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Abstract

LetG = (V,E) be a nontrivial, simple, finite and undirected graph. A dominating setD is called
a complementary tree dominating set if the induced subgraph < V −D > is a tree. The minimum
cardinality of a complementary tree dominating set is called the complementary tree domination
number of G and is denoted by γctd(G). A dominating set Dt is called a total complementary
tree dominating set if every vertex v ∈ V is adjacent to an element of Dt and < V − Dt > is
a tree. The minimum cardinality of a total complementary tree dominating set is called the total
complementary tree domination number of G and is denoted by γtctd. In this paper, we determine
the total complementary tree domination numbers of some grid graph.
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1 Introduction

The graphs considered here are nontrivial, simple, finite and undirected. Let G be a graph with

vertex set V (G) and edge set E(G). The concept of domination was first studied by Ore [8]. A set

D ⊆ V is said to a dominating set of G, if every vertex in V −D is adjacent to some vertex in D. The

minimum cardinality of a dominating set is called the domination number of G and is denoted by γ(G).

The concept of complementary tree domination was introduced by S. Muthammai, M. Bhanumathi and

P. Vidhya in [6]. A dominating set D ⊆ V is called a complementary tree dominating (ctd) set, if the

subgraph < V −D > induced by V −D is a tree. The minimum cardinality of a complementary tree

dominating set is called the complementary tree domination number of G and is denoted by γctd(G).

The concept of total domination in graphs was introdued by Cockayne, Daves and Hedetnimi [1]. The

total domination number of a graphG denoted by γt(G) is the minimum cardinality of a total dominating

set in G. A dominating set S is called a total dominating set if every vertex v ∈ V is adjacent to an

element of S. A dominating set Dt is called a total complementary tree dominating set if every vertex

v ∈ V is adjacent to an element of Dt and < V −Dt > is a tree. The minimum cardinality of a total

complementary tree dominating set is called the total complementary tree domintion number of G and

is denoted by γtctd(G).
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The cartesian product of two graphsG1 andG2 is the graph, denoted byG1×G2 with V (G1×G2) =

V (G1) × V (G2) (where × denotes the cartesian product of sets) and two vertices u = (u1, u2) and

v = (v1, v2) in V (G1 × G2) are adjacent in G1 × G2 whenever [u1 = v1 and (u2, v2) ∈ E(G2)] or

[u2 = v2 and (u1, v1) ∈ E(G1)]. If each G1 and G2 is a path Pm and Pn (respectively), then we will

call Pm×Pn, a m×n grid graph. For notational convenience we denote Pm×Pn by Pm,n. The reader

is referred to [4] for the survey of results on domination.

In this paper, we determine the total complementary tree domination number of Pm,n where m =

4, 6, 8. S. Muthammai and P. Vidhya [7] have established γctd(Pm,n), m = 2, 3, 4, 5, 6. P1,n is nothing

but the path Pn on n vertices. S. Muthammai, M. Bhanumathi and P. Vidhya [6] have established

γctd(Pn) = n− 2, n ≥ 4.

Notation. Let 1, . . . ,m and 1, . . . , n be the vertices of Pm and Pn, respectively. Then the vertices of

Pm,n are denoted by xi,j where i = 1, . . . ,m and j = 1, . . . , n.

2 Total Complementary Tree Domination in Grid Graphs

Theorem 2.1. For n ≥ 5,

γtctd(P4,n) =


⌊
8n+ 2

5

⌋
, n = 0, 1, 4 (mod 5)

⌊
8n+ 6

5

⌋
, n = 2, 3 (mod 5)

Proof: We present a total complementary tree dominating set (tctd) Dt of P4,n as follows.

Let n ≥ 5. We split the set of columns of P4,n into blocks Bi, Bi
∼= P4,5 for i = 1, 2, . . . , q.

Pi = {x1,5i−4, x2,5i−4, x2,5i−2, x2,5i−1, x2,5i, x3,5i, x4,5i−3, x4,5i−2} dominates the first 4 columns of

the block Bi, i = 1, 2, . . . , q such that < P4,n − Pi > is a tree.

Let Dt =

q⋃
i=1

Pi. (Figure 1.)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Figure 1.

