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Abstract

In this paper we determine the distance k-domination number for splitting graph of path as well
as the graphs obtained by duplication of a vertex by an edge and duplication of an edge by a vertex.
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1 Introduction

The graph G = (V (G), E(G)) we mean simple, finite, connected and undirected graph. A set D ⊆
V (G) is called a dominating set if every vertex in V (G) − D is adjacent to at least one vertex in D.

For every vertex v ∈ V (G), the open neighbourhood set N(v) is the set of all vertices adjacent to v in

G. That is, N(v) = {u ∈ V (G)/uv ∈ E(G)}. The closed neighbourhood set N [v] of v is defined as

N [v] = N(v) ∪ {v}. The distance d(u, v) between two vertices u and v is the length of the shortest

path between u and v in G. If there is no path between u and v in G then d(u, v) = ∞. The open

k-neighbourhood set Nk(v) of vertex v ∈ V (G) is the set of all vertices of G which are different from

v and at distance at most k from v in G. That is, Nk(v) = {u ∈ V (G)/d(u, v) ≤ k}. The closed

k-neighbourhood set Nk[v] of v is defined as Nk[v] = Nk(v) ∪ {v}. Note that N(v) = N1(v). For

terminology and notation not defined here, we follow West [7] and Haynes et al. [2]. The problem

of finding a minimal distance k-dominating set (call k-basis) was considered by Slater [5] with special

reference to communication networks while the distance k-dominating set was defined by Henning et

al. [4]. For an integer k ≥ 1, a set D ⊆ V (G) is a distance k-dominating set of G if every vertex in

V (G) − D is within distance k from some vertex v ∈ D. That is, Nk[D] = V (G). The minimum

cardinality among all distance k-dominating sets of G is called the distance k-domination number of G

and is denoted by γk(G). It is obvious that γ(G) = γ1(G). A distance k-dominating set of cardinality

γk(G) is called a γk-set. The distance domination in the context of spanning tree is discussed in Griggs

and Hutchinson [1] while bounds on the distance two-domination number and the classes of graphs

attaining these bounds are reported in Sridharan et al. [6]. For more bibliographic references on distance

k-domination readers are advised to refer the survey by Henning [3].

In general four types of problems are dealt in the study of domination in graphs.

(1) Introduction of new type of dominating sets.
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(2) Study of bounds in terms of various graph theoretic parameters.

(3) Obtaining exact domination number for some graphs or family of graphs.

(4) Study of algorithmic and complexity results.

Our present work is intended to discuss the problem of the third kind. We compute γk(G) for some

path related graphs.

2 Some Definitions and Results on Distance k-domination

Definition 2.1. For a graph G, the splitting graph S′(G) of graph G is obtained by adding a new vertex

v′ corresponding to each vertex v of G such that N(v) = N(v′).

Definition 2.2. Duplication of a vertex vi by a new edge e = v′iv
′′
i in graph G produces a new graph G′

such that N(v′i) ∩N(v′′i ) = {vi}.

Definition 2.3. Duplication of an edge e = uv by a new vertex w in a graph G produces a new graph

G′ such that N(w) = {u, v}.

Propostion 2.4. [3] Let k ≥ 1 andD be a distance k-dominating set of a graphG. ThenD is a minimal

distance k-dominating set ofG if and only if each d ∈ D has at least one of the following two properties

hold.

(1) There exist a vertex v ∈ V (G)−D such that Nk(v) ∩D = {d}.
(2) The vertex d is at distance at least k + 1 from every other vertex d of D in G.

Theorem 2.5. If n ≤ 2k + 1, k 6= 1, then γk(S′(Pn)) = 1.

Proof: Let v1, v2, . . . , vn be the vertices of path Pn and u1, u2, . . . , un be the vertices corresponding to

v1, v2, . . . , vn which are added to obtain S′(Pn). Then D =
{
vdn2 e

}
is distance k-dominating set of

S′(Pn) and hence γk(S′(Pn)) = 1.

