# On Topological \#rg-quotient mappings 

S. Syed Ali Fathima<br>Department of Mathematics, Sadakathullah Appa College, Tirunelveli- 627 011, Tamil Nadu, INDIA.<br>E-mail: aur2002in @ yahoo.com<br>M. Mariasingam<br>Post Graduate and Research Department of Mathematics, V.O. Chidambaram College, Thoothukudi - 628 008, Tamil Nadu, INDIA.


#### Abstract

The authors introduced \#rg-closed sets and \#rg-open sets in topological spaces and established their relationships with some generalized sets in topological spaces. The aim of this paper is to introduce \#rg-quotient maps using \#rg-closed sets and characterize their basic properties.


Keywords: \#rg-closed set, \#rg-open set, \#rg-continuous, \#rg-irresolute, \#rg-homeomorphism.
AMS Subject Classification (2010): 54C10.

## 1 Introduction

N. Levine [10] introduced generalized closed sets in general topology as a generalization of closed sets. This concept was found to be useful and many results in general topology were improved. Many researchers like Balachandran, Sundaram and Maki[3], Bhattacharyya and Lahiri[5], Arockiarani[1], Arya and Gupta[2], Devi[7] and Wali[20] have worked on generalized closed sets, their generalizations and related concepts in general topology. In this paper, we introduce \#rg-quotient functions. Several characterizations and its properties have been obtained for this function. Also the relationship between strong and weak form of \#rg-quotient mappings have been established.

## 2 Preliminaries

Throughout the paper $X$ and $Y$ denote the topological spaces $(X, \tau)$ and $(Y, \sigma)$ respectively and on which no separation axioms are assumed unless otherwise explicitly stated. For any subset $A$ of a space $(X, \tau)$, the closure of $A$, interior of $A$ and the complement of $A$ are denoted by $c l(A)$, int $(A)$ and $A^{c}$ or $X \backslash A$ respectively. $(X, \tau)$ may be replaced by $X$ if there is no chance of confusion. Let us recall the following definitions.

Definition 2.1. A subset $A$ of a space $X$ is called

1) a preopen set[11] if $A \subseteq \operatorname{intcl}(A)$ and a preclosed set if $\operatorname{clint}(A) \subseteq A$.
2) a semiopen set[9] if $A \subseteq \operatorname{clint}(A)$ and a semi closed set if $\operatorname{intcl}(A) \subseteq A$.
3) a regular open set[15]if $A=\operatorname{intcl}(A)$ and a regular closed set if $A=\operatorname{clint}(A)$.
4) a $\pi$ - open set[21] if $A$ is a finite union of regular open sets.
5) regular semi open[6] if there is a regular open $U$ such $U \subseteq A \subseteq c l(U)$.

Definition 2.2. A subset $A$ of $(X, \tau)$ is called

1) a generalized closed set (briefly, g-closed)[10] if $c l(A) \subseteq U$ whenever $A \subseteq U$ and $U$ is open in $X$.
2) a regular generalized closed set (briefly, rg-closed)[14] if $c l(A) \subseteq U$ whenever $A \subseteq U$ and $U$ is regular open in $X$.
3) a generalized preregular closed set (briefly, gpr-closed)[8] if $p c l(A) \subseteq U$ whenever $A \subseteq U$ and $U$ is regular open in $X$.
4) a regular weakly generalized closed set (briefly, rwg-closed)[13] if $\operatorname{clint}(A) \subseteq U$ whenever $A$ $\subseteq U$ and $U$ is regular open in $X$.
5) rw-closed [4] if $\operatorname{cl}(A) \subseteq U$ whenever $A \subseteq U$ and $U$ is regular semi open.

The complements of the above mentioned closed sets are their respective open sets.
Definition 2.3. A subset $A$ of a space $X$ is called \#rg-closed[16] if $\operatorname{cl}(A) \subseteq U$ whenever $A \subseteq U$ and $U$ is rw-open. The complement of \#rg-closed set is called a \#rg-open set. The family of \#rg-closed sets and $\#$ rg-open sets are denoted by $\# R G C(X)$ and $\# R G O(X)$.

