Total complementary tree domination in grid graphs

S. Muthammai
Government Arts College for Women (Autonomous), Pudukkottai - 622 001, INDIA.
E-mail: muthammai.sivakami@gmail.com
\section*{P. Vidhya}
S.D.N.B. Vaishnav College for Women (Autonomous),
Chennai - 600 044, INDIA.
E-mail: vidhya_lec@yahoo.co.in

Abstract

Let $G=(V, E)$ be a nontrivial, simple, finite and undirected graph. A dominating set D is called a complementary tree dominating set if the induced subgraph $<V-D>$ is a tree. The minimum cardinality of a complementary tree dominating set is called the complementary tree domination number of G and is denoted by $\gamma_{c t d}(G)$. A dominating set D_{t} is called a total complementary tree dominating set if every vertex $v \in V$ is adjacent to an element of D_{t} and $<V-D_{t}>$ is a tree. The minimum cardinality of a total complementary tree dominating set is called the total complementary tree domination number of G and is denoted by $\gamma_{t c t d}$. In this paper, we determine the total complementary tree domination numbers of some grid graph.

Keywords: Total domination, total complementary tree domination.
AMS Subject Classification(2010): 05C69.

1 Introduction

The graphs considered here are nontrivial, simple, finite and undirected. Let G be a graph with vertex set $V(G)$ and edge set $E(G)$. The concept of domination was first studied by Ore [8]. A set $D \subseteq V$ is said to a dominating set of G, if every vertex in $V-D$ is adjacent to some vertex in D. The minimum cardinality of a dominating set is called the domination number of G and is denoted by $\gamma(G)$. The concept of complementary tree domination was introduced by S. Muthammai, M. Bhanumathi and P. Vidhya in [6]. A dominating set $D \subseteq V$ is called a complementary tree dominating (ctd) set, if the subgraph $<V-D>$ induced by $V-D$ is a tree. The minimum cardinality of a complementary tree dominating set is called the complementary tree domination number of G and is denoted by $\gamma_{c t d}(G)$. The concept of total domination in graphs was introdued by Cockayne, Daves and Hedetnimi [1]. The total domination number of a graph G denoted by $\gamma_{t}(G)$ is the minimum cardinality of a total dominating set in G. A dominating set S is called a total dominating set if every vertex $v \in V$ is adjacent to an element of S. A dominating set D_{t} is called a total complementary tree dominating set if every vertex $v \in V$ is adjacent to an element of D_{t} and $<V-D_{t}>$ is a tree. The minimum cardinality of a total complementary tree dominating set is called the total complementary tree domintion number of G and is denoted by $\gamma_{t c t d}(G)$.

[^0]The cartesian product of two graphs G_{1} and G_{2} is the graph, denoted by $G_{1} \times G_{2}$ with $V\left(G_{1} \times G_{2}\right)=$ $V\left(G_{1}\right) \times V\left(G_{2}\right)$ (where \times denotes the cartesian product of sets) and two vertices $u=\left(u_{1}, u_{2}\right)$ and $v=\left(v_{1}, v_{2}\right)$ in $V\left(G_{1} \times G_{2}\right)$ are adjacent in $G_{1} \times G_{2}$ whenever [$u_{1}=v_{1}$ and $\left(u_{2}, v_{2}\right) \in E\left(G_{2}\right)$] or [$u_{2}=v_{2}$ and $\left.\left(u_{1}, v_{1}\right) \in E\left(G_{1}\right)\right]$. If each G_{1} and G_{2} is a path P_{m} and P_{n} (respectively), then we will call $P_{m} \times P_{n}$, a $m \times n$ grid graph. For notational convenience we denote $P_{m} \times P_{n}$ by $P_{m, n}$. The reader is referred to [4] for the survey of results on domination.

In this paper, we determine the total complementary tree domination number of $P_{m, n}$ where $m=$ 4, 6, 8. S. Muthammai and P. Vidhya [7] have established $\gamma_{c t d}\left(P_{m, n}\right), m=2,3,4,5,6 . P_{1, n}$ is nothing but the path P_{n} on n vertices. S. Muthammai, M. Bhanumathi and P. Vidhya [6] have established $\gamma_{c t d}\left(P_{n}\right)=n-2, n \geq 4$.
Notation. Let $1, \ldots, m$ and $1, \ldots, n$ be the vertices of P_{m} and P_{n}, respectively. Then the vertices of $P_{m, n}$ are denoted by $x_{i, j}$ where $i=1, \ldots, m$ and $j=1, \ldots, n$.