We consider the following five cases.(Figure 2.)

Case (i): n ≡ 0 (mod 5).

Let n = 5q. Clearly, < V (P4,n)−Dt > is a tree and Dt is a minimal total ctd set.

|Dt| = 8q =

⌊
8n+ 2

5

⌋
.

Case (ii): n ≡ 1 (mod 5).

Let D1 = Dt ∪ {x2,n, x3,n}. This set is a total ctd set and |D1| = 8
⌊n
5

⌋
+ 2 =

⌊
8n+ 2

5

⌋
.
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γtctd
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Figure 2.

Case (iii): n ≡ 2 (mod 5).

Let D2 = Dt ∪ {x4,n−1, x1,n, x2,n, x4,n}. This set is a tctd set and |D2| = 8
⌊n
5

⌋
+ 4 =

⌊
8n+ 4

5

⌋
.

Case (iv): n ≡ 3 (mod 5).

LetD3 = Dt∪{x1,n−2, x1,n−1, x3,n−1, x4,n−1, x3,n, x4,n}. This set is a tctd set and |D3| = 8
⌊n
5

⌋
+6 =⌊

8n+ 6

5

⌋
.

Case (v): n ≡ 4 (mod 5).

LetD4 = Dt∪{x1,n−3, x2,n−3, x4,n−2, x2,n−1, x4,n−1, x2,n}. This set is a tctd set and |D4| = 8
⌊n
5

⌋
+

6 =

⌊
8n+ 2

5

⌋
.

Therefore, γtctd(P4,n) =


⌊
8n+ 2

5

⌋
, n ≡ 0, 1, 4 (mod 5)

⌊
8n+ 6

5

⌋
, n = 2, 3 (mod 5)

for n ≥ 5.

Remark 2.2. γtctd(4, 2n) = 2n+ 2, n = 1, 2 and γtctd(4, n) = 6, n = 3.

Theorem 2.3. For n ≥ 7,

γtctd(P6,n) =



⌊
18n+ 4

7

⌋
, n = 0, 4, 6 (mod 7)

⌊
18n+ 12

7

⌋
, n = 1, 2 (mod 7)

⌊
18n− 6

7

⌋
, n = 2, 5 (mod 7)

Proof: We present a total complementary tree dominating set (tctd) Dt of P6,n as follows.

Let n ≥ 7. We split the set of columns of P6,n into blocks Bi, Bi
∼= P6,7 for i = 1, 2, . . . , q.

Pi = {x1,7i−6, x1,7i−5, x2,7i−3, x2,7i−2, x2,7i−1, x2,7i, x3,7i−5, x3,7i−1, x3,7i, x4,7i−6, x4,7i−5, x4,7i−3,

x5,7i−6, x5,7i−3, x5,7i−1, x6,7i−4, x6,7i−3, x6,7i−1} dominates the first 6 columns of the block Bi, i =

1, 2, . . . , q such that < P6,n − Pi > is a tree.

Let Dt =

q⋃
i=1

Pi. (Figure 3.)
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Figure 3.

8 8 9 8 9 10 8 9 10 11 129 10 118 8 9 10 11 12 13

Figure 4.

We consider the following seven cases.(Figure 4.)

Case (i): n ≡ 0 (mod 7).

Let n = 7q. Clearly, < V (P6,n)−Dt > is a tree and Dt is a minimal total ctd set.

|Dt| = 18q =

⌊
18n+ 4

7

⌋
.

Case (ii): n ≡ 1 (mod 7).

Let D1 = Dt ∪ {x1,n, x2,n, x5,n, x6,n}. This set is a tctd set and |D1| = 18
⌊n
7

⌋
+ 4 =

⌊
18n+ 10

7

⌋
.

Case (iii): n ≡ 2 (mod 7).

LetD2 = Dt∪{x1,n−1, x5,n−1, x5,n−1, x6,n−1, x1,n, x2,n, x3,n}. |D2| is a tctd set and |D2| = 18
⌊n
7

⌋
+

6 =

⌊
18n+ 12

7

⌋
.

Case (iv): n ≡ 3 (mod 7).