Theorem 2.6. For n > 2k + 1, γk(S′(Pn)) =

{ ⌊
n

2k+1

⌋
+ 1 for n ≡ 1, 2, ..., 2k (mod (2k + 1))

n
2k+1 for n ≡ 0 ( mod (2k + 1))

.

Proof: Let v1, v2, . . . , vn be the vertices of path Pn and u1, u2, . . . , un be the vertices corresponding

to v1, v2, . . . , vn which are added to obtain S′(Pn). Now every vertex from {vk+1, vk+2, . . . , vn−k}
dominates 2k + 1 vertices of vi’s and 2k + 1 vertices of ui’s at a distance k, while every vertex from

{uk+1, uk+2, . . . , un−k} dominates 2k + 1 vertices of vi’s and 2k + 1 vertices of ui’s at a distance k.

Therefore, at least one of the vertices from {v1+(2k+1)j , v2+(2k+1)j , . . . , v(k+1)+(2k+1)j , v(k+2)+(2k+1)j ,

. . . , v(2k+1)+(2k+1)j} must belong to every distance k-dominating set D of S′(Pn).

Hence, γk (S′(Pn)) ≥
⌊

n

2k + 1

⌋
. . . . (1)

Now depending upon the number of vertices of Pn, we consider the following subsets.

For n ≡ 1, 2, . . . , k (mod(2k + 1)), D =
{
v(k+1)+(2k+1)j , vn/0 ≤ j <

⌊
n

2k+1

⌋}
. Hence, |D| =⌊

n
2k+1

⌋
+ 1.

For n ≡ k+1, k+2, . . . , 2k (mod(2k + 1)), D =
{
v(k+1)+(2k+1)j/0 ≤ j ≤

⌊
n

2k+1

⌋}
. Hence, |D| =



Distance k-domination of some path related graphs 3

⌊
n

2k+1

⌋
+ 1.

For n ≡ 0 (mod(2k + 1)), D =
{
v(k+1)+(2k+1)j/0 ≤ j < n

2k+1

}
. Hence, |D| = n

2k+1 .

We claim that each D is a distance k-dominating set as d(v(k+1)+(2k+1)j , vi+(2k+1)j) ≤ k,

d(v(k+1)+(2k+1)j , ui+(2k+1)j) ≤ k for 1 ≤ i ≤ 2k + 1, d(vn, vn−l) ≤ k and d(vn, un−l) ≤ k for 1 ≤
l ≤ k. Therefore, Nk(v(k+1)+(2k+1)j) = {v1+(2k+1)j , v2+(2k+1)j , . . . , vk+(2k+1)j , v(k+2)+(2k+1)j , . . . ,

v(2k+1)+(2k+1)j , u1+(2k+1)j , u2+(2k+1)j , . . . , uk+(2k+1)j , u(k+2)+(2k+1)j , . . . , u(2k+1)+(2k+1)j} and

Nk(vn) = {vn−1, vn−2, . . . , vn−k, un, un−1, . . . , un−k}. Hence we have, Nk[D] = V (S′(Pn)) for n ≡
k+1, k+2, . . . , 2k+1 (mod(2k + 1)) and Nk[D] = V (S′(Pn)) for n ≡ 1, 2, . . . , k (mod(2k + 1)).

Now from the nature of S′(Pn), one can observe that every vertex d ∈ D is at a distance at least k + 1

from every other vertex of D in S′(Pn).

Thus by Proposition 2.4, above defined D is a minimal distance k-dominating set of S′(Pn) and by (1)

it is also of minimum cardinality for n > 2k + 1.

Hence γk(S′(Pn)) =

{ ⌊
n

2k+1

⌋
+ 1 for n ≡ 1, 2, ..., 2k (mod (2k + 1))

n
2k+1 for n ≡ 0 ( mod (2k + 1))

.

Theorem 2.7. Let G be a graph obtained by duplication of each vertex of path Pn, n ≤ 2k − 1, by an

edge then γk(G) = 1.