2 Total Complementary Tree Domination in Grid Graphs

Theorem 2.1. For $n \geq 5$,

$$
\gamma_{t c t d}\left(P_{4, n}\right)= \begin{cases}\left\lfloor\frac{8 n+2}{5}\right\rfloor, & n=0,1,4(\bmod 5) \\ \left\lfloor\frac{8 n+6}{5}\right\rfloor, & n=2,3(\bmod 5)\end{cases}
$$

Proof: We present a total complementary tree dominating set (tctd) D_{t} of $P_{4, n}$ as follows.
Let $n \geq 5$. We split the set of columns of $P_{4, n}$ into blocks $B_{i}, B_{i} \cong P_{4,5}$ for $i=1,2, \ldots, q$.
$P_{i}=\left\{x_{1,5 i-4}, x_{2,5 i-4}, x_{2,5 i-2}, x_{2,5 i-1}, x_{2,5 i}, x_{3,5 i}, x_{4,5 i-3}, x_{4,5 i-2}\right\}$ dominates the first 4 columns of the block $B_{i}, i=1,2, \ldots, q$ such that $\left\langle P_{4, n}-P_{i}\right\rangle$ is a tree.
Let $D_{t}=\bigcup_{i=1}^{q} P_{i}$. (Figure 1.)

Figure 1.
We consider the following five cases.(Figure 2.)
Case (i): $n \equiv 0(\bmod 5)$.
Let $n=5 q$. Clearly, $\left\langle V\left(P_{4, n}\right)-D_{t}>\right.$ is a tree and D_{t} is a minimal total ctd set.
$\left|D_{t}\right|=8 q=\left\lfloor\frac{8 n+2}{5}\right\rfloor$.
Case $(\mathbf{i i}): n \equiv 1(\bmod 5)$.
Let $D_{1}=D_{t} \cup\left\{x_{2, n}, x_{3, n}\right\}$. This set is a total ctd set and $\left|D_{1}\right|=8\left\lfloor\frac{n}{5}\right\rfloor+2=\left\lfloor\frac{8 n+2}{5}\right\rfloor$.

Figure 2.

Case (iii): $n \equiv 2(\bmod 5)$.
Let $D_{2}=D_{t} \cup\left\{x_{4, n-1}, x_{1, n}, x_{2, n}, x_{4, n}\right\}$. This set is a tctd set and $\left|D_{2}\right|=8\left\lfloor\frac{n}{5}\right\rfloor+4=\left\lfloor\frac{8 n+4}{5}\right\rfloor$.
Case $(\mathbf{i v}): ~ n \equiv 3(\bmod 5)$.
Let $D_{3}=D_{t} \cup\left\{x_{1, n-2}, x_{1, n-1}, x_{3, n-1}, x_{4, n-1}, x_{3, n}, x_{4, n}\right\}$. This set is a tctd set and $\left|D_{3}\right|=8\left\lfloor\frac{n}{5}\right\rfloor+6=$ $\left\lfloor\frac{8 n+6}{5}\right\rfloor$.

Case (v): $n \equiv 4(\bmod 5)$.
Let $D_{4}=D_{t} \cup\left\{x_{1, n-3}, x_{2, n-3}, x_{4, n-2}, x_{2, n-1}, x_{4, n-1}, x_{2, n}\right\}$. This set is a tctd set and $\left|D_{4}\right|=8\left\lfloor\frac{n}{5}\right\rfloor+$ $6=\left\lfloor\frac{8 n+2}{5}\right\rfloor$.

