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Abstract

A subset D of the vertex set V (G) of a graph G is called a dominating set of G if every vertex
in V − D is adjacent to a vertex in D. A dominating set D such that < D > has an isolated
vertex is called an isolate dominating set and the minimum cardinality of an isolate dominating set
is called the isolate domination number of G and is denoted by γ0(G). In this paper we characterize
the unicyclic graphs in which the order equals the sum of the isolate domination number and its
maximum degree.
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1 Introduction

One of the fastest developing areas in graph theory is the study of domination and related subset

problems such as independence, covering and matching. In fact, there are scores of graph theoretic

concepts involving domination, covering and independence. The bibliography in domination maintained

by Haynes et. al.[4] currently has over 1200 entries in which one can find an appendix listing some

75 different types of domination and domination related parameters which have been studied in the

literature. Hedetniemi and Laskar [5] edited a recent issue of Discrete Mathematics devoted entirely to

domination, and a survey of advanced topics in domination is given in the book by Hatynes et.al.[3]. In

1978, Cockayne et.al.[2] defined what has now become a well-known inequality chain of domination

related parameters of a graph G

ir(G) ≤ γ(G) ≤ i(G) ≤ β0(G) ≤ Γ(G) ≤ IR(G) (1)

where ir(G) and IR(G) denote the lower and upper irredundance numbers, γ(G) and Γ(G) denote the

lower and upper domination numbers and i(G) and β0(G) denote the independent domination number

and independence number of a graph G. Since then more number of papers have been published in

which this inequality chain is the focus of study. Researchers have considered the following areas in

their studies.

(i) Conditions under which two or more of these parameters are equal.

(ii) Parameters whose value lie between two consecutive parameters in (1).
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(iii) Extensions of the inequality chain(1) in either direction.

(iv) Ratios of consecutive pairs of parameters in (1).

(v) Inequality chains similar to (1) for other parameters. For example, similar inequality chains exist

for edge domination and for mixed domination parameters.

These are studied in chapter 3 of the recent book Fundamentals of Domination in Graphs by Haynes

et.al. [4].

In Chapter 6 of [4] it is suggested that a type of domination is fundamental if,

(i) Every connected, non-trivial graph has a dominating set of this type and

(ii) This type of domination set is defined in terms of some ’natural’ property of the subgraph < D >

induced by D.

For any dominating set D, some of the fundamental types of domination include:

(a) Domination: < D > can be any graph.

(b) Total domination: < D > has minimum degree at least 1.

(c) Independent domination: < D > has no edges.

(d) Connected domination: < D > is connected.

(e) Paired domination: < D > has a perfect matching.

In [6] we introduced the study of a new fundamental type of domination namely Isolate domination.

A dominating set D is said to be an isolate dominating set if < D > has an isolated vertex.

We also defined in [6] the isolate domination number γ0(G) to be the minimum cardinality of an

isolate dominating set in a graph G. This invariant is particularly interesting in that it provides more

examples whose value lie between two consecutive parameters γ and i in (1). Further, for any graph G

on n vertices a vertex together with its non-neighbours form an isolate dominating set and therefore the

value of γ0(G) is at most n−∆. In [6] we investigated some some properties of graphs acheiving this

bound. In this paper we characterize the unicyclic graphs attaining this bound.

2 Definitions and Notations

By a graph G = (V,E), we mean a connected, finite, undirected graph with neither loops nor mul-

tiple edges. For graph theoretic terminology we refer toChartrand and Lesniak [1]. All graphs in this

paper are assumed to be non-trivial. The open neighbourhood of a vertex v ∈ V is N(v) = {x ∈ V :

vx ∈ E}, that is the set of vertices adjacent to v. The closed neighbourhood of v isN [v] = N(v)∪{v}.
If S ⊆ V and v ∈ S, then a vertex u is said to be a private neighbour of v with respect to S if

N(u) ∩ S = {v}. The subgraph induced by a set S ⊆ V is denoted by < S >.
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A set S ⊆ V is a dominating set if every vertex in V − S is adjacent to a vertex of S. A dominating

set S ⊂ V is called an isolate dominating set if < S > has an isolated vertex. The minimum cardi-

nality of an (isolate) dominating set is called the (isolate) domination number of G and is denoted by

(γ0(G))γ(G). A minimum (isolate) dominating set of a graph G is called a (γ0 − set)γ − set.

Also, for a vertex v in a graph G, we define Nv to be the set of all vertices in G which are not

adjacent to v, that is Nv = V - N [v]. A vertex x in N(v) is said to be a major vertex with respect to v if

x is adjacent to all the vertices of Nv. The set of all major and non-major vertices with respect to v are

denoted by M(v) and M ′(v) repectively.

For a vertex v in G, we define the properties C1(v), C2(v) and C3(v) as follows:

C1(v): Nv is independent.

C2(v): A vertex of N(v) having more than one neighbour in Nv belongs to M(v).

C3(v): IfN(v) has l ≥ 1 pendant vertices, then no subset ofNv with fewer than |Nv| - l vertices dominate

M ′(v).

Theorem 2.1. ([6]) Let G be a graph on n vertices with γ0(G) = n − ∆. Then ∆ ≥ n/2 and the

conditions C1(v) to C3(v) hold for any vertex v of degree ∆.

3 Unicyclic graphs with γ0(G) + ∆(G) = |V (G)|

In this section we obtain a structural characterization of the class of unicyclic graphs G for which

γ0(G) + ∆(G) = |V (G)|. If G is a cycle then it is either C3 or C4. In order to characterize such

unicyclic graphs G when it is not a cycle we describe the following families of unicyclic graphs.

