

On near felicitous labelings of graphs

V. Lakshmi Alias Gomathi, A. Nagarajan, A. Nellai Murugan

Department of Mathematics, V.O.C. College, Tuticorin - 628 001, INDIA. E-mail: lakshmi10674@gmail.com, anellai.vocc@gmail.com

Abstract

A simple graph G is called near felicitous if there exists a 1-1 function $f:V(G) \rightarrow \{0, 1, 2, ..., q-1, q+1\}$ such that the set of induced edge labels $f^*(uv) = (f(u) + f(v)) \pmod{q}$ are all distinct when the addition is taken modulo q with residues 1, 2, 3, ..., q. It is shown that an even subgraph of a near felicitous graph with an even number of edges contain an even number of odd labeled edges. As a consequence, some families of graphs are shown to be non – near felicitous.

Keywords: Near felicitous, cartesian product, wreath product, odd edge labeling, near odd edge labeling, even edge labeling, near even edge labeling, even graph.

AMS Subject Classification (2010): 05C78.

1 Introduction

In 1966, Rosa [7] introduced α - valuation of a graph and subsequently Golomb introduced graceful labeling. In 1980, Graham and Slonae [5] introduced the harmonious labeling of a graph. Several graph labelings have been found in Gallian Survey [4]. Lee, Schmeichel and Shee [6] introduced the concept of felicitous graph as a generalization of a harmonious graph. A *felicitous* labeling of a graph *G*, with *q* edges is an injection $f: V(G) \rightarrow \{0, 1, 2, ..., q\}$ so that the induced edge labels $f^*(xy) = (f(x) + f(y)) \pmod{q}$ are distinct.

Near Graceful lebeling was introduced by Frucht [3] and near α - labeling was introduced by S. El – Zanati, M. Kenig and C. Vanden Eynden [8]. It motivates us to define the concept of near felicitous labeling as follows.

A near felicitous labeling of a graph G, with q edges is an injection $f: V(G) \rightarrow \{0, 1, 2, ..., q-1, q + 1\}$ so that the induced edge labels $f^*(xy) = (f(x) + f(y)) \pmod{q}$ are distinct and $f^*(E(G)) = \{1, 2, 3, ..., q\}$.

The graphs we consider are simple. For notation and terminology, we refer to [1]. Throughout this paper, f denotes a 1 - 1 function from V(G) to a subset of the set of non-negative integers and, for any edge $e = xy \in E(G)$, $f^*(e) = f(x) + f(y)$. Let f be a near felicitous labeling of G. Then an edge e of G is called an odd edge under f, if $f^*(e)$ is odd. For any two graphs G and H, the cartesian product $G \times H$ is the graph with vertex set $V(G \times H) = V(G) \times V(H)$ and $E(G \times H) = \{(u,v) \mid (u', v')\}$. either $uu' \in E(G)$ and v = v' or u = u' and $vv' \in E(H)\}$. The wreath product G * H has vertex set $V(G) \times V(H)$ in which (g_1, h_1) is adjacent to (g_2, h_2) whenever $g_1g_2 \in E(G)$ or $g_1 = g_2$ and $h_1h_2 \in E(H)$. Let G_1 and G_2 be any

two graphs and ϕ . $V(G_2) \rightarrow V(G_1)$ be any mapping. Then $G_2[G_1]$ is the graph by attaching at each vertex v of G_2 a copy of G_1 rooted at $\phi(v)$. $V(G) \times V(H)$ in which (g_1, h_1) is adjacent to (g_2, h_2) whenever $g_1g_2 \in E(G)$ or $g_1 = g_2$ and $h_1h_2 \in E(H)$. For any two graphs G and H, by $(G \circ H)(v)$, we mean the graph obtained by fusing a copy of H at the vertex v of G. The *Middle graph* M(G) of a graph G is the graph whose vertex set is $V(G) \cup E(G)$ and in which two vertices are adjacent if and only if either they are adjacent edges of G or one is a vertex of G and the other is an edge incident with it. The *Total graph* T(G) of a graph G has the vertex $V(G) \cup E(G)$ in which two vertices are adjacent whenever they are either adjacent or incident in G.

Let *G* be a (p, q) graph. A 1 - 1 function $f:V(G) \rightarrow \{0, 1, 2, \ldots, q\}$ is said to be an odd – edge labeling of *G*, if for every edge $e = uv \in E(G)$, f(u) + f(v) is odd and $f^*(E(G)) = \{1, 3, 5, \ldots, 2q - 1\}$. We observe that if *G* admits an odd – edge labeling, then *G* is bipartite. However, the converse is not true. For example, C₆ is bipartite, but it has no odd – edge labeling. In [6], it has been proved that $P_2 \cup C_{2k+1}$ and $P_3 \cup C_{2k+1}$ are felicitous and conjectured that $P_n \cup C_{2k+1}$ is felicitous for all $n \ge 4$. But $P_5 \cup C_5$ is near felicitous as shown in Figure 1.