Definition 2.4. A map $f:(X, \tau) \rightarrow(Y, \sigma)$ is said to be
(i) \#rg-continuous [17] if $f^{-1}(V)$ is \#rg-closed in $(X, \tau)$ for every closed set $V$ in $(Y, \sigma)$.
(ii) strongly \#rg-continuous[19] if $f^{-1}(V)$ is a closed set of $(X, \tau)$ for each \#rg-closed set $V$ of $(Y, \sigma)$.
(iii) \#rg-irresolute [17] if $f^{-1}(V)$ is \#rg-closed in $(X, \tau)$ for each \#rg-closed set $V$ of $(Y, \sigma)$.
(iv) \#rg-homeomorphism [18] if $f$ is bijection and $f$ and $f^{-1}$ are \#rg-continuous.
(v) \#rg-closed [17] if $f(F)$ is \#rg-closed in $(Y, \sigma)$ for every \#rg-closed set $F$ of $(X, \tau)$.
(vi) \#rg-open[17] if $f(F)$ is \#rg-open in $(Y, \sigma)$ for every \#rg-open set $F$ of $(X, \tau)$.
(vii) contra \#rg continuous[19] if $f^{-1}(V)$ is \#rg-closed in $(X, \tau)$ for each open set $V$ in $(Y, \sigma)$.
(viii) a quotient map [12], provided a subset $V$ of $(Y, \sigma)$ is open if and only if $f^{-1}(V)$ is open in $(X, \tau)$.

Definition 2.5. A space $X$ is called a $T_{\# r g}$-space[16] if every \#rg-closed set in it is closed.

## 3 \#rg-quotient maps

Definition 3.1. A surjective function $f:(X, \tau) \rightarrow(Y, \sigma)$ is said to be a \#rg-quotient map if $f$ is \#rgcontinuous and $f^{-1}(V)$ is open in $(X, \tau)$ implies $V$ is a \#rg-open set in $(Y, \sigma)$.

Example 3.2. Let $X=Y=\{a, b, c, d\}, \tau=\{\phi, X,\{a\},\{b\},\{c\},\{a, b\},\{a, c\},\{b, c\},\{a, b, c\}\}$ and $\sigma=\{\phi, Y$, $\{a\},\{b\},\{a, b\},\{a, b, c\}\}$. Let $f:(X, \tau) \rightarrow(Y, \sigma)$ be the identity mapping. Then $f$ is \#rg-continuous and $f^{-1}(V)$ is open in $(X, \tau)$ implies $V$ is \#rg-open in $(Y, \sigma)$.Hence $f$ is \#rg-quotient map.

Theorem 3.3. If a function $f:(X, \tau) \rightarrow(Y, \sigma)$ is surjective \#rg-continuous and \#rg-open then $f$ is a \#rgquotient map.

Proof: Let $f:(X, \tau) \rightarrow(Y, \sigma)$ be surjective \#rg-continuous and \#rg-open. Let $f^{-1}(V)$ be open in $(X, \tau)$. Then $f^{-1}(V)$ is \#rg open in $(X, \tau)$. Since $f$ is \#rg-open, $f\left(f^{-1}(V)\right)$ is \#rg-open. Thus $V$ is \#rg-open. Hence $f$ is a \#rg-quotient map.

Corollary 3.4. If a map $f:(X, \tau) \rightarrow(Y, \sigma)$ is surjective \#rg-continuous and $f^{-1}$ is irresolute then $f$ is a \#rg-quotient map.

Proof: The proof follows from the fact that $f^{-1}$ is irresolute and $f$ is \#rg-open is equivalent.
Theorem 3.5. If a map $f:(X, \tau) \rightarrow(Y, \sigma)$ is \#rg-homeomorphism then $f$ is \#rg-quotient map.
Proof: Since $f$ is \#rg-homeomorphism, $f$ is bijective and $f$ is \#rg-continuous. Let $f^{-1}(V)$ be open in $X$. Since $f^{-1}$ is \#rg-continuous, $f\left(f^{-1}(V)\right)=V$ is \#rg-open in $Y$. Hence $f$ is a \#rg-quotient map.

Theorem 3.6. Every quotient map is a \#rg-quotient map.
Proof: Let $f:(X, \tau) \rightarrow(Y, \sigma)$ be a quotient map. Since every continuous map is \#rg-continuous and every open set is \#rg-open, the proof follows from the definition.

The converse of the above theorem is not true as seen from the following example.
Example 3.7. Let $X=Y=\{a, b, c, d\}, \tau=\{\phi, X,\{a\},\{b\},\{c\},\{a, b\},\{a, c\},\{b, c\},\{a, b, c\}\}$ and $\sigma=\{\phi$, $Y,\{a\},\{b\},\{a, b\},\{a, b, c\}\}$. Let $f:(X, \tau) \rightarrow(Y, \sigma)$ be the identity mapping. Here $f$ is \#rg-quotient but $f$ is not a quotient map since $f^{-1}(\{c\})=\{c\}$ which is open in $X$ but $\{c\}$ is not open in $Y$.