Proof: Let G be a graph obtained by duplication of vertices v1, v2, . . . , vn of path Pn by an edge

u2i−1u2i(1 ≤ i ≤ n). Then D =
{
vbn2 c

}
is a distance k-dominating set as n ≤ 2k − 1. Hence

γk(G) = 1.

Theorem 2.8. Let G be a graph obtained by duplication of each vertex of path Pn, n > 2k − 1, by an

edge then γk(G) =

{ ⌊
n

2k−1

⌋
+ 1 for n ≡ 1, 2, ..., 2k − 2 (mod (2k − 1))

n
2k−1 for n ≡ 0 ( mod (2k − 1))

.

Proof: LetG be a graph obtained by duplication of vertices v1, v2, . . . , vn of path Pn = (v1, v2, . . . , vn)

by an edge u2i−1u2i (1 ≤ i ≤ n). Now every vertex from the set {vk, vk+1, . . . , vn−(k−2)} dominates

2k vertices of vi’s and 4k−2 vertices of ui’s at a distance k, while every vertex from {u2k−2, u2k−1, . . . ,
un−(2k−4)} dominates 2k + 1 vertices of vi’s and 4k − 6 vertices of ui’s at a distance k. Therefore, at

least one of the vertices from {v1+(2k−1)j , v2+(2k−1)j , . . . , vk+(2k−1)j , . . . , v(2k−1)+(2k−1)j} must be-

long to every distance k-dominating set D of G.

Hence γk(G) ≥
⌊

n
2k−1

⌋
. . . . (1)

Now depending upon the number of vertices of Pn, we consider the following subsets.

For n ≡ 1, 2, . . . , k − 1 (mod (2k − 1)), D = {vk+(2k−1)j , vn/0 ≤ j <
⌊

n
2k−1

⌋
}. Hence, |D| =⌊

n
2k−1

⌋
+ 1.

For n ≡ k, k + 1, . . . , 2k − 2 (mod (2k − 1)), D = {vk+(2k−1)j/0 ≤ j ≤
⌊

n
2k−1

⌋
}. Hence,

|D| =
⌊

n
2k−1

⌋
+ 1.

For n ≡ 0 (mod (2k − 1)), D = {vk+(2k−1)j/0 ≤ j < n
2k−1}. Hence, |D| = n

2k−1 .

We claim that each D is a distance k-dominating set as d(vk+(2k−1)j , vi+(2k−1)j) ≤ k for 1 ≤ i ≤
2k − 1, d(vk+(2k−1)j , ul+(2k−1)j) ≤ k for 0 ≤ l ≤ 4k − 2, d(vn, vn−r) ≤ k for 0 ≤ r ≤ k and
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d(vn, u2n−s) ≤ k for 0 ≤ s ≤ 2k.

Therefore,Nk(vk+(2k−1)j) = {v1+(2k−1)j , v2+(2k−1)j , . . . , vk+(2k−1)j , . . . , v(2k−1)+(2k−1)j , u1+(2k−1)j ,

u2+(2k−1)j , . . . , u2k+(2k−1)j , . . . , u(4k−2)+(2k−1)j} and Nk(vn) = {vn−k, . . . , vn−1, vn, u2n−(2k+1),

u2n−2k, . . . , u2n−1, u2n}.
Hence we have Nk[D] = V (G) for n ≡ 0, k, k + 1, . . . , 2k − 2 (mod (2k − 1)) and Nk[D] = V (G)

for n ≡ 1, 2, . . . , k− 1. Now from the nature of graph G, one can observe that every vertex d ∈ D is at

a distance at least k + 1 from every other vertex of D in G.

Thus by Proposition 2.4, above defined D is a minimal distance k-dominating set of G and by (1) it is

also of minimum cardinality for n > 2k − 1.

Hence, γk(G) =

{ ⌊
n

2k−1

⌋
+ 1 for n ≡ 1, 2, ..., 2k − 2 (mod (2k − 1))

n
2k−1 for n ≡ 0 ( mod (2k − 1))

.

Theorem 2.9. Let G be a graph obtained by duplication of each edge of path Pn, n ≤ 2k + 1, by a

vertex then γk(G) = 1.