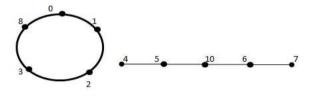


Figure 1: A near felicitous labeling of $P_5 \cup C_5$.

2 Main Results

Definition 2.1. Let *G* be a graph. A 1 - 1 function $f:V(G) \rightarrow \{0, 1, 2, \dots, q-1, q+1\}$ is said to be a near even edge labeling of *G*, if for every edge $e = uv \in E(G)$, f(u) + f(v) is even and $f^*(E(G)) = \{2, 4, 6, \dots, 2q\}$.

Similarly, a 1 - 1 function $f: V(G) \rightarrow \{0, 1, 2, \dots, q - 1, q + 1\}$ is said to be a near odd edge labeling if for every edge $e = uv \in E(G)$, f(u) + f(v) is odd and $f^*(E(G)) = \{1, 3, 5, \dots, 2q - 1\}$.

A subgraph H of a graph G is said to be an even subgraph of G, if the degree of every vertex of H is even in H.

Theorem 2.2. Let G be a near felicitous graph with even number of edges. Then every even subgraph G' of G contains an even number of odd edges.

Proof: Let g be a near felicitous labeling of G. Clearly, for any even subgraph G' of G, we have

$$\sum_{e \in E(G')} g^*(e) = \sum_{v \in V(G')} \deg(v)g(v) \pmod{q}$$
(1)

Since q is even and also deg(v) is even for every $v \in V(G^2)$, the L.H.S. of (1) is even. So we conclude that the number of edges with odd labels is even.

Corollary 2.3. No even graph with 4n + 2 edges is near felicitous.

Proof: Suppose an even graph G with 4n + 2 edges is near felicitous, then the number of odd edges of G is $\frac{4n+2}{2} = 2n + 1$, which is odd, a contradiction. Hence, no even graph with 4n + 2 edges is near felicitous.

Corollary 2.4. If G is an r – regular graph on p vertices, then M(G) is not near felicitous in the following cases.

- (i) $p \equiv 2 \pmod{4}$ and $r \equiv 2 \pmod{8}$.
- (ii) $p \equiv 2 \pmod{4}$ and $r \equiv 6 \pmod{8}$.
- (iii) $p \equiv 1 \pmod{2}$ and $r \equiv 4 \pmod{8}$.

Proof: In the above cases, $|E(M(G))| = \left(\frac{pr(r+1)}{2}\right) \equiv 2 \pmod{4}$ M(G) is an even graph. The result

follows from Corollary 2.3.

Corollary 2.5. If *G* is a *d* – regular graph, then T(G) is not near felicitous in the following case. $|E(G)| \equiv 1 \pmod{2}$ and $d \equiv 0 \pmod{4}$

Proof: Since T(G) is even and $|E(T(G))| = (2 + d) |E(G)| \equiv 2 \pmod{4}$, the result follows from Corollary 2.3.

Let $C_{n,m}^{\uparrow}$ stand for the graph obtained from $C_n \times P_m$ by taking two new distinct vertices, say, u, v

and joining *u* to all the vertices of C_n^1 and *v* to all the vertices of C_n^m .

Corollary 2.6. The following graphs are not near felicitous:

- (a) $C_{n,m}$, when $n \equiv 2 \pmod{4}$ and $m \equiv 0 \pmod{2}$.
- (b) $C_{n,m}^{\uparrow}$ when $n \equiv 2 \pmod{4}$ and $m \equiv 0 \pmod{2}$.

Proof: The above graphs are all even. Further,

- (a) $|E(C_{n,m})| = n(2m+1) \equiv 2 \pmod{4}$.
- (b) $|E(C_{n,m}^{\uparrow})| = n(2m+1) \equiv 2 \pmod{4}$.

Corollary 2.7. The graph $C_n \vee K_m^c$ when $n \equiv 2 \pmod{4}$ and $m \equiv 0 \pmod{2}$ is not near felicitous.

Proof: The above graph is even. Further, $|E(C_n \vee K_m^c)| = n(m+1) \equiv 2 \pmod{4}$.

Corollary 2.8. Suppose G_1 and G_2 are any two even graphs, then $G_2[G_1]$ is not near felicitous in the following cases.

- (i) $|E(G_1)| \equiv 1 \pmod{4}, |V(G_2)| \equiv 1 \pmod{4} \text{ and } |E(G_2)| \equiv 1 \pmod{4}.$
- (ii) $|E(G_1)| \equiv 1 \pmod{4}, |V(G_2)| \equiv 3 \pmod{4} \text{ and } |E(G_2)| \equiv 3 \pmod{4}.$

Proof: Since $G_2[G_1]$ is even and $|E(G_2[G_1])| = |V(G_2)| |E(G_1)| + |E(G_2)| \equiv 2 \pmod{4}$ in both the cases, $G_2[G_1]$ is not near felicitous. The result follows from Corollary 2.3.

