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Abstract 

A simple graph G is called  near felicitous if there exists a 1 – 1 function  f:V(G) → {0, 1, 2, . . 

. , q – 1, q + 1} such that the set of induced edge labels f *(uv) = (f(u) + f(v)) (mod q) are all 

distinct when the addition is taken modulo q with residues 1, 2, 3,  . . . , q.  It is shown that an even 

subgraph of a near felicitous graph with an even number of edges contain an even number of odd 

labeled edges.  As a consequence, some families of graphs are shown to be non – near felicitous. 

Keywords: Near felicitous, cartesian product, wreath product, odd edge labeling, near odd edge 

labeling, even edge labeling, near even edge labeling, even graph. 
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1    Introduction 

In 1966, Rosa [7] introduced  - valuation of a graph and subsequently Golomb introduced graceful 

labeling.  In 1980, Graham and Slonae [5] introduced the harmonious labeling of a graph.  Several 

graph labelings have been found in Gallian Survey [4].  Lee, Schmeichel and Shee [6] introduced the 

concept of  felicitous graph as a generalization of a harmonious graph.  A felicitous labeling of a graph 

G, with q edges is an injection f:V(G) → {0, 1, 2,. . . , q} so that the induced edge labels f 
*
(xy) = (f(x) 

+ f(y)) (mod q) are distinct.  

Near Graceful lebeling was introduced by Frucht [3] and near  - labeling was introduced by S. El 

– Zanati, M. Kenig and C. Vanden Eynden [8].  It motivates us to define the concept of near felicitous 

labeling as follows. 

A near felicitous labeling of a graph G, with q edges is an injection f:V(G) → {0, 1, 2, . . . , q – 1, q 

+ 1}  so  that  the  induced  edge labels  f 
*
(xy) = (f(x) + f(y)) (mod q)  are  distinct  and f*(E(G)) = {1, 

2, 3,  . . . , q}.  

The graphs we consider are simple.  For notation and terminology, we refer to [1].  Throughout this 

paper, f denotes a 1 – 1 function from V(G) to a subset of the set of non- negative integers and, for any 

edge e = xy  E(G), f*(e) = f(x) + f(y).  Let f be a near felicitous labeling of G.  Then an edge e of G is 

called an odd edge under f, if f*(e) is odd.  For any two graphs G and H, the cartesian product G x H is 

the graph with vertex set V(G x H) = V(G) x V(H) and E(G x H) = {(u,v)   (u’, v’). either uu’  E(G) 

and v = v’ or u = u’ and vv’  E(H)}.  The wreath product G  H has vertex set V(G) x V(H) in which 

(g1, h1) is adjacent to (g2, h2) whenever g1g2  E(G) or g1 = g2 and h1h2  E(H). Let G1 and G2 be any 
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two graphs and . V(G2) → V(G1) be any mapping.  Then G2[G1] is the graph by attaching at each 

vertex v of G2 a copy of G1 rooted at (v). V(G) x V(H) in which (g1, h1) is adjacent to (g2, h2) 

whenever g1g2  E(G) or g1 = g2 and h1h2  E(H). For any two graphs G and H, by (G  H) (v), we 

mean the graph obtained by fusing a copy of H at the vertex v of G.  The Middle graph M(G) of a 

graph G is the graph whose  vertex  set  is  V(G)  E(G)  and  in  which  two  vertices  are  adjacent  if  

and only  if  either  they  are  adjacent edges  of  G  or  one  is  a  vertex  of  G  and  the other is an 

edge incident with it. The  Total graph  T(G) of a graph G has the vertex V(G)  E(G)  in  which  two  

vertices  are  adjacent  whenever  they are either adjacent or incident in G.  

Let G be a (p, q) graph.  A 1 – 1 function f:V(G) → {0, 1, 2,  . . . , q} is said to be an odd – edge 

labeling of G, if for every edge e = uv   E(G), f(u) + f(v) is odd and f*(E(G)) = {1, 3, 5,  . . . , 2q – 1}.  