LetD3 = Dt∪{x1,n−1, x3,n−1, x4,n−1, x5,n−1, x6,n−1, x1,n}. D3 is a tctd set and |D3| = 18
⌊n
7

⌋
+6 =⌊

18n− 6

7

⌋
.

Case (v): n ≡ 4 (mod 7).

LetD4 = Dt∪{x1,n−2, x2,n−2, x4,n−2, x5,n−2, x6,n−2, x6,n−1, x2,n, x3,n, x5,n, x6,n}. This set is a total

ctd set and |D4| = 18
⌊n
7

⌋
+ 10 =

⌊
18n− 2

7

⌋
=

⌊
18n+ 4

7

⌋
.

Case (vi): n ≡ 5 (mod 7).

LetD5 = Dt∪{x1,n−3, x2,n−3, x4,n−3, x5,n−3, x6,n−3, x6,n−2, x1,n−1, x3,n−1, x2,n−1, x1,n, x5,n, x6,n}.
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This set is a total ctd set and |D5| = 18
⌊n
7

⌋
+ 12 =

⌊
18n− 6

7

⌋
.

Case (vii): n ≡ 6 (mod 7).

Let D6 = Dt ∪ {x1,n−4, x2,n−4, x4,n−4, x5,n−4, x6,n−4, x6,n−3, x2,n−2, x3,n−2, x5,n−2, x6,n−2, x1,n−1,

x1,n, x1,n, x2,n, x3,n, x4,n, x5,n}. D6 is a tctd set and |D6| = 18
⌊n
7

⌋
+ 16 =

⌊
18n+ 4

7

⌋
.

Therefore, γtctd(P6,n) =



⌊
18n+ 4

7

⌋
, n = 0, 4, 6 (mod 7)

⌊
18n+ 12

7

⌋
, n = 1, 2 (mod 7)

⌊
18n− 6

7

⌋
, n = 3, 5 (mod 7)

for n ≥ 7.

Remark 2.4. γtctd(P6,n+1) = 2n+ 4, n = 1, 2, 3, 4 and γctd(P6,n) = 16, n = 6.

Theorem 2.5. For n ≥ 9,

γtctd(P8,n) =



⌊
28n+ 8

9

⌋
, n ≡ 0, 1 (mod 9)

⌊
28n+ 16

9

⌋
, n = 2, 4, 8 (mod 9)

⌊
28n+ 24

9

⌋
, n ≡ 3, 5, 6, 7 (mod 9)

Proof: We present a total complementary tree dominating set (tctd) Dt of P8,n as follows.

Let n ≥ 9. We split the set of columns of P8,n into blocks Bi, Bi
∼= P8,9 for i = 1, 2, . . . , q.

Pi = {x1,9i−8, x1,9i−7, x1,9i−1, x2,9i−5, x2,9i−4, x2,9i−3, x2,9i−1, x3,9i−8, x3,9i−6, x3,9i−3, x4,9i−8,

x4,9i−4, x4,9i−2, x4,9i, x5,9i−7, x5,9i−4, x5,9i−2, x5,9i, x6,9i−7, x6,9i−5, x7,9i−5, x7,9i−3, x7,9i−8, x7,9i,

x8,9i−8, x8,9i−7, x8,9i−4} dominates the first 8 columns of the block Bi, i = 1, 2, . . . , q such that

< P8,n − Pi > is a tree.

Let Dt =

q⋃
i=1

Pi. (Figure 5.)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Figure 5.
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We consider the following nine cases.(Figure 6.)

10 10 1011 11 11 1212 12 13 141310 10 11

10 11 12 13 14 15 10 1011 1112 12 1314 1415 1513 171616

Figure 6.

Case (i): n ≡ 0 (mod 9).

Let n = 9q. Clearly, < V (P8,n)−Dt > is a tree and Dt is a minimal total ctd set.

|Dt| = 28q =

⌊
28n+ 8

9

⌋
.

Case (ii): n ≡ 1 (mod 9).

Let D1 = Dt ∪ {x1,n, x2,n, x6,n, x7,n}. Then D1 is a tctd set and |D1| = 28
⌊n
9

⌋
+ 4 =

⌊
28n+ 8

9

⌋
.

Case (iii): n ≡ 2 (mod 9).