Theorem 2.9. Let G be a graph with odd number of edges and let $f: V(G) \rightarrow \{0, 1, 2, ..., q-1, q+1\}$ be a near – even edge labeling of G. Then f is a near felicitous labeling of G.

Proof: Let $V(G) = \{0, 1, 2, ..., q - 1, q + 1\}$, then $f^*(E(G)) = \{2, 4, 6, ..., 2q\}$. Since q is odd, $f^*(E(G)) = \{2, 4, 6, ..., q - 1, q + 1, ..., 2q - 2, 2q\}$. After taking (mod q), $f^*(E(G)) = \{2, 4, 6, ..., q - 1, q + 1, ..., 2q - 2, 2q\}$. After taking (mod q), $f^*(E(G)) = \{2, 4, 6, ..., q - 1, 1, 3, 5, ..., q - 2, q\} = \{1, 2, 3, ..., q - 1, q\}$. Then f is a near felicitous labeling of G.

Theorem 2.10. Let *G* be a graph with odd number of edges and $f:V(G) \rightarrow \{0, 1, 2, ..., q-1, q+1\}$ be a near odd edge labeling of *G*. Then *f* is a near felicitous labeling of *G*.

Proof: Let $V(G) = \{0, 1, 2, ..., q - 1, q + 1\}$ and let $f^*(E(G)) = \{1, 3, 5, ..., 2q - 1\}$ be a near odd edge labeling of *G*. Since *q* is odd, then $f^*(E(G)) = \{1, 3, 5, ..., q, q + 2, q + 4, ..., 2q - 1\}$ After taking (mod *q*), $f^*(E(G)) = \{1, 3, 5, ..., q, 2, 4, ..., q - 1\} = \{1, 2, 3, ..., q - 1, q\}$. Then, *f* is a near felicitous labeling of *G*.

Observation 2.11. Let G be a graph with even number of edges and $f:V(G) \rightarrow \{0, 1, 2, ..., q-1, q+1\}$ be a near even edge labeling of G. Then f is not a near felicitous labeling of G.

Proof: Let *f*: *V*(*G*) → {0, 1, 2, ..., q - 1, q + 1} be a near even edge labeling of *G*. Then *f**(*E*(*G*)) = {2, 4, 6, ..., q - 2, q, q + 2, q + 4, ..., 2q - 2, 2q}. After taking (mod *q*), *f**(*E*(*G*)) = {2, 4, 6, ..., q - 2, q, 2, 4, 4, ..., 2q - 2, 2q}. After taking (mod *q*), *f**(*E*(*G*)) = {2, 4, 6, ..., q - 2, q, 2, 4, ..., q - 2, q}. Hence, the edge labels are not distinct. Hence, *f* is not a near felicitous labeling of *G*.

Observation 2.12. Let *G* be a graph with even number of edges and $f:V(G) \rightarrow \{0, 1, 2, ..., q-1, q + 1\}$ be a near odd edge labeling of *G*. Then *f* is not a near felicitous labeling of *G*.

Proof: Let *f*: *V*(*G*) → {0, 1, 2, ..., q - 1, q + 1} be a near odd edge labeling of *G*. Then *f**(*E*(*G*)) = {1, 3, 5, ..., 2q - 1}. Since *q* is even, *f**(*E*(*G*)) = {1, 3, 5, ..., q - 1, q + 1, q + 3, ..., 2q - 3, 2q - 1}. After taking (mod *q*), *f**(*E*(*G*)) = {1, 3, 5, ..., q - 1, 1, 3, 5, ..., q - 1}. Hence, the edge labels are not distinct. Hence, *f* is not a near felicitous labeling of *G*.

Observation 2.13. If *G* and *H* are near felicitous then their cartesian product $G \times H$ need not be near felicitous. For example, $K_{1,4l+3}$ and K_2 are near felicitous, but $K_{1,4l+3} \times K_2$ is not near felicitous, since $E(K_{1,4l+3} \times K_2) \equiv 2 \pmod{4}$ and $K_{1,4l+3} \times K_2$ is even.

Observation 2.14. If *G* and *H* are near felicitous then their wreath product G * H need not be near felicitous. For example, let $G = K_m$ and $H = K_n$ with $m \neq n$ and 1 < m, n < 5. We know that $K_m * K_n \cong K_m$. Clearly as mn > 5, $K_m * K_n$ is not near felicitous. Similarly, G * H need not be near felicitous, when one of them, say *G* is near felicitous and the other namely, *H* is not near felicitous. For example, let $G = K_4$ and $H = K_m$, $m \ge 5$.

Observation 2.15. If *G* and *H* are near felicitous, then (*G* o *H*) (*v*) need not be near felicitous. For example, C₃ and C_{4k+3} are near felicitous. But C₃ o C_{4k+3} (*v*) is not near felicitous, where *v* is any vertex of C₃, since C₃ o C_{4k+3} (*v*) is even and $|E(C_3 \circ C_{4k+3} (v))| = 4k + 6 \equiv 2 \pmod{4}$.