We observe that if G admits an odd – edge labeling, then G is bipartite.  However, the converse is not 

true.  For example, C6 is bipartite, but it has no odd – edge labeling. In [6], it has been proved that 

P2C2k+1 and P3C2k+1 are felicitous and conjectured that PnC2k+1 is felicitous for all n4. But P5C5 

is near felicitous as shown in Figure 1. 

 

Figure 1:  A near felicitous labeling of P5C5. 

2    Main Results 

Definition 2.1. Let G be a graph.  A 1 – 1 function f:V(G) → {0, 1, 2,  . . . , q – 1, q + 1} is said to be a 

near even edge labeling of G,  if for every edge e = uv  E(G), f(u) + f(v) is even and f *(E(G)) = {2, 4, 

6,  . . . , 2q}.  

Similarly, a 1 – 1 function f:V(G) → {0, 1, 2,  . . . , q – 1, q + 1} is said to be a near odd edge  

labeling   if  for  every  edge  e = uv  E(G),  f(u) + f(v)  is  odd and f *(E(G)) = {1, 3, 5,  . . . , 2q – 1}. 

 A subgraph H of a graph G is said to be an even  subgraph of G, if the degree of every vertex of H 

is even in H. 

Theorem 2.2.  Let G be a near felicitous graph with even number of edges.  Then every even subgraph 

G’ of G contains an even number of odd edges. 

Proof:    Let g be a near felicitous labeling of G.  Clearly, for any even subgraph G’ of G, we have 

 
 


)'( )'(

))(mod()deg()(*
GEe GVv

qvgveg          (1) 

Since q is even and also deg(v) is even for every v  V(G’), the L.H.S. of  (1) is even.  So we conclude 

that the number of edges with odd labels is even.                   

Corollary 2.3.  No even graph with 4n + 2 edges is near felicitous. 
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Proof:   Suppose an even graph G with 4n + 2 edges is near felicitous, then the number of odd edges 

of G is 
2

24 n
 = 2n + 1, which is odd, a contradiction.  Hence, no even graph with 4n + 2 edges is 

near felicitous.                   

Corollary 2.4.  If G is an r – regular graph on p vertices, then M(G) is not near felicitous in the 

following cases. 

(i)  p ≡ 2 (mod 4) and r ≡ 2 (mod 8). 

(ii) p ≡ 2 (mod 4) and r ≡ 6 (mod 8). 

(iii) p ≡ 1 (mod 2) and r ≡ 4 (mod 8). 

Proof:   In the above cases, E(M(G)) = )4(mod2
2

)1(








 rpr
 M(G) is an even graph. The result 

follows from Corollary 2.3.                  

Corollary 2.5.  If G is a d – regular graph, then T(G) is  not near felicitous in the following case. 

E(G) ≡ 1 (mod 2) and d ≡ 0 (mod 4) 

Proof: Since T(G) is even and E(T(G)) = (2 + d) E(G) ≡ 2 (mod 4), the result follows from 

Corollary 2.3.                    

Let 


mnC ,  stand for the graph obtained from Cn x Pm by taking two new distinct vertices, say, u, v 

and joining u to all the vertices of 
1
nC   and v to all the vertices of  

m
nC . 

Corollary 2.6. The following graphs are not near felicitous: 

(a) Cn,m, when n ≡ 2 (mod 4) and m ≡ 0 (mod 2). 

(b) 
mnC ,  when n ≡ 2 (mod 4) and m ≡ 0 (mod 2).  

Proof: The above graphs are all even.  Further, 

(a) E(Cn,m) = n(2m + 1) ≡ 2 (mod 4). 

(b) E( 
mnC , ) = n(2m + 1) ≡ 2 (mod 4).                

Corollary 2.7.  The graph Cn  
c
mK  when n ≡ 2 (mod 4) and m ≡ 0 (mod 2) is not near felicitous. 

Proof:  The above graph is even. Further, E(Cn  
c
mK ) = n(m + 1) ≡ 2 (mod 4).           

Corollary 2.8. Suppose G1 and G2 are any two even graphs, then G2[G1] is not near felicitous in the 

following cases. 