Let D2 = Dt ∪ {x1,n−1, x3,n−1, x4,n−1, x6,n−1, x7,n−1, x1,n, x6,n, x7,n}.

This is a tctd set and |D2| = 28
⌊n
9

⌋
+ 8 =

⌊
28n+ 16

9

⌋
.

Case (iv): n ≡ 3 (mod 9).

Let D3 = Dt ∪ {x1,n−2, x3,n−2, x4,n−2, x6,n−2, x7,n−2, x1,n−1, x7,n−1, x8,n−1, x1,n, x2,n, x4,n, x5,n}.

D3 is a minimal tctd set and |D3| = 28
⌊n
9

⌋
+ 12 =

⌊
28n+ 24

9

⌋
.

Case (v): n ≡ 4 (mod 9).

LetD4 = Dt∪{x1,n−3, x3,n−3, x4,n−3, x6,n−3, x7,n−3, x1,n−2, x3,n−3, x4,n−3, x5,n−3, x6,n−3, x1,n, x2,n,

x8,n−3, x8,n}.

This set is a minimal tctd set and |D4| = 28
⌊n
9

⌋
+ 14 =

⌊
28n+ 16

9

⌋
.

Case (vi): n ≡ 5 (mod 9).

Let D5 = Dt ∪ {x1,n−4, x3,n−4, x4,n−4, x6,n−4, x7,n−4, x1,n−3, x6,n−3, x7,n−3, x3,n−2, x4,n−2, x1,n−1,
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x5,n−1, x6,n−1, x8,n−1, x1,n, x3,n, x4,n, x8,n}.

This set is a minimal tctd set and |D5| = 28
⌊n
9

⌋
+ 18 =

⌊
28n+ 24

9

⌋
.

Case (vii): n ≡ 6 (mod 9).

Let D6 = Dt ∪ {x1,n−5, x3,n−5, x4,n−5, x6,n−5, x7,n−5, x1,n−4, x6,n−4, x7,n−4, x3,n−3, x4,n−3, x1,n−2,

x5,n−2, x6,n−2, x8,n−2, x1,n−1, x3,n−1, x4,n−1, x8,n−1, x3,n, x4,n, x5,n, x6,n}.

D6 is a minimal tctd set and |D6| = 28
⌊n
9

⌋
+ 20 =

⌊
28n+ 16

9

⌋
.

Case (viii): n ≡ 7 (mod 9).

Let D7 = Dt ∪ {x1,n−6, x3,n−6, x4,n−6, x6,n−6, x7,n−6, x1,n−5, x6,n−5, x7,n−5, x3,n−4, x4,n−4, x1,n−3,

x5,n−3, x6,n−3, x8,n−3, x1,n−2, x3,n−2, x4,n−2, x8,n−2, x5,n−1, x6,n−1, x2,n, x3,n, x7,n, x8,n}.

This set is a minimal tctd set and |D7| = 28
⌊n
9

⌋
+ 24 =

⌊
28n+ 24

9

⌋
.

Case (ix): n ≡ 8 (mod 9).

Let D8 = Dt ∪ {x1,n−7, x3,n−7, x4,n−7, x6,n−7, x7,n−7, x1,n−6, x2,n−5, x4,n−5, x5,n−5, x7,n−5, x8,n−5,

x2,n−4, x6,n−4, x4,n−3, x6,n−3, x8,n−3, x1,n−2, x2,n−2, x4,n−2, x8,n−2, x5,n−1, x6,n−1, x2,n, x3,n, x7,n, x8,n}.

This set is a minimal tctd set and |D8| = 28
⌊n
9

⌋
+ 26 =

⌊
28n+ 16

9

⌋
.

Therefore, γtctd(P8,n) =



⌊
28n+ 8

9

⌋
, n ≡ 0, 1 (mod 9)

⌊
28n+ 16

9

⌋
, n = 2, 4, 8 (mod 9)

⌊
28n+ 24

9

⌋
, n ≡ 3, 5, 6, 7 (mod 9)

Remark 2.6. γtctd(P8,n) = 6 if n = 2, γtctd(P8,2n+1) = 6n+4 if n = 1, 2, 3 and γtctd(P8,2n) = 6n+8

if n = 2, 3, 4.
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