Therefore, $\gamma_{t c t d}\left(P_{4, n}\right)=\left\{\begin{array}{ll}\left\lfloor\frac{8 n+2}{5}\right\rfloor, & n \equiv 0,1,4(\bmod 5) \\ \left\lfloor\frac{8 n+6}{5}\right\rfloor, & n=2,3(\bmod 5)\end{array}\right.$ for $n \geq 5$.
Remark 2.2. $\gamma_{t c t d}(4,2 n)=2 n+2, n=1,2$ and $\gamma_{t c t d}(4, n)=6, n=3$.
Theorem 2.3. For $n \geq 7$,

$$
\gamma_{t c t d}\left(P_{6, n}\right)= \begin{cases}\left\lfloor\frac{18 n+4}{7}\right\rfloor, & n=0,4,6(\bmod 7) \\ \left\lfloor\frac{18 n+12}{7}\right\rfloor, & n=1,2(\bmod 7) \\ \left\lfloor\frac{18 n-6}{7}\right\rfloor, & n=2,5(\bmod 7)\end{cases}
$$

Proof: We present a total complementary tree dominating set (tctd) D_{t} of $P_{6, n}$ as follows.
Let $n \geq 7$. We split the set of columns of $P_{6, n}$ into blocks $B_{i}, B_{i} \cong P_{6,7}$ for $i=1,2, \ldots, q$.
$P_{i}=\left\{x_{1,7 i-6}, x_{1,7 i-5}, x_{2,7 i-3}, x_{2,7 i-2}, x_{2,7 i-1}, x_{2,7 i}, x_{3,7 i-5}, x_{3,7 i-1}, x_{3,7 i}, x_{4,7 i-6}, x_{4,7 i-5}, x_{4,7 i-3}\right.$, $\left.x_{5,7 i-6}, x_{5,7 i-3}, x_{5,7 i-1}, x_{6,7 i-4}, x_{6,7 i-3}, x_{6,7 i-1}\right\}$ dominates the first 6 columns of the block $B_{i}, i=$ $1,2, \ldots, q$ such that $\left.<P_{6, n}-P_{i}\right\rangle$ is a tree.
Let $D_{t}=\bigcup_{i=1}^{q} P_{i}$. (Figure 3.)

Figure 3.

Figure 4.

We consider the following seven cases.(Figure 4.)
Case $(\mathbf{i}): n \equiv 0(\bmod 7)$.
Let $n=7 q$. Clearly, $<V\left(P_{6, n}\right)-D_{t}>$ is a tree and D_{t} is a minimal total ctd set.
$\left|D_{t}\right|=18 q=\left\lfloor\frac{18 n+4}{7}\right\rfloor$.
Case (ii): $n \equiv 1(\bmod 7)$.
Let $D_{1}=D_{t} \cup\left\{x_{1, n}, x_{2, n}, x_{5, n}, x_{6, n}\right\}$. This set is a tctd set and $\left|D_{1}\right|=18\left\lfloor\frac{n}{7}\right\rfloor+4=\left\lfloor\frac{18 n+10}{7}\right\rfloor$.
Case (iii): $n \equiv 2(\bmod 7)$.
Let $D_{2}=D_{t} \cup\left\{x_{1, n-1}, x_{5, n-1}, x_{5, n-1}, x_{6, n-1}, x_{1, n}, x_{2, n}, x_{3, n}\right\} .\left|D_{2}\right|$ is a tctd set and $\left|D_{2}\right|=18\left\lfloor\frac{n}{7}\right\rfloor+$ $6=\left\lfloor\frac{18 n+12}{7}\right\rfloor$.

Case (iv): $n \equiv 3(\bmod 7)$.
Let $D_{3}=D_{t} \cup\left\{x_{1, n-1}, x_{3, n-1}, x_{4, n-1}, x_{5, n-1}, x_{6, n-1}, x_{1, n}\right\} . D_{3}$ is a tctd set and $\left|D_{3}\right|=18\left\lfloor\frac{n}{7}\right\rfloor+6=$ $\left\lfloor\frac{18 n-6}{7}\right\rfloor$.