For a given positive integer l, let H1 and H2 be the graphs obtained by attaching l pendant edges at

a vertex v of C3 and C4 respectively. Also H is a graph obtained from H1 by attaching a pendant edge

each at l + 1 neighbours of v except at a neighbour of v in C3. We now define the families of unicyclic

graphs as follows:

(i) G1 is the class of unicyclic graphs obtianed from H1 by attaching at most l pendant edges at

exactly one neighbour of v. (Note that the graph H1 itself belongs to G1).

(ii) G2 is the class of unicyclic graphs obtained from H1 by attaching a pendant edge in at most l + 1

neigbours of v and it does not contain the graph H .

(iii) G3 is the class of all unicyclic graphs obtained from H2 by attaching at most l pendant edges at

exactly one neighbour of v on the cycle C4 (H2 itself belongs to G3).

(iv) G4 is the class of unicyclic graphs obtaned from H2 by attaching a pendant edge in at most l − 1

pendant vertices of H2.

Theorem 3.1. Let G be a unicyclic graph which is not a cycle. Then γ0(G) + ∆(G) = |V (G)| if and

only if G ∈
⋃4

i=1 Gi.
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Proof: Let G be a unicyclic graph with γ0(G) + ∆(G) = |V (G)| and l = ∆(G) − 2. By Theorem

2.1, the conditions C1(v) to C3(v) are satisfied for any vertex v of maximum degree. Now, let C be the

cycle in G. Then every vertex x in V − C will have at most one neighbour in C so that the set Nx is

not independent and hence by the condition C1(v), x is not a vertex of maximum degree and therefore

the vertices of maximum degree lie only on the cycle C. Further, by the condition C1(v), as Nv is

independent for a vertex v of maximum degree, the cycle C is either C3 or C4 and also |Nv| ≤ ∆ − 1

as ∆(G) ≥ n
2 . Now we consider the following two cases.

Case 1: C = C3.

If Nv = φ then G ∼= H1 ∈ G1. Let us assume that Nv 6= φ then there is at most one major vertex in

N(v), for otherwise we have a cycle other than C.

Suppose N(v) has exactly one major vertex, say x. That is, x is adjacent to all the vertices in Nv. If

x lies on C, obviously |Nv| ≤ ∆− 2. If x lies outside C, then x cannot be of maximum degree so that

|Nv| ≤ ∆− 2. Thus in either case G is isomorphic to a graph obtained from H1 by attaching at most l

pendant edges at exactly one neighbour of v and so G belongs to G1.

Suppose there is no major vertex in N(v). Then by the condition C2(v), every vertex in N(v) has

at most one neighbour in Nv, where |Nv| ≤ ∆ − 1. Further in this case if N(v) = ∆ − 1 then both

the neighbours of v in C3 have adjacent vertices in Nv, otherwise the set of all supports in N(v) will

form an isolate dominating set of cardinality less than n −∆ and so G is not isomorphic to H . Hence

G belongs to the family G2

Case 2: C = C4.

In this case the vertex v has a non-neighbour, say y, in C and so the set Nv is non-empty. If y is the

only vertex in Nv then G is isomorphic to the graph H2 which belongs to the family G3. Assume that

Nv has a vertex other than y and x is a major vertex in N(v). If x lies outside C, then the vertices x and

y along with v and one of its neighbours in C form a cycle (of length 4) other than C and therefore x

must lie on C. Also G being unicyclic x is the only major vertex in N(v) and also the vertices in N(v)

which do not lie on C have no neighbours in Nv. Therefore G is isomorphic to a graph obtained from

H2 by attaching at most l pendant edges at exactly one neighbour of v in C and hence it belongs to G3.

Now let us consider the case that N(v) has no major vertices. Then by the condition C2(v) both

the neighbours of v in C are not adjacent to any of the vertices in Nv − {y} and of course each of

the neigbhbours of v in V − C has at most one adjacent in Nv − {y}. Further, If all the vertices in

N(v)− V (C3) have neighbours in Nv then the set of all supports in N(v) together with y will form an

isolate dominating set of cardinality less than n−∆. Therefore at most l− 1 vertices of N(v)−V (C3)

have neighbours in Nv and so G ∈ G4.

Conversely, suppose G ∈ G1. Then G is obtained from H1 by attaching r ≤ l pendant edges at a

neighbour w of v. Hence n = r + l + 3 and ∆ = l + 2. Now, an isolate dominating set D of G can

not contain both v and w simultaneously. If D contains neither v nor w, then D must contain all the

pendant vertices along with a vertex on the cycle and so |D| ≥ r + l + 1 ≥ 2r + 1 ≥ n − ∆. If D

contains the vertex v, then D should contain all the r non-neigbours of v and so |D| ≥ r + 1 = n−∆;

and the simillar argument works when D contains the vertex w.

Suppose G ∈ G2. Now consider an isolate dominating set D of G. If v ∈ D then D must contain all
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the pendant vertices so that |D| ≥ n − ∆ and also D will have at least l + 1 vertices when v /∈ D so

that |D| ≥ n−∆.

Simillar argument can be applied for the graphs belonging to either G3 or G4.

Remark 3.2. IfG is a unicyclic graph on n vertices which belongs to either G1 or G4 then n ≤ 2∆−1 and

ifG is either in G2 or G3 then n ≤ 2∆. Thus, once ∆ is fixed the above theorem completly characterizes

all the unicyclic graphs for which γ0(G) + ∆(G) = |V (G)|. The list of all unicyclic graphs with ∆ = 4

for which γ0(G) + ∆(G) = |V (G)| is given below.
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Figure 1:Unicyclic graphs G with ∆(G) = 4 and γ0(G) + ∆(G) = |V (G)|.
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