graphs, Canad. Math. Bull., 13(1970), 451-461.
[20] S. M. Lee and Q. X. Shah, All trees with at most 17 vertices are super edge-magic, $16^{\text {th }}$ MCCCC Conference, Carbondale, Southern Illinois University(2002).
[21] S. M. Lee and M. C. Kong, On super edge-magic n stars, J. Combin. Math. Combin. Comput., 42(2002), 81-96.
[22] K. A. Sugeng, M. Miller and M. Baca, (a, d)-edge-antimagic total labeling of caterpillars, Lecture Notes Comput. Sci., 3330 (2005), 169-180.
[23] V. Swaminathan and P. Jeyanthi, Super edge-magic strength of fire crackers, banana trees and unicyclic graphs, Discrete Math., 306(2006), 1624-1636.
[24] R. Simanjuntak, F. Bertault and M. Millar, Two new (a,d)-antimagic graph labelings, Proc. of Eleventh Australian Workshop on Combinatorial Algorithem, (2000), 179-189.
[25] D. W. West, An Introduction to Graph Theory, Prentice-Hall, (1996).

[^0]: \ddagger The research contents of this paper are partially supported by the Higher Education Commission (HEC) of Pakistan.