Case (v): $n \equiv 4(\bmod 7)$.
Let $D_{4}=D_{t} \cup\left\{x_{1, n-2}, x_{2, n-2}, x_{4, n-2}, x_{5, n-2}, x_{6, n-2}, x_{6, n-1}, x_{2, n}, x_{3, n}, x_{5, n}, x_{6, n}\right\}$. This set is a total ctd set and $\left|D_{4}\right|=18\left\lfloor\frac{n}{7}\right\rfloor+10=\left\lfloor\frac{18 n-2}{7}\right\rfloor=\left\lfloor\frac{18 n+4}{7}\right\rfloor$.
Case $(\mathbf{v i}): n \equiv 5(\bmod 7)$.
Let $D_{5}=D_{t} \cup\left\{x_{1, n-3}, x_{2, n-3}, x_{4, n-3}, x_{5, n-3}, x_{6, n-3}, x_{6, n-2}, x_{1, n-1}, x_{3, n-1}, x_{2, n-1}, x_{1, n}, x_{5, n}, x_{6, n}\right\}$.

This set is a total ctd set and $\left|D_{5}\right|=18\left\lfloor\frac{n}{7}\right\rfloor+12=\left\lfloor\frac{18 n-6}{7}\right\rfloor$.
Case (vii): $n \equiv 6(\bmod 7)$.
Let $D_{6}=D_{t} \cup\left\{x_{1, n-4}, x_{2, n-4}, x_{4, n-4}, x_{5, n-4}, x_{6, n-4}, x_{6, n-3}, x_{2, n-2}, x_{3, n-2}, x_{5, n-2}, x_{6, n-2}, x_{1, n-1}\right.$, $\left.x_{1, n}, x_{1, n}, x_{2, n}, x_{3, n}, x_{4, n}, x_{5, n}\right\} . D_{6}$ is a tctd set and $\left|D_{6}\right|=18\left\lfloor\frac{n}{7}\right\rfloor+16=\left\lfloor\frac{18 n+4}{7}\right\rfloor$.
$\left(\left\lfloor\frac{18 n+4}{7}\right\rfloor, \quad n=0,4,6(\bmod 7)\right.$
Therefore, $\gamma_{t c t d}\left(P_{6, n}\right)=\left\{\begin{array}{ll}\left\lfloor\frac{18 n+12}{7}\right\rfloor, & n=1,2(\bmod 7)\end{array} \quad\right.$ for $n \geq 7$.
Remark 2.4. $\gamma_{t c t d}\left(P_{6, n+1}\right)=2 n+4, n=1,2,3,4$ and $\gamma_{c t d}\left(P_{6, n}\right)=16, n=6$.
Theorem 2.5. For $n \geq 9$,

$$
\gamma_{t c t d}\left(P_{8, n}\right)= \begin{cases}\left\lfloor\frac{28 n+8}{9}\right\rfloor, & n \equiv 0,1(\bmod 9) \\ \left\lfloor\frac{28 n+16}{9}\right\rfloor, & n=2,4,8(\bmod 9) \\ \left\lfloor\frac{28 n+24}{9}\right\rfloor, & n \equiv 3,5,6,7(\bmod 9)\end{cases}
$$

Proof: We present a total complementary tree dominating set (tctd) D_{t} of $P_{8, n}$ as follows.
Let $n \geq 9$. We split the set of columns of $P_{8, n}$ into blocks $B_{i}, B_{i} \cong P_{8,9}$ for $i=1,2, \ldots, q$.
$P_{i}=\left\{x_{1,9 i-8}, x_{1,9 i-7}, x_{1,9 i-1}, x_{2,9 i-5}, x_{2,9 i-4}, x_{2,9 i-3}, x_{2,9 i-1}, x_{3,9 i-8}, x_{3,9 i-6}, x_{3,9 i-3}, x_{4,9 i-8}\right.$, $x_{4,9 i-4}, x_{4,9 i-2}, x_{4,9 i}, x_{5,9 i-7}, x_{5,9 i-4}, x_{5,9 i-2}, x_{5,9 i}, x_{6,9 i-7}, x_{6,9 i-5}, x_{7,9 i-5}, x_{7,9 i-3}, x_{7,9 i-8}, x_{7,9 i}$, $\left.x_{8,9 i-8}, x_{8,9 i-7}, x_{8,9 i-4}\right\}$ dominates the first 8 columns of the block $B_{i}, i=1,2, \ldots, q$ such that $<P_{8, n}-P_{i}>$ is a tree.
Let $D_{t}=\bigcup_{i=1}^{q} P_{i}$. (Figure 5.)

Figure 5.

We consider the following nine cases.(Figure 6.)