(i) E(G1) ≡ 1 (mod 4), V(G2) ≡ 1 (mod 4) and E(G2) ≡ 1 (mod 4). 

(ii) E(G1) ≡ 1 (mod 4), V(G2) ≡ 3 (mod 4) and E(G2) ≡ 3 (mod 4). 

Proof: Since G2[G1] is even and E(G2[G1]) = V(G2) E(G1) + E(G2) ≡ 2 (mod 4) in both the 

cases,  G2[G1] is not near felicitous. The result follows from Corollary 2.3.            

Theorem 2.9. Let G be a graph with odd number of edges and let f: V(G) → {0, 1, 2,  . . .  , q – 1, q + 

1} be a near – even edge labeling of G.  Then f is a near felicitous labeling of G. 
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Proof:   Let V(G) = {0, 1, 2,  . . .  , q – 1, q + 1}, then f*(E(G)) = {2, 4, 6,  . . . , 2q}. Since q is odd, 

f*(E(G)) = {2, 4, 6,  . . . , q – 1, q + 1, . . .  , 2q – 2, 2q}. After taking (mod q), f*(E(G)) = {2, 4, 6,  . . . , 

q – 1, 1, 3, 5, . . . ,q – 2, q} = {1, 2, 3,  . . . , q – 1, q}. Then f is a near felicitous labeling of G.      

Theorem 2.10.  Let G be a graph with odd number of edges and  f:V(G) → {0, 1, 2,  . . . , q – 1, q + 1} 

be a near odd edge labeling of G.  Then f is a near felicitous labeling of G. 

Proof:   Let V(G) = {0, 1, 2,  . . .  , q – 1, q + 1} and let f*(E(G)) = {1, 3, 5,  . . . , 2q – 1} be a near 

odd edge labeling of G. Since q is odd, then f*(E(G)) = {1, 3, 5,  . . . . q, q + 2, q + 4,  . . . , 2q – 1} 

After taking (mod q), f*(E(G)) = {1, 3, 5,  . . . . q, 2, 4,  . . . , q – 1} = {1, 2, 3,  . . . , q – 1, q}. Then, f is 

a near felicitous labeling of G.                 

Observation 2.11.  Let G be a graph with even number of edges and  f:V(G) → {0, 1, 2, . . . , q – 1, q 

+ 1} be a near even edge labeling of G.  Then f is not a near felicitous labeling of G. 

Proof:    Let f:V(G) → {0, 1, 2, . . . , q – 1, q + 1} be a near even edge labeling of G.  Then f*(E(G)) = 

{2, 4, 6,  . . .  , 2q}.  Since q is even, f*(E(G)) = {2, 4, 6,  . . .  , q – 2, q, q + 2, q + 4, . . . , 2q – 2, 2q}.  

After taking (mod q), f*(E(G)) = {2, 4, 6, . . . , q – 2, q, 2, 4,  . . . , q – 2, q}.  Hence, the edge labels are 

not distinct.  Hence, f is not a near felicitous labeling of G.              

Observation 2.12.  Let G be a graph with even number of edges and  f:V(G) → {0, 1, 2, . . . , q – 1, q 

+ 1} be a near odd edge labeling of G.  Then f is not a near felicitous labeling of G. 

Proof: Let f:V(G) → {0, 1, 2, . . . , q – 1, q + 1} be a near odd edge labeling of G.  Then f*(E(G)) = {1, 

3, 5,  . . .  , 2q – 1}.  Since q is even, f*(E(G)) = {1, 3, 5,  . . .  , q – 1, q + 1, q + 3,  . . . , 2q – 3, 2q – 1}.  

After taking (mod q), f*(E(G)) = {1, 3, 5, . . . , q – 1, 1, 3, 5,  . . . , q – 1}.  Hence, the edge labels are 

not distinct.  Hence, f is not a near felicitous labeling of G.              