Proof: Let G be a graph obtained by duplication of each edge vivi+1 of path Pn by a vertex ui, (1 ≤
i < n) Then

{
vbn2 c

}
is a distance k-dominating set of G as n ≤ 2k + 1. Hence γk(G) = 1.

Theorem 2.10. Let G be a graph obtained by duplication of each edge of path Pn, n > 2k + 1, by a

vertex then γk(G) =

{ ⌊
n

2k+1

⌋
+ 1 forn ≡ 1, 2, ..., 2k (mod(2k + 1))

n
2k+1 forn ≡ 0(mod (2k + 1))

.

Proof: Let G be a graph obtained by duplicating each edge vivi+1 of the path Pn by inserting the vertex

ui (1 ≤ i < n). Now every vertex from {vk+1, vk+2, . . . , vn−k} dominates 2k + 1 vertices of vi’s and

2k vertices of ui’s at a distance k, while every vertex from {un−k, un−k+1, . . . , un−l} dominates 2k

vertices of vi’s and 2k − 1 vertices of ui’s at a distance k. Therefore, at least one of the vertices from

{v1+(2k+1)j , v2+(2k+1)j , . . . , v(k+1)+(2k+1)j , v(k+2)+(2k+1)j , . . . , v(2k+1)+(2k+1)j} must belong to ev-

ery distance k-dominating set D of G.

Hence γk(G) ≥
⌊

n
2k+1

⌋
. . . . (1)

Now depending upon the number of vertices of Pn, consider the following subsets.

For n ≡ 1, 2, . . . , k (mod (2k + 1)), D = {v(k+1)+(2k+1)j , vn/0 ≤ j <
⌊

n
2k+1

⌋
}. Hence, |D| =⌊

n
2k+1

⌋
+ 1.

For n ≡ k + 1, k + 2, . . . , 2k (mod (2k + 1)), D = {v(k+1)+(2k+1)j/0 ≤ j ≤
⌊

n
2k+1

⌋
}. Hence,

|D| =
⌊

n
2k+1

⌋
+ 1.

For n ≡ 0 (mod (2k + 1)), D = {v(k+1)+(2k+1)j/0 ≤ j < n
2k+1}. Hence, |D| = n

2k+1 .

Now we claim that each D is a distance k-dominating set as d(v(k+1)+(2k+1)j , vi+(2k+1)j) ≤ k,

d(v(k+1)+(2k+1)j , ui+(2k+1)j) ≤ k where 1 ≤ i ≤ 2k + 1, d(vn, vn−l) ≤ k and d(vn, un−l) ≤ k where

1 ≤ l ≤ k.

Therefore, Nk(v(k+1)+(2k+1)j) = {v1+(2k+1)j , v2+(2k+1)j , . . . , vk+(2k+1)j , v(k+2)+(2k+1)j , . . . ,

v(2k+1)+(2k+1)j , u1+(2k+1)j , u2+(2k+1)j , . . . , uk+(2k+1)j , u(k+2)+(2k+1)j , . . . , u(2k+1)+(2k+1)j} and

Nk(vn) = {vn−1, vn−2, . . . , vn−k, un−1, un−2, . . . , un−k}.
Hence we have Nk[D] = V (G) for n ≡ 0, k + 1, k + 2, . . . , 2k (mod(2k + 1)) and N [D] = V (G)
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for n ≡ 1, 2, . . . , k. Now from the nature of graph G, one can observe that every vertex d ∈ D is at a

distance at least k + 1 from every other vertex of D in G.

Thus by Proposition 2.4, above defined D is a minimal distance k-dominating set of G and by (1) it is

also of minimum cardinality for n > 2k + 1.

Hence γk(G) =

{ ⌊
n

2k+1

⌋
+ 1 forn ≡ 1, 2, ..., 2k (mod(2k + 1))

n
2k+1 forn ≡ 0(mod (2k + 1))

.

3 Concluding Remarks

This work throw some light on distance k-domination of a super graph obtained by means of some

graph operations on the given graph and more exploration is possible with respect to other domination

concepts.
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