Observation 2.16. Let G be a near felicitous graph and a 1 - 1 function $f: V(G) \rightarrow \{0, 1, 2, \dots, q - 1, q + 1\}$ is said to be a near even edge labeling of G, if for every edge $e = uv \in E(G), f(u) + f(v)$ is even and $f^*(E(G)) = \{2, 4, 6, \dots, 2q\}$.

Observation 2.17. Suppose a connected graph G admits near even edge labeling, then

(i) All the vertices of *G* possess either even labels or odd labels.

(ii)
$$p \leq \left\lfloor \frac{q+3}{2} \right\rfloor.$$

Observation 2.18. If *G* is disconnected, then the vertex labeling of each component is with the same parity.

Observation 2.19. It follows from the above observation that if *G* admits near even edge labeling and if q < 2p - 3, then *G* is a disconnected graph.

Remark 2.20. Let *G* be a (p, q) graph. Let *f* be a near felicitous labeling. Define $f_1(uv) = f(u) + f(v)$ for every $uv \in E(G)$. Then $f^*(uv) = f_1(uv) \pmod{q}$.

Theorem 2.21. P_n is a near felicitous graph.

Proof: Let $V(P_n) = \{u_i, 1 \le i \le n\}$ and $E(P_n) = \{(u_i \ u_{i+1}), 1 \le i \le n-1\}$. **Case (i):** n = 2, 3.

The labelings of P_2 and P_3 are shown in the Figure 2.



Figure 2: Near felicitous labelings of P_2 and P_3 .

Case (ii): $n \ge 5$ and $n \equiv 1 \pmod{2}$.

Define a function $f: V \to \{0, 1, 2, ..., q - 1, q + 1 = n\}$ by

$$f(u_i) = \frac{i+1}{2}, \quad 1 \le i \le n \text{ and } i \equiv 1 \pmod{2}$$

For $i \equiv 0 \pmod{2}$,

$$f(u_i) = \begin{cases} \frac{n+i+1}{2}, & 1 \le i \le n-5\\ 0, & i = n-3\\ n, & i = n-1 \end{cases}$$

The edge labels are as follows.

$$f_{1}(u_{i} \ u_{i+1}) = \begin{cases} \frac{n+3}{2} + i, & 2 \le i \le n-5\\ \frac{n-3}{2} + (i-n+4), n-4 \le i \le n-2\\ \frac{3n+1}{2}, & i=n-1 \end{cases}$$

Now,
$$f_1(E(G)) = \{\frac{n+3}{2} + 1, \frac{n+3}{2} + 2, \dots, \frac{n+3}{2} + n-5\} \cup \{\frac{n-3}{2} + (n-4-n+4), \frac{n-3}{2} + (n-3-n+4), \frac{n-3}{2} + (n-2-n+4)\} \cup \{\frac{3n+1}{2}\}.$$

$$= \{\frac{n+5}{2}, \frac{n+7}{2}, \dots, \frac{3n-7}{2}\} \cup \{\frac{n-3}{2}, \frac{n-1}{2}, \frac{n+1}{2}\} \cup \{\frac{3n+1}{2}\}.$$
$$= \{\frac{n-3}{2}, \frac{n-1}{2}, \frac{n+1}{2}, \frac{3n+1}{2}, \frac{n+5}{2}, \frac{n+7}{2}, \dots, \frac{3n-7}{2}\}.$$

After taking (mod q), $f^*(E(G)) = f_1(E(G) \pmod{q}) = \{\frac{n-3}{2}, \frac{n-1}{2}, \frac{n-1}{2}, \frac{n+3}{2}, \frac$

$$,\frac{n-5}{2}\,\}.$$

Hence, P_n , $n \ge 5$ and $n \equiv 1 \pmod{2}$ is a near felicitous graph.

Case (iii): $n \ge 4$ and $n \equiv 0 \pmod{2}$

Define a function $f: V \to \{0, 1, 2, ..., q - 1, q + 1 = n\}$ by

$$f(u_1) = 0$$

 $f(u_i) = i+1, 3 \le i \le n-1 \text{ and } i \equiv 1 \pmod{2}$

For $i \equiv 0 \pmod{2}$,

2),

$$f(u_i) = \begin{cases} i-1, & 2 \le i \le n-2 \\ 2, & i=n \end{cases}$$

The edge labels are as follows.

$$f_1(u_1 u_2) = 1$$

$$f_1(u_i u_{i+1}) = \begin{cases} 2i+1, & 2 \le i \le n-2 \\ 3, & i=n-1 \end{cases}$$

Now, $f_1(E(G)) = \{1\} \cup \{5, 7, \dots, 2(n-3) + 1, 2(n-2) + 1\} \cup \{3\} = \{1\} \cup \{5, 7, \dots, 2n-5, 2n-3\} \cup \{3\} = \{1, 3, 5, \dots, 2n-5, 2n-3\} = \{1, 3, 5, \dots, 2q-1\}.$

Hence, by Theorem 2.10, P_n , $n \ge 4$ and $n \equiv 0 \pmod{2}$ is a near felicitous graph.