Observation 2.13. If G and H are near felicitous then their cartesian product G x H need not be near 

felicitous.  For example, K1,4l+3 and K2 are near felicitous, but K1,4l+3 x K2 is not near felicitous, since 

E(K1,4l+3 x K2) ≡ 2(mod 4) and K1,4l+3 x K2 is even. 

Observation 2.14. If G and H are near felicitous then their wreath  product G  H need not be near 

felicitous.  For example, let G = Km and H = Kn with m ≠ n and 1  m , n  5.  We know that Km  Kn  

Kmn.  Clearly as mn  5, Km  Kn is not near felicitous.  Similarly, G  H need not be near felicitous, 

when one of them, say G is near felicitous and the other namely, H is not near felicitous.  For example, 

let G = K4  and  H = Km,  m  5. 

Observation 2.15. If G and H are near felicitous, then (G  H) (v) need not be near felicitous.  For 

example, C3 and C4k+3 are near felicitous.  But C3  C4k+3 (v) is not near felicitous, where v is any 

vertex of C3, since C3  C4k+3 (v) is even and E(C3  C4k+3 (v) = 4k + 6 ≡ 2 (mod 4). 

Observation 2.16.  Let G be a near felicitous graph and a 1 – 1 function f:V(G) → {0, 1, 2,  . . . , q – 1, 

q + 1} is said to be a near even edge labeling of G, if for every edge e = uv   E(G), f(u) + f(v) is even 

and f *(E(G)) = {2, 4, 6,  . . . , 2q}. 

Observation 2.17.  Suppose a connected graph G admits near even edge labeling, then 
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(i) All the vertices of G possess either even labels or odd labels. 

(ii) p  






 

2

3q
. 

Observation 2.18.  If G is disconnected, then the vertex labeling of each component is with the same 

parity. 

Observation 2.19. It follows from the above observation that if G admits near even edge labeling and 

if q  2p – 3, then G is a disconnected graph. 

Remark 2.20.  Let G be a (p, q) graph.  Let f be a near felicitous labeling.  Define f1(uv) = f(u) + f(v) 

for every uv  E(G).  Then f*(uv) = f1(uv)(mod q). 

Theorem 2.21.  Pn is a near felicitous graph. 

Proof:   Let V(Pn) = {ui. 1  i  n} and E(Pn) = {(ui ui+1). 1  i  n – 1}. 

Case (i): n = 2, 3. 

 The labelings of P2 and P3 are shown in the Figure 2. 

 

P2  P3 

Figure 2: Near felicitous labelings of P2 and P3.   

Case (ii): n   5  and  n ≡ 1 (mod 2). 

Define a function f:V → {0, 1, 2, . . . q – 1, q + 1 = n} by 

  f(ui) = 
2

1i
, 1  i  n and i ≡ 1 (mod 2) 

For i ≡ 0 (mod 2), 

    
2

1 in
, 1  i  n – 5 

  f(ui) = 0,  i = n – 3 

    n,  i = n – 1  

 

The edge labels are as follows. 
 

    i
n




2

3
, 2  i  n – 5 

    ),4(
2

3



ni

n
n – 4  i  n – 2 

    
2

13 n
,  i = n – 1  

Now, f1(E(G))  = {
2

3n
 + 1, 

2

3n
 + 2,  . . . , 

2

3n
 + n – 5}  {

2

3n
 + (n – 4 – n + 4), 

2

3n
 + 

   (n – 3 – n + 4), 
2

3n
+ (n – 2 – n + 4)}  {

2

13 n
}. 

f1(ui ui+1) = 
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  = {
2

5n
, 

2

7n
,  . . . , 

2

73 n
}  {

2

3n
, 

2

1n
, 

2

1n
}  {

2

13 n
}.  

  = {
2

3n
, 

2

1n
,  

2

1n
,  

2

13 n
, 

2

5n
, 

2

7n
,  . . . , 

2

73 n
}. 

After taking (mod q), f*(E(G)) = f1(E(G) (mod q) =  {
2

3n
, 

2

1n
, 

2

1n
, 

2

3n
, 

2

5n
, 

2

7n
,  . . . 

,
2

5n
}. 