Definition 3.8. A surjective function $f:(X, \tau) \rightarrow(Y, \sigma)$ is said to be a \#rg ${ }^{*}$-quotient map if $f$ is \#rgirresolute and $f^{-1}(V)$ is \#rg-open in $(X, \tau)$ implies $V$ is open in $(Y, \sigma)$.

Example 3.9. Let $X=\{a, b, c, d\}, Y=\{1,2,3\}, \tau=\{\phi, X,\{a\},\{b\},\{a, b\},\{a, b, c\}\}$ and $\sigma=\{\phi, Y,\{1\}$, $\{2\},\{1,2\}\}$. Define a map $f:(X, \tau) \rightarrow(Y, \sigma)$ by $f(a)=f(b)=1, f(c)=2$ and $f(d)=3$. Then clearly $f$ is irresolute and $f^{-1}(V)$ is \#rg- open in $(X, \tau)$ implies $V$ is open in $(Y, \sigma)$.

Theorem 3.10. Every \#rg*- quotient map is \#rg-open.
Proof: Let $f:(X, \tau) \rightarrow(Y, \sigma)$ be a \#rg ${ }^{*}$ - quotient map. Let $V$ be a \#rg-open set in $X$. Then $f^{-1}((f(V))$ is \#rg-open in $X$. Since $f$ is $\# \mathrm{rg}^{*}$-quotient map, $f(V)$ is open in $Y$. Hence $f(V)$ is \#rg-open in $Y$ and hence $f$ is \#rg-open.

The converse of the theorem need not be true as seen from the following example.
Example 3.11. Let $X=\{a, b, c, d\}, \quad Y=\{1,2,3\}, \tau=\{\phi, X,\{a\},\{b\},\{a, b\},\{a, b, c\}\}$ and $\sigma=\{\phi, Y,\{1\}$, $\{2\},\{1,2\},\{1,3\}\}$. Define a map $f:(X, \tau) \rightarrow(Y, \sigma)$ by $f(a)=1, f(b)=2, f(c)=f(d)=3$. Here $f$ is \#rg-open but $f$ is not $\# \mathrm{rg}^{*}$-quotient map since $f^{-1}(\{1,3\})=\{a, c, d\}$ is not \#rg-open in $X$ but $\{1,3\}$ is \#rg-open in $Y$.

## 4 Strong form of \#rg-quotient map

Definition 4.1. Let $f:(X, \tau) \rightarrow(Y, \sigma)$ be a surjective map. Then $f$ is called strongly \#rg-quotient if a set $U$ is open in $Y$ if and only if $f^{-1}(U)$ is \#rg-open set in $X$.

Example 4.2. Let $X=\{p, q, r, s\}, \tau=\{\phi, X,\{r\},\{p, q\},\{p, q, r\}\}, Y=\{1,2,3\}$ and $\sigma=\{\phi, Y,\{1\},\{2\},\{1,2\}\}$. Define a function $f:(X, \tau) \rightarrow(Y, \sigma)$ by $f(p)=f(q)=1, f(r)=2$ and $f(s)=3$. Then clearly $f^{-1}(U)$ is \#rg-open iff $U$ is open. Hence $f$ is strongly \#rg-quotient map.

Theorem 4.3. Every strongly \#rg-quotient map is \#rg-quotient.
Proof: Let $f:(X, \tau) \rightarrow(Y, \sigma)$ be a strongly \#rg-quotient map. Then clearly $f$ is continuous. Let $f^{-1}(V)$ be an open set in $X$. Then, $f^{-l}(V)$ is \#rg-open set in $X$. Since $f$ is strongly \#rg-quotient map, $V$ is open. Hence, $V$ is \#rg-open. Thus $f$ is \#rg-quotient map.