Figure 6.

Case $(\mathbf{i}): n \equiv 0(\bmod 9)$.
Let $n=9 q$. Clearly, $<V\left(P_{8, n}\right)-D_{t}>$ is a tree and D_{t} is a minimal total ctd set.
$\left|D_{t}\right|=28 q=\left\lfloor\frac{28 n+8}{9}\right\rfloor$.
Case (ii): $n \equiv 1(\bmod 9)$.
Let $D_{1}=D_{t} \cup\left\{x_{1, n}, x_{2, n}, x_{6, n}, x_{7, n}\right\}$. Then D_{1} is a tctd set and $\left|D_{1}\right|=28\left\lfloor\frac{n}{9}\right\rfloor+4=\left\lfloor\frac{28 n+8}{9}\right\rfloor$.
Case (iii): $n \equiv 2(\bmod 9)$.
Let $D_{2}=D_{t} \cup\left\{x_{1, n-1}, x_{3, n-1}, x_{4, n-1}, x_{6, n-1}, x_{7, n-1}, x_{1, n}, x_{6, n}, x_{7, n}\right\}$.
This is a tctd set and $\left|D_{2}\right|=28\left\lfloor\frac{n}{9}\right\rfloor+8=\left\lfloor\frac{28 n+16}{9}\right\rfloor$.
Case (iv): $n \equiv 3(\bmod 9)$.
Let $D_{3}=D_{t} \cup\left\{x_{1, n-2}, x_{3, n-2}, x_{4, n-2}, x_{6, n-2}, x_{7, n-2}, x_{1, n-1}, x_{7, n-1}, x_{8, n-1}, x_{1, n}, x_{2, n}, x_{4, n}, x_{5, n}\right\}$.
D_{3} is a minimal tctd set and $\left|D_{3}\right|=28\left\lfloor\frac{n}{9}\right\rfloor+12=\left\lfloor\frac{28 n+24}{9}\right\rfloor$.
Case (v): $n \equiv 4(\bmod 9)$.
Let $D_{4}=D_{t} \cup\left\{x_{1, n-3}, x_{3, n-3}, x_{4, n-3}, x_{6, n-3}, x_{7, n-3}, x_{1, n-2}, x_{3, n-3}, x_{4, n-3}, x_{5, n-3}, x_{6, n-3}, x_{1, n}, x_{2, n}\right.$, $\left.x_{8, n-3}, x_{8, n}\right\}$.
This set is a minimal tctd set and $\left|D_{4}\right|=28\left\lfloor\frac{n}{9}\right\rfloor+14=\left\lfloor\frac{28 n+16}{9}\right\rfloor$.
Case $(\mathbf{v i}): n \equiv 5(\bmod 9)$.
Let $D_{5}=D_{t} \cup\left\{x_{1, n-4}, x_{3, n-4}, x_{4, n-4}, x_{6, n-4}, x_{7, n-4}, x_{1, n-3}, x_{6, n-3}, x_{7, n-3}, x_{3, n-2}, x_{4, n-2}, x_{1, n-1}\right.$,
$\left.x_{5, n-1}, x_{6, n-1}, x_{8, n-1}, x_{1, n}, x_{3, n}, x_{4, n}, x_{8, n}\right\}$.
This set is a minimal tctd set and $\left|D_{5}\right|=28\left\lfloor\frac{n}{9}\right\rfloor+18=\left\lfloor\frac{28 n+24}{9}\right\rfloor$.
Case (vii): $n \equiv 6(\bmod 9)$.
Let $D_{6}=D_{t} \cup\left\{x_{1, n-5}, x_{3, n-5}, x_{4, n-5}, x_{6, n-5}, x_{7, n-5}, x_{1, n-4}, x_{6, n-4}, x_{7, n-4}, x_{3, n-3}, x_{4, n-3}, x_{1, n-2}\right.$,
$\left.x_{5, n-2}, x_{6, n-2}, x_{8, n-2}, x_{1, n-1}, x_{3, n-1}, x_{4, n-1}, x_{8, n-1}, x_{3, n}, x_{4, n}, x_{5, n}, x_{6, n}\right\}$.
D_{6} is a minimal tctd set and $\left|D_{6}\right|=28\left\lfloor\frac{n}{9}\right\rfloor+20=\left\lfloor\frac{28 n+16}{9}\right\rfloor$.
Case (viii): $n \equiv 7(\bmod 9)$.