Illustration 2.22. Near felicitous labelings of P_{11} and P_{10} are given below.

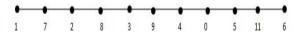


Figure 3: *A near felicitous labeling of P*₁₁*.*

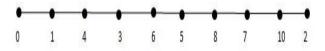


Figure 4: A near felicitous labeling of P₁₀.

Theorem 2.23. C_n is a near felicitous graph for $n \not\equiv 2 \pmod{4}$.

Proof: Let $V(C_n) = \{u_i, 1 \le i \le n\}$ and $E(C_n) = \{(u_i \ u_{i+1}), 1 \le i \le n-1\} \cup \{(u_n \ u_1)\}.$

Case (i): $n \equiv 0 \pmod{4}$.

Define a function $f: V \to \{0, 1, 2, \dots, q-1, q+1 = n+1\}$ by

$$f(u_i) = \frac{i+1}{2}, 1 \le i \le n-1 \text{ and } i \equiv 1 \pmod{2}.$$

For
$$i \equiv 0 \pmod{2}$$
,

$$f(u_i) = \begin{cases} \frac{n}{2} + \frac{i}{2}, & 2 \le i \le \frac{n}{2} \\ \frac{n}{2} + \frac{i}{2} + 1, & \frac{n}{2} + 1 \le i \le n - 4 \\ 0, & i = n - 2 \\ n + 1, & i = n \end{cases}$$

The edge labels are as follows.

$$f^{*}(u_{i}u_{i+1}) = \begin{cases} \frac{n}{2} + (i+1), & 1 \le i \le \frac{n}{2} - 1 \\ 1, & i = \frac{n}{2} \\ i - \frac{n}{2} + 2, & \frac{n}{2} + 1 \le i \le n - 1 \end{cases}$$

 $f^*(u_n u_1) = 2.$

Now,
$$f^*(E(G)) = \{\frac{n}{2} + 2, \frac{n}{2} + 3, \dots, \frac{n}{2} + \frac{n}{2} - 1 + 1\} \cup \{1\} \cup \{\frac{n}{2} + 1 - \frac{n}{2} + 2, \frac{n}{2} + 2 - \frac{n}{2} + 2, \dots, n - 1 - \frac{n}{2} + 2\} \cup \{2\}.$$

$$= \{\frac{n}{2} + 2, \frac{n}{2} + 3, \dots, n\} \cup \{1\} \cup \{3, 4, \dots, \frac{n}{2} + 1\} \cup \{2\}.$$
$$= \{1, 2, 3, 4, \dots, \frac{n}{2} + 1, \frac{n}{2} + 2, \frac{n}{2} + 3, \dots, n\}.$$

Clearly, the edge labels are distinct and hence, C_n , $n \equiv 0 \pmod{4}$ is a near felicitous graph. Case (ii): $n \equiv 1, 3 \pmod{4}$.

Define a function $f: V \to \{0, 1, 2, ..., q-1, q+1 = n+1\}$ by

$$f(u_i) = \begin{cases} 2(i-1), & 1 \le i \le \frac{n+3}{2} \\ 2(i-\frac{n+3}{2}-1)+3, & \frac{n+3}{2}+1 \le i \le n \end{cases}$$

The edge labels are as follows.

$$f_1(u_i u_{i+1}) = \begin{cases} 4i-2, & 1 \le i \le \frac{n+3}{2} - 1\\ 4(i-\frac{n+3}{2}+1), \frac{n+3}{2} \le i \le n-1 \end{cases}$$

 $f(u_n u_1) = n-2.$

Now,
$$f_1(E(G)) = \{2, 6, \dots, 4(\frac{n+3}{2}-2)-2, 4(\frac{n+3}{2}-1)-2\} \cup \{4(\frac{n+3}{2}-\frac{n+3}{2}+1), \\ 4(\frac{n+3}{2}+1-\frac{n+3}{2}+1), \dots, 4(n-2-\frac{n+3}{2}+1), 4(n-1-\frac{n+3}{2}+1)\} \cup \{n-2\}.$$

$$= \{2, 6, \dots, 2n-4, 2n\} \cup \{4, 8, \dots, 2n-6\} \cup \{n-2\}.$$
$$= \{2, 4, 6, \dots, 2n-6, 2n-4, n-2, 2n\}.$$

After taking (mod q), $f^*(E(G)) = f_1(E(G) \pmod{q}) = \{2, 4, 6, \dots, n-6, n-4, n-2, n\}$

$$= \{1, 2, 3, \ldots, n\}.$$

Hence, C_n , when $n \equiv 1, 3 \pmod{4}$ is a near felicitous graph.

Illustration 2.24. Near felicitous labeling of C₈ and C₉ are shown in Figures 5 and 6 below.

Figure 5: A near felicitous labeling of C₈.

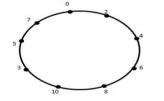


Figure 6: A near felicitous labeling of C₉.

Remark 2.25. C_n is not a near felicitous graph when $n \equiv 2 \pmod{4}$.