The converse of the above theorem is not true as seen from the following example.
Example 4.4. Let $X=Y=\{a, b, c, d\}, \tau=\{\phi, X,\{a\},\{b\},\{c\},\{a, b\},\{a, c\},\{b, c\},\{a, b, c\}\}$ and $\sigma=\{\phi$, $Y,\{a\},\{b\},\{a, b\},\{a, b, c\}\}$. The identity mapping $f:(X, \tau) \rightarrow(Y, \sigma)$ is a \#rg-quotient map but not strongly \#rg-quotient map, since $f^{-1}\{a, c\}=\{a, c\}$ which is \#rg-open in $X$ but $\{a, c\}$ is not open in $Y$.
Theorem 4.5. Every \#rg"-quotient map is strongly \#rg-quotient.
Proof: Let $f:(X, \tau) \rightarrow(Y, \sigma)$ be \#rg ${ }^{*}$-quotient map. Let $U$ be an open set in $Y$. Then $U$ is \#rg-open in $Y$. Since $f$ is \#rg-irresolute $f^{-1}(U)$ is \#rg-open. Thus $U$ is an open set in $Y$ implies $f^{-1}(U)$ is \#rg-open in $X$. If $f^{-1}(V)$ is a \#rg-open set in $X$ then $f$ is \#rg ${ }^{*}$-quotient map implies that $V$ is an open set in $Y$. Hence $f$ is strongly \#rg-quotient.

Corollary 4.6. Every \#rg* ${ }^{*}$ quotient map is \#rg-quotient.
Theorem 4.7. Every strongly \#rg-quotient map is \#rg-open.
Proof: Let $f:(X, \tau) \rightarrow(Y, \sigma)$ be a strongly \#rg-quotient map. Let $V$ be an open set in $X$. That is, $f^{-1}(f(V))$ is \#rg-open in X . Since $f$ is strongly \#rg-quoitent, $f(V)$ is open. Hence $f(V)$ is \#rg-open and $f$ is a \#rgopen set.
The converse of the above theorem is not true as seen from the following example.
Example 4.8. Let $X=\{p, q, r, s\}, \quad \tau=\{\phi, \quad X, \quad\{p\}, \quad\{q\}, \quad\{p, q\}, \quad\{p, q, r\}\}, \quad Y=\{1,2,3\} \quad$ and $\sigma=\{\phi, Y,\{1\},\{2\},\{1,2\},\{2,3\}\}$. Define a function $f:(X, \tau) \rightarrow(Y, \sigma)$ by $f(p)=f(q)=1, f(r)=2$ and $f(s)=3$. Then $f$ is \#rg-open but not strongly \#rg-quotient, since $f^{-1}(\{2,3\})=\{r, s\}$ which is not \#rg-open in $X$.

Definition 4.9. Let $f:(X, \tau) \rightarrow(Y, \sigma)$ be a surjective map. Then $f$ is called strongly $\# \mathrm{rg}^{*}$-quotient if a set $U$ is \#rg-open in $Y$ if and only if $f^{-1}(U)$ is \#rg-open in $X$.

Example 4.10. Let $X=\{p, q, r, s\}, \quad \tau=\{\phi, \quad X,\{p\},\{q\}, \quad\{p, q\}, \quad\{p, q, r\}\}, \quad Y=\{1,2,3\}$ and $\sigma=\{\phi, Y,\{1\},\{2\},\{1,2\}\}$. Define a function $f:(X, \tau) \rightarrow(Y, \sigma)$ by $\mathrm{f}(p)=f(q)=1, f(r)=2$ and $f(s)=3$. Then clearly $f^{-1}(U)$ is \#rg-open iff $U$ is \#rg- open. Hence $f$ is a strongly \#rg ${ }^{*}$-quotient map.

Theorem 4.11. Every \#rg ${ }^{*}$-quotient map is strongly \#rg ${ }^{*}$ - quotient.
Proof: Let $f:(X, \tau) \rightarrow(Y, \sigma)$ be $\# \mathrm{rg}^{*}$ - quotient map. Let $U$ bea \#rg-open set in $Y$. Since $f$ is \#rgirresolute, $\quad f^{-1}(U)$ is \#rg-open. Let $f^{-1}(U)$ be \#rg-open in $X$. Since $f$ is \#rg ${ }^{*}$-quotient, it follows that $U$ is open. Hence $U$ is \#rg-open and $f a$ is strongly \#rg ${ }^{*}$ - quotient map.

Theorem 4.12. Every strongly \#rg ${ }^{*}$-quotient map is \#rg-quotient.
Proof: Let $f:(X, \tau) \rightarrow(Y, \sigma)$ be strongly $\# \mathrm{rg}^{*}$-quotient map. Let $V$ be an open set in $Y$. Then $V$ is a \#rgopen set. Since $f$ is strongly \#rg ${ }^{*}$ - quotient, $f^{-1}(V)$ is \#rg-open. Hence $f$ is \#rg-continuous. Let $f^{-1}(V)$ be an open set in $X$. Then $f^{-1}(V)$ is \#rg-open in $X$. Hence $V$ is \#rg-open and $f$ is a \#rg-quotient map.