Let $D_{7}=D_{t} \cup\left\{x_{1, n-6}, x_{3, n-6}, x_{4, n-6}, x_{6, n-6}, x_{7, n-6}, x_{1, n-5}, x_{6, n-5}, x_{7, n-5}, x_{3, n-4}, x_{4, n-4}, x_{1, n-3}\right.$, $\left.x_{5, n-3}, x_{6, n-3}, x_{8, n-3}, x_{1, n-2}, x_{3, n-2}, x_{4, n-2}, x_{8, n-2}, x_{5, n-1}, x_{6, n-1}, x_{2, n}, x_{3, n}, x_{7, n}, x_{8, n}\right\}$.
This set is a minimal tctd set and $\left|D_{7}\right|=28\left\lfloor\frac{n}{9}\right\rfloor+24=\left\lfloor\frac{28 n+24}{9}\right\rfloor$.
Case (ix): $n \equiv 8(\bmod 9)$.
Let $D_{8}=D_{t} \cup\left\{x_{1, n-7}, x_{3, n-7}, x_{4, n-7}, x_{6, n-7}, x_{7, n-7}, x_{1, n-6}, x_{2, n-5}, x_{4, n-5}, x_{5, n-5}, x_{7, n-5}, x_{8, n-5}\right.$,
$\left.x_{2, n-4}, x_{6, n-4}, x_{4, n-3}, x_{6, n-3}, x_{8, n-3}, x_{1, n-2}, x_{2, n-2}, x_{4, n-2}, x_{8, n-2}, x_{5, n-1}, x_{6, n-1}, x_{2, n}, x_{3, n}, x_{7, n}, x_{8, n}\right\}$.
This set is a minimal tctd set and $\left|D_{8}\right|=28\left\lfloor\frac{n}{9}\right\rfloor+26=\left\lfloor\frac{28 n+16}{9}\right\rfloor$.
Therefore, $\gamma_{t c t d}\left(P_{8, n}\right)= \begin{cases}\left\lfloor\frac{28 n+8}{9}\right\rfloor, & n \equiv 0,1(\bmod 9) \\ \left\lfloor\frac{28 n+16}{9}\right\rfloor, & n=2,4,8(\bmod 9) \\ \left\lfloor\frac{28 n+24}{9}\right\rfloor, & n \equiv 3,5,6,7(\bmod 9)\end{cases}$
Remark 2.6. $\gamma_{t c t d}\left(P_{8, n}\right)=6$ if $n=2, \gamma_{t c t d}\left(P_{8,2 n+1}\right)=6 n+4$ if $n=1,2,3$ and $\gamma_{t c t d}\left(P_{8,2 n}\right)=6 n+8$ if $n=2,3,4$.

Acknowledgements

The authors would like to thank the referees for their helpful suggestions.

References

[1] E.J. Cockayne, R.M. Dawes and S.T. Hedetniemi, Total domination in graphs, Networks, 10 (1980), 211-219.
[2] M. El-Zahav and C.M. Pareek, Domination number of products of graphs, Ars Combin., 31 (1991), 223-227.
[3] S. Gravier, Total domination number of grid graphs, Discrete Appl. Math., 121 (2002), 119-128.
[4] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of domination in graphs, Marcel Dekker Inc., New York, 1998.
[5] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Domination in graphs: Advanced Topics, Marcel Dekker Inc., New York, 1998.
[6] S. Muthammai, M. Bhanumathi, P. Vidhya, Complementary tree domination in graphs, International Mathematical Forum, 6(26) (2011), 1273-1283.
[7] S. Muthammai, P. Vidhya, Complementary tree domination in grid graphs, International Journal of Engineering Science, Advanced Computing and Bio-Technology, 2(3) (2011), 118-129.
[8] O. Ore, Theory of graphs, Amer. Math. Soc. Colloq. Publication, 38, 1962.

[^0]: \ddagger This research work is supported by UGC-MRP No. F. MRP-3811/11 (MRP/UGC-SERO).