Proof: Since C_n is an even graph with 4n + 2 edges, by Corollary 2.3, C_n is not a near felicitous graph when $n \equiv 2 \pmod{4}$.

Theorem 2.23. $K_{m,n}$ is a near felicitous graph for all m and n.

Proof: Case (i): m = 1.

Let $V(\mathbf{K}_{1,n}) = \{u_i, 0 \le i \le n\}$ and $E(\mathbf{K}_{1,n}) = \{(u_o u_i) / 1 \le i \le n\}$. Define a function $f: V \to \{0, 1, 2, 3, \dots, q-1, q+1 = n+1\}$ by

$$f(u_0) = 1$$

$$\int 0, \qquad i=1$$

$$f(u_i) = \begin{cases} i & 2 \le i \le n-1 \\ n+1, & i=n \end{cases}$$

The edge labels are as follows.

 $\alpha \rightarrow$

$$f^{*}(u_{0} u_{i}) = \begin{cases} 1, & i = 1\\ i + 1, & 2 \le i \le n - 1\\ 2, & i = n \end{cases}$$

100

Now $f^*(E(G)) = \{1\} \cup \{3, 4, \ldots, n\} \cup \{2\} = \{1, 2, 3, 4, \ldots, n\}.$

Hence, $K_{1,n}$ is a near felicitous graph.

Case (ii): m > 1 and $n \ge 1$.

Let $V(\mathbf{K}_{m,n}) = \{\mathbf{u}_i, \mathbf{v}_j, 1 \le i \le m \text{ and } 1 \le j \le n\}$ and $E(\mathbf{K}_{m,n}) = \{(\mathbf{u}_i, \mathbf{v}_j) / 1 \le i \le m \text{ and } 1 \le j \le n\}$.

Define a function $f: V \to \{0, 1, 2, ..., q - 1, q + 1 = mn + 1\}$ by

$$\begin{aligned} f(\mathbf{u}_i) &= i, & 1 \leq i \leq m \\ f(\mathbf{v}_j) &= \mathbf{m}\mathbf{j}+1, & 1 \leq j \leq n \end{aligned}$$

The edge labels are as follows.

For $1 \le j \le n$, $f_1(u_i v_j) = i + mj + 1$, $1 \le i \le m$ Now $f_1(E(G) = \{m + 2, m + 3, \dots, 2m + 1, 2m + 2, 2m + 3, \dots, 3m + 1, \dots, mn, mn + 1, mn + 2, mn + 3, \dots, mn + m + 1\}$.

After taking (mod q), $f^*(E(G)) = f_1(E(G) \pmod{q}) = \{m + 2, m + 3, \dots, 2m + 1, 2m + 2, 2m + 3, \dots, 3m + 1, \dots, mn, 1, 2, 3, \dots, m + 1\}$ = $\{1, 2, 3, \dots, m + 1, m + 2, m + 3, \dots, 2m + 1, 2m + 2, 2m + 3, \dots, 3m + 1, \dots, mn\}$.

Clearly, all the edge labels are distinct and hence, $K_{m,n}$ is a near felicitous graph for all *m* and *n*.

Illustration 2.27. Near felicitous labelings of K_{1,7} and K_{4,3} are shown in Figures 7 and 8 respectively.

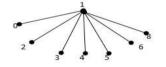


Figure 7: A near felicitous labeling of K_{1,7}.

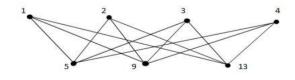


Figure 8: A near felicitous labeling of K_{4.3}.

Theorem 2.28. The graph $H_{n,n}$ is a near felicitous graph for $n \ge 2$.

Proof: Let $V(H_{n,n}) = \{u_i / 1 \le i \le n\} \cup \{v_j / 1 \le j \le n\}$ and $E(H_{n,n}) = \{(v_j u_i), 1 \le i \le n, i \le j \le n\}$. **Case (i):** n = 2.

The graph $H_{2,2}$ is near felicitous as shown in the Figure 9.

Figure 9: A near felicitous labeling of $H_{2,2}$.

Case (ii): $n \ge 3$.

Let u_i and v_j be the vertices of $H_{n,n}$ where $1 \le i \le n$ and $1 \le j \le n$. Define a function $f: V \to \{0, 1, 2, \dots, q-1, q+1 = \frac{n(n+1)}{2} + 1\}$ by

$$f(u_i) = i-1, \qquad 1 \le i \le n$$

$$f(v_j) = \begin{cases} n+1, & j=1, \\ (n-j+1)+f(v_{j-1}), & 2 \le j \le n-2 \\ \frac{n(n+1)}{2}+1, & j=n-1, \\ \frac{n(n+1)}{2}-1, & j=n. \end{cases}$$

The edge labels are as follows:

For $1 \le j \le n$, $f_1(u_i v_j) = f(v_j) + (i-1)$, $j \le i \le n$. Now, $f_1(E(G)) = \{n+1, n+2, n+3, \dots, n+1+n-1, n-1+n+1+1, n-1+n+1+2, \dots, n-1+n+1+n-1, \frac{n(n+1)}{2} - 1 + n - 1, \frac{n(n+1)}{2} + 1 + n - 1, \frac{n(n+1)}{2} + 1 + n - 1\}$. $= \{n+1, n+2, n+3, \dots, 2n, 2n+1, 2n+2, \dots, 3n-1, \dots, \frac{n(n+1)}{2} + n + n - 2, \frac{n(n+1)}{2} + n - 1, \frac{n(n+1)}{2} + n\}$.