Hence, Pn, n  5 and n ≡ 1 (mod 2) is a near felicitous graph.     

Case (iii): n  4  and  n ≡ 0 (mod 2) 

Define a function f:V → {0, 1, 2,  . . . , q – 1, q + 1 = n} by 

  f(u1) =   0 

  f(ui) =   i + 1, 3  i  n – 1  and  i ≡ 1 (mod 2) 

For i ≡ 0 (mod 2), 

    i – 1,    2  i  n – 2      

    2,  i = n  

The edge labels are as follows.  

 f1(u1 u2)  = 1 

    2i + 1,   2  i  n – 2    
 

    3,  i = n – 1  

Now, f1(E(G)) = {1}  {5, 7,  . . . , 2(n – 3) + 1, 2(n – 2) + 1}  {3} = {1}  {5, 7,  . . . , 2n – 5, 2n – 

3}  {3}  =  {1, 3, 5,  . . . , 2n – 5, 2n – 3} = {1, 3, 5,  . . . , 2q – 1}. 

Hence, by Theorem 2.10, Pn, n  4  and  n ≡ 0 (mod 2) is a near felicitous graph.           

Illustration 2.22. Near felicitous labelings of P11 and P10 are given below. 

 

Figure 3: A near felicitous labeling of P11. 

 

 

Figure 4: A near felicitous labeling of P10. 
 

Theorem 2.23.  Cn is a near felicitous graph for n 2 (mod 4).  

Proof:  Let V(Cn) = {ui. 1  i  n} and E(Cn) = {(ui ui+1). 1  i  n – 1}  {(un u1)}. 

Case (i): n ≡ 0 (mod 4). 

Define a function f:V → {0, 1, 2, . . . q – 1, q + 1 = n + 1} by 

  f(ui) = 
2

1i
, 1  i  n – 1 and i ≡ 1 (mod 2). 

 f(ui)     = 

f1 (ui ui+1)           = 
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For i ≡ 0 (mod 2), 

  
22

in
 ,  2  i  

2

n
  

f(ui) =  
22

in
 + 1, 

2

n
 + 1  i  n – 4 

  0,  i = n – 2 

  n + 1,  i = n 

 

The edge labels are as follows. 
 

  
2

n
 + (i + 1), 1  i  

2

n
 - 1 

f*(ui ui+1) = 1,  i = 
2

n
 

  i - 
2

n
 + 2, 

2

n
+ 1  i  n – 1 

 

f*(un u1) = 2. 

Now, f*(E(G))  = {
2

n
+ 2, 

2

n
 + 3,  . . .  ,

2

n
 + 

2

n
 - 1 + 1}  {1}  {

2

n
 + 1 - 

2

n
 + 2, 

2

n
 + 2 - 

2

n
 + 2, . 

    . .  , n – 1 - 
2

n
 + 2}  {2}. 

  = {
2

n
+ 2, 

2

n
 + 3,  . . .  , n}  {1}  {3, 4,  . . .  , 

2

n
 + 1}  {2}. 

  = {1, 2, 3, 4,  . . . , 
2

n
 + 1, 

2

n
 + 2, 

2

n
 + 3,  . . . , n}. 

Clearly, the edge labels are distinct and hence, Cn, n ≡ 0 (mod 4) is a near felicitous graph. 

Case (ii): n ≡ 1, 3 (mod 4). 

Define a function f:V → {0, 1, 2,  . . . , q – 1, q + 1 = n + 1} by 

        2(i – 1),  1  i  
2

3n
 

       2(i - 
2

3n
 - 1) + 3, 

2

3n
 + 1  i  n 

 

The edge labels are as follows.   

   4i – 2,  1  i  
2

3n
 - 1 

   4(i - 
2

3n
 + 1),

2

3n
  i  n – 1  

  

f(un u1)  = n – 2.  

  f(ui)  = 

  f1(ui ui+1) = 
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Now, f1(E(G))  = {2, 6,  . . . , 4(
2

3n
 - 2) – 2, 4(

2

3n
 - 1) – 2}  {4(

2

3n
 - 

2

3n
 + 1),  

 4(
2

3n
 + 1 - 

2

3n
 + 1),  . . . , 4(n – 2 - 

2

3n
 + 1), 4(n – 1 - 

2

3n
 + 1)}  {n – 2}. 