Corollary 4.13. Every \#rg**-quotient map is \#rg-quotient.
Proof: The proof is the consequence of the fact that $\# \mathrm{rg}^{*}$-quotient map is strongly $\# \mathrm{rg}^{*}$-quotient and Theorem 4.11.

Theorem 4.14. Let $f:(X, \tau) \rightarrow(Y, \sigma)$ be strongly $\# r g^{*}$ - quotient map and $Y$ is $T_{\# r g}$ - Space. Then $f$ is strongly \#rg-quotient map.

Proof: Let $U$ be an open set in $Y$. Then $U$ is \#rg-open in $Y$. Since $f$ is strongly $\# \mathrm{rg}^{*}$-quotient, $f^{-1}(U)$ is \#rg-open. Let $f^{-1}(U)$ be \#rg-open in $X$. Then $U$ is \#rg-open in $Y$. Since $Y$ is $T_{\# r g}$ - Space, $U$ is open in $Y$ and hence $f$ is a strongly \#rg-quotient map.

Remark 4.15. From the above results we have the following diagram where $A \rightarrow B$ represent $A$ implies $B$ but not conversely.


## 5 Properties of \#rg-quotient maps

Theorem 5.1. Let $f:(X, \tau) \rightarrow(Y, \sigma)$ be an open surjective \#rg-irresolute map and $g:(Y, \sigma) \rightarrow(Z, \eta)$ be a \#rg-quotient map. Then their composition $g \circ f=(X, \tau) \rightarrow(Z, \eta)$ is a \#rg-quotient map.

Proof: Let $U$ be any open set in $(Z, \eta)$. Since $g$ is \#rg-quotient, $g^{-1}(U)$ is \#rg-open in $Y$. Since $f$ is \#rgirresolute, $f^{-1}\left(g^{-1}(U)\right)$ is a \#rg-open set in $X$. This implies that $(g \circ f)^{-1}(U)$ is \#rg-open. Thus $g \circ f$ is \#rg-continuous. Let $(g \circ f)^{-1}(U)$ be open in $X$. That is, $f^{-1}\left(g^{-1}(U)\right)$ is open in $X$. Since $f$ is an open map, $f\left(f^{-1}\left(g^{-1}(U)\right)\right)$ is an open set in $Y$. Hence $g^{-1}(U)$ is open in $Y$. Since $g$ is \#rg-quotient map, $U$ is \#rg-open in $Z$ and hence $g \circ f$ is \#rg-quotient.

Theorem 5.2. Let $f:(X, \tau) \rightarrow(Y, \sigma)$ be a \#rg-open, surjective and \#rg-irresolute map and $g:(Y, \sigma) \rightarrow$ $(Z, \eta)$ be a strongly \#rg-quotient map. Then $g \circ f$ is strongly \#rg-quotient.

Proof: Let $U$ be an open set in $Z$. Then $U$ is \#rg-open. Since $g$ is a strongly quotient map, $g^{-1}(U)$ is \#rg-open in $Y$. Then $f^{-1}\left(g^{-1}(U)\right)$ is \#rg-open in $X$ (Since $f$ is \#rg-irresolute). Hence $(g \circ f)^{-1}(U)$ is \#rgopen in $Y$. Let $(g \circ f)^{-1}(U)$ be \#rg-open in $X$. That is, $f^{-1}\left(g^{-1}(U)\right.$ is \#rg- open in $X$. Since $f$ is \#rg-open map, $f\left(f^{-1}\left(g^{-1}(U)\right)\right)$ is \#rg-open in $Y$ and hence $g^{-1}(U)$ is \#rg-open in $Y$. Since g is a strongly \#rgquotient map, $U$ is open in $Z$ and hence $g \circ f$ is strongly $\# \mathrm{rg}$-quotient.

Theorem 5.3. If $h:(X, \tau) \rightarrow(Y, \sigma)$ is a \#rg-quotient map and $g:(X, \tau) \rightarrow(Z, \eta)$ is a continuous map that is constant on each set $h^{-1}(y)$, for $y \in Y$, then $g$ induces a \#rg-continuous map $f:(Y, \sigma) \rightarrow(Z, \eta)$ such that $f \circ h=g$.

Proof: The set $g\left(h^{-1}(y)\right)$ is a one point set in $Z$, since $g$ is constant on $h^