After taking (mod q), $f^*(E(G)) = f_1(E(G) \pmod{q}) = \{n + 1, n + 2, n + 3, \dots, 2n, 2n + 1, 2n + 2, \dots, 3n - 1, \dots, n - 2, n - 1, n\}.$

Illustration 2.29. A near felicitous labeling of $H_{6,6}$ is given below.

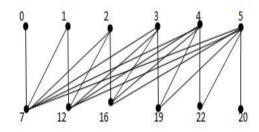


Figure 10: A near felicitous labeling of $H_{6,6}$.

Theorem 2.30. The graph $B_{m,n}$ is a near felicitous graph for all *m* and *n*.

Proof: Let $V(B_{m,n}) = \{u, v\} \cup \{u_i, v_j, 1 \le i \le m \text{ and } 1 \le j \le n\}$ and $E(B_{m,n}) = \{(uv)\} \cup \{(uu_i), 1 \le i \le m\}$ $\cup \{(vv_j), 1 \le j \le n\}.$ **Case (i):** m < n.

Define
$$f: V \to \{0, 1, 2, \dots, q-1, q+1 = m+n+2\}$$
 by
 $f(u) = 1, \quad f(v) = m+n+2,$
 $f(u_i) = 2(i-1), 1 \le i \le m$
 $f(v_j) = \begin{cases} 2j+1, \quad 1 \le j \le m-1 \\ m+j, \quad m \le j \le n \end{cases}$

The edge labels are as follows.

$$f_{1}(uv) = m + n + 3$$

$$f_{1}(uu_{i}) = 2i - 1, \qquad 1 \le i \le m$$

$$f(vv_{j}) = \begin{cases} 2j + 2, & 1 \le j \le m - 1 \\ m + j + 1, & m \le j \le n \end{cases}$$
Now,
$$f_{1}(E(G)) = \{m + n + 3\} \cup \{1, 3, 5, \dots, 2m - 1\} \cup \{4, 6, \dots, 2(m - 1) + 2\} \cup \{m + m + 1, m + m + 2, \dots, m + n + 1\}$$

$$= \{m + n + 3\} \cup \{1, 3, 5, \dots, 2m - 1\} \cup \{4, 6, \dots, 2m\} \cup \{2m + 1, 2m + 2, \dots, m + n + 1\}$$

$$= \{1, 3, 4, \dots, 2m, 2m + 1, 2m + 2, \dots, m + n + 1, m + n + 3\}.$$

After taking (mod q), $f^*(E(G)) = \{f_1(E(G)) \pmod{q} = \{1, 3, 4, \dots, 2m, 2m + 1, 2m + 2, \dots, m + n + 1, 2\} = \{1, 2, 3, \dots, 2m, 2m + 1, 2m + 2, \dots, m + n + 1\}.$

Hence, $B_{m,n}$ is a near felicitous graph.

Case (ii): *m* = *n*.

Let $V(B_{n,n}) = \{u, v\} \cup \{u_i, v_i, 1 \le i \le n\}$ and $E(B_{n,n}) = \{(uv) \cup (uu_i) \cup (vv_i), 1 \le i \le n\}$.

Define $f: V \to \{0, 1, 2, \dots, q-1, q+1 = 2n+2\}$ by

f(u)	=	0,	
f(v)	=	2,	
$f(u_i)$	=	2(i + 1),	$1 \le i \le n$
$f(v_i)$	=	2i – 1,	$1 \le i \le n$

The edge labels are as follows.

$$f_{1}(uv) = 2$$

$$f_{1}(uu_{i}) = 2(i+1), 1 \le i \le n$$

$$f_{1}(vv_{i}) = 2i+1, \quad 1 \le i \le n$$
Now, $f_{1}(E(G)) = \{2\} \cup \{4, 6, \dots, 2n+2\} \cup \{3, 5, \dots, 2n+1\}$

$$= \{2, 3, 4, \dots, 2n+1, 2n+2\}.$$

After taking (mod q), $f^*(E(G)) = \{f_1(E(G)) \pmod{q} = \{2, 3, 4, \dots, 2n+1, 1\}$ = $\{1, 2, 3, \dots, 2n+1\}.$

Hence, $B_{n,n}$ is a near felicitous graph for all *n*.

Illustration 2.31. Near felicitous labelings of B_{4,6} and B_{4,4} are given below.

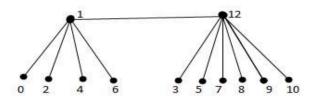


Figure 11: A near felicitous labeling of B_{4,6}.