  = {2, 6,  . . . , 2n – 4, 2n}  {4, 8,  . . . , 2n – 6}  {n – 2}. 

  = {2, 4, 6,  . . . , 2n – 6, 2n – 4, n – 2, 2n}. 

After taking (mod q), f*(E(G)) = f1(E(G) (mod q) = {2, 4, 6,  . . . , n – 6, n – 4, n – 2, n}  

    = {1, 2, 3,  . . . , n}. 

Hence, Cn, when n ≡ 1, 3 (mod 4) is a near felicitous graph.              

Illustration 2.24. Near felicitous labeling of C8  and C9 are shown in Figures 5 and 6 below. 

 

Figure 5: A near felicitous labeling of C8. 

 

Figure 6: A near felicitous labeling of C9. 

 

Remark 2.25.  Cn is not a near felicitous graph when n  2 (mod 4).  

Proof:  Since Cn is an even graph with 4n + 2 edges, by Corollary 2.3, Cn is not a near felicitous graph 

when  n  2 (mod 4).                   

Theorem 2.23. Km,n is a near felicitous graph for all m and n. 

Proof:  Case (i): m = 1 . 

Let V(K1,n) = {ui.  0  i  n} and E(K1,n) = {(uoui)  / 1  i  n}. 

 Define a function f:V  {0, 1, 2, 3, . . . , q – 1, q + 1 = n + 1}  by 

  f(uo) = 1 

 

    0,  i = 1 

  f(ui) = i  2  i  n – 1 

    n + 1,  i = n  

The edge labels are as follows.  

 

    1,  i = 1 

  f*(u0 ui) = i + 1,  2  i  n – 1 

    2,  i = n  
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Now f*(E(G)) = {1}  {3, 4, . . . , n}  {2} = {1, 2, 3, 4, . . . , n}.  

Hence,  K1,n is a near felicitous graph. 

Case (ii): m  1 and n  1. 

Let V(Km,n) = {ui, vj, 1 ≤ i  m and 1 ≤ j  n} and E(Km,n) = {(ui vj) / 1 ≤ i  m  and  1 ≤ j  n}. 

Define a function f:V  {0, 1, 2, . . . , q – 1, q + 1 = mn + 1}  by 

  f(ui) = i,  1 ≤ i  m 

  f(vj) = mj + 1,  1 ≤ j  n 

The edge labels are as follows. 

For 1 ≤ j  n, f1 (ui vj)  = i + mj + 1, 1 ≤ i  m 

Now f1(E(G) = {m + 2, m + 3,  . . .  , 2m + 1, 2m + 2, 2m + 3,  . . . , 3m + 1,  . . . , mn, mn + 1, mn + 2, 

   mn + 3,  . . . , mn + m + 1}. 

After taking (mod q), f*(E(G))  = f1(E(G) (mod q) = {m + 2, m + 3,  . . .  , 2m + 1, 2m + 2, 2m + 3,  . 

     . . , 3m + 1,  . . . , mn, 1, 2, 3,  . . .  , m + 1}. 

    = {1, 2, 3,  . . .  , m + 1, m + 2, m + 3,  . . .  , 2m + 1, 2m + 2, 2m + 3,  

     . . . , 3m + 1,  . . . , mn}. 

Clearly, all the edge labels are distinct and hence,  Km,n is a near felicitous graph for all m and n.     

Illustration 2.27. Near felicitous labelings of K1,7 and K4,3 are shown in Figures 7 and 8 respectively. 

 

Figure 7: A near felicitous labeling of K1,7. 

 

 

Figure 8: A near felicitous labeling of  K4,3. 

 

Theorem 2.28.  The graph Hn,n is a near felicitous graph for n≥2. 

Proof:  Let V(Hn,n) = {ui / 1  i  n}  {vj / 1  j  n } and E(Hn,n) = {(vj ui). 1  i  n,  i  j  n}. 

Case (i): n = 2. 

The graph H2,2 is near felicitous as shown in the Figure 9. 

 

Figure 9: A near felicitous labeling of  H2,2. 
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Case (ii): n ≥ 3.   

Let ui  and vj be the vertices of Hn,n where  1 ≤ i  n  and  1 ≤ j  n. 

Define a function f:V  {0, 1, 2, . . . , q – 1, q + 1 = 
2

)1( nn
 + 1}  by 

  f(ui) = i – 1,  1 ≤ i  n 

 

          n + 1,  j = 1, 

         (n – j + 1) + f(vj-1), 2 ≤ j  n – 2  

         1
2

)1(


nn
, j = n – 1, 

         1
2

)1(


nn
, j = n. 

The edge labels are as follows: 

For 1 ≤ j  n,   f1 (ui vj)  = f(vj) + (i – 1),  j ≤ i  n. 

Now,  f1(E(G)) = {n + 1, n + 2, n + 3,  . . .  , n + 1 + n – 1, n – 1 + n + 1 + 1, n – 1 + n + 1 +2,  . . . ,  

                        n –1 + n+ 1 + n – 1, 1
2

)1(


nn
 + n – 1, 1

2

)1(


nn
 + n– 1 – 1, 1

2

)1(


nn
 + n – 1}. 

   = {n + 1, n + 2, n + 3,  . . . , 2n, 2n + 1, 2n + 2,  . . . , 3n – 1,  . . . , 
2

)1( nn
 + 

    n – 2, 
2

)1( nn
 + n – 1, 

2

)1( nn
+ n}. 

 

After taking (mod q), f*(E(G)) = f1(E(G) (mod q) = {n + 1, n + 2, n + 3,  . . . , 2n, 2n + 1, 2n + 2,  . . 

. ,        3n – 1,  . . . ,n – 2, n – 1, n}.                  

Illustration 2.29. A near felicitous labeling of H6,6 is given below. 

 

 

Figure 10: A near felicitous labeling of  H6,6. 

 

Theorem 2.30. The graph Bm,n is a near felicitous graph for all m and n. 

Proof: Let V(Bm,n) = {u, v}  {ui, vj. 1  i  m and 1  j  n} and E(Bm,n) = {(uv)}  {(uui). 1  i  m} 

 {(vvj). 1  j  n}. 

Case (i): m  n. 

  f(vj)    = 
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Define f:V → {0, 1, 2, . . . , q – 1, q + 1 = m + n + 2} by 

  f(u) = 1, f(v) = m + n + 2, 

  f(ui) = 2(i – 1), 1  i  m 










njmjm

mjj
vf

j
,

11,12
)(  

The edge labels are as follows. 

   f1 (uv) = m + n + 3 

   f1 (uui) = 2i – 1,  1  i  m 










njmjm

mjj
vvf

j
,1

11,22
)(  

Now,    f1(E(G))  =  {m + n + 3}  {1, 3, 5,  . . . ,  2m – 1}  {4, 6,  . . . , 2(m – 1) + 2}   

{m + m + 1, m + m + 2, . . .,  m + n + 1}  

   = {m + n + 3}  {1, 3, 5,  . . . ,  2m – 1}  {4,  6,  . .. , 2m}  {2m + 1, 2m + 2,  . . . ,      

       m + n + 1}  

   =  {1, 3, 4,  . . . , 2m, 2m + 1, 2m + 2,  . . . , m + n + 1, m + n + 3}. 

After taking (mod q),  f*(E(G)) = {f1(E(G)) (mod q) = {1, 3, 4,  . . . , 2m, 2m + 1, 2m + 2,  . . . , m + n + 

1, 2} = {1, 2, 3,  . . . , 2m, 2m + 1, 2m + 2,  . . . , m + n + 1}. 

Hence, Bm,n is a near felicitous graph.     

Case (ii): m = n. 

Let V(Bn,n) = {u, v}  {ui, vi. 1  i  n} and E(Bn,n) = {(uv)  (uui)  (vvi). 1  i  n}. 

Define f:V → {0, 1, 2, . . . , q – 1, q + 1 = 2n + 2} by 

   f(u) = 0,  

f(v) = 2, 

   f(ui) = 2(i + 1),  1  i  n 

   f(vi) = 2i – 1,  1  i  n 

The edge labels are as follows. 

   f1 (uv) = 2 

   f1 (uui) = 2(i + 1), 1  i  n 

   f1 (vvi) = 2i + 1,  1  i  n 

Now, f1(E(G)) = {2}  {4, 6,  . . . , 2n + 2}  {3, 5,  . . . , 2n + 1}  

  = {2, 3, 4,  . . . , 2n + 1, 2n + 2}. 

After taking (mod q), f*(E(G)) = {f1(E(G)) (mod q) = {2, 3, 4,  . . . , 2n + 1, 1}  

     = {1, 2, 3,  . . . , 2n + 1}. 

Hence, Bn,n is a near felicitous graph for all n.                

Illustration 2.31. Near felicitous labelings of B4,6 and B4,4 are given below. 
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Figure 11: A near felicitous labeling of  B4,6. 

 

 

Figure 12: A near felicitous labeling of  B4,4. 

 

Theorem 2.32. The graph B(m, n, uo)  is a near felicitous graph. 

Proof:  Let V(B(m, n, uo)) = {u, v, uo}  {ui. 1  i  m}  {vj. 1  j  n}  and E(B(m, n, uo)) = {(uuo), 

(vuo)}  {(uui). 1  i  m}  {(vvj). 1  j  n}. 

Let m  n. Define  f:V → {0, 1, 2,  . . . , q – 1, q + 1 = m + n + 3}  by 

   f(u) = 0, f(uo) = m + 1,  

   f(v) = m + n + 3 

   f(ui) = i, 1  i  m 

   f(vj) = m + 1 + j, 1  j  n 

The edge labels are as follows. 

   f1(uuo) = m + 1,    f1(vuo)    =   2m + n + 4 

   f(uui) = i, 1  i  m 

   f(vvj) = 2m + n + 4 + j,  1  j  n 

Now, f1(E(G)) = {m + 1}  {2m + n + 4}  {1, 2, 3,  . . . m}  {2m + n + 5, 2m + n + 6,  . . . , 2m + 

   2n + 4}  

  = {1, 2, 3,  . . . m, m + 1, 2m + n + 4, 2m + n + 5, 2m + n + 6,  . . . , 2m + 2n + 4}. 

After taking (mod q), f*(E(G)) = {f1(E(G)) (mod q) } 

  = {1, 2, 3,  . . . , m, m + 1, m + 2, m + 3,  . . . , m + n + 2}. 

Let m = n. Define  f:V → {0, 1, 2,  . . . , q – 1, q + 1 = 2m + 3}  by 

   f(u) = 0, f(uo) = m + 1,  

   f(v) = 2m + 3 

   f(ui) = i,  1  i  m 

   f(vi) = m + 1 + i, 1  i  m 

The labels of the edges are as follows. 

   f1(u uo)     = m + 1,    f1(vuo)    =   3m + 4 
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   f(uui) = i,  1  i  m 

   f(vvi) = 3m + 4 + i, 1  i  m 

Now, f1(E(G))  = {m + 1}  {3m + 4}  {1, 2, 3,  . . . m}  {3m + 5, 3m + 6,  . . . , 4m + 4} 

   = {1, 2, 3,  . . . m, m + 1, 3m + 4, + 5, 3m + 6,  . . . , 4m + 4}. 

After taking (mod q), f*(E(G)) = f1(E(G)) (mod q)  

  = {1, 2, 3,  . . . , m, m + 1, m + 2, m + 3,  . . . , 2m + 2}. 

Hence, B(m, n, uo)  is a near felicitous graph.                

Illustration 3.33. A near felicitous labeling of B(4,3, uo) is shown in Figure 13. 

 

Figure 13: A near felicitous labeling of  B(4,3, uo). 
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