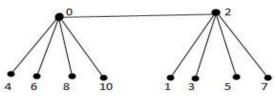


Figure 12: A near felicitous labeling of B_{4,4}.

Theorem 2.32. The graph $B(m, n, u_0)$ is a near felicitous graph.

Proof: Let $V(B(m, n, u_0)) = \{u, v, u_0\} \cup \{u_i. 1 \le i \le m\} \cup \{v_j. 1 \le j \le n\}$ and $E(B(m, n, u_0)) = \{(uu_0), (vu_0)\} \cup \{(uu_i). 1 \le i \le m\} \cup \{(vv_j). 1 \le j \le n\}.$

Let m > n. Define $f: V \to \{0, 1, 2, ..., q-1, q+1 = m+n+3\}$ by

$$f(u) = 0, \quad f(u_0) = m+1,$$

$$f(v) = m+n+3,$$

$$f(u_i) = i, \quad 1 \le i \le m,$$

$$f(v_j) = m+1+j, \quad 1 \le j \le n.$$

The edge labels are as follows.

$$f_{1}(uu_{o}) = m+1, \quad f_{1}(vu_{o}) = 2m+n+4$$

$$f(uu_{i}) = i, \quad 1 \le i \le m$$

$$f(vv_{i}) = 2m+n+4+j, \quad 1 \le j \le n$$

Now, $f_1(E(G)) = \{m+1\} \cup \{2m+n+4\} \cup \{1, 2, 3, \dots, m\} \cup \{2m+n+5, 2m+n+6, \dots, 2m+2n+4\}$

$$= \{1, 2, 3, \dots, m, m+1, 2m+n+4, 2m+n+5, 2m+n+6, \dots, 2m+2n+4\}.$$

After taking (mod q), $f^*(E(G)) = \{f_1(E(G)) \pmod{q}\}$

$$= \{1, 2, 3, \ldots, m, m+1, m+2, m+3, \ldots, m+n+2\}.$$

Let m = n. Define $f: V \to \{0, 1, 2, \dots, q-1, q+1 = 2m+3\}$ by

$$f(u) = 0, \quad f(u_0) = m+1, f(v) = 2m+3 f(u_i) = i, \quad 1 \le i \le m f(v_i) = m+1+i, \quad 1 \le i \le m$$

The labels of the edges are as follows.

$$f_1(u \, u_0) = m+1, \quad f_1(v u_0) = 3m+4$$

$$f(uu_i) = i, \qquad 1 \le i \le m$$

$$f(vv_i) = 3m + 4 + i, \qquad 1 \le i \le m$$

Now,
$$f_1(E(G)) = \{m+1\} \cup \{3m+4\} \cup \{1, 2, 3, \dots, m\} \cup \{3m+5, 3m+6, \dots, 4m+4\}$$

= $\{1, 2, 3, \dots, m, m+1, 3m+4, +5, 3m+6, \dots, 4m+4\}.$

After taking (mod q), $f^*(E(G)) = f_1(E(G)) \pmod{q}$

$$= \{1, 2, 3, \ldots, m, m+1, m+2, m+3, \ldots, 2m+2\}.$$

Hence, $B(m, n, u_0)$ is a near felicitous graph.

Illustration 3.33. A near felicitous labeling of $B(4,3, u_0)$ is shown in Figure 13.

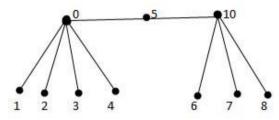


Figure 13: A near felicitous labeling of $B(4,3, u_0)$.

References

- R. Balakrishnan, A. Selvam and V. Yegnanarayanan, On Felicitous Labelings of Graphs, Proceedings of the National Workshop on Graph Theory and Its Applications, Manonmaniam Sundaranar University, Tirunelveli, Feb. 21-27(1996), 47-61.
- [2] J.A. Bondy and U.S.R. Murty, *Graph Theory with Applications*, Macmillan Co., New York (1976).
- [3] R. Frucht, Near Graceful Labeling of Graphs, Scientia, 5 (1992 1993), 47 59.
- [4] J.A. Gallian, A Dynamic Survey of Graph Labeling, The Electronic Journal of Combinatorics, 6 (2001), # DS 6.
- [5] R.L. Graham and N.J.A. Slonae, On Additive Bases and Harmonious Graphs, SIAM. Alg. Discrete Mathematics, 1(1980), 382 – 404.
- [6] S.M. Lee, *E.* Schmeichel and S.C. Shee, *On felicitous graphs*, Discrete Math. 93 (1991), 201-209.
- [7] Rosa, On certain valuations of the vertices of a Graph, Theory of Graphs (International Symposium, Rome, July 1966), Gorden and Breach, N.Y. and Dunod Paris (1967), 349 355.
- [8] S. Zanati, El, M. Kenig and C. Vanden Eynden, Near α labeling of Bi partite Graphs, Australas, J. Combin., 21 (2000), 275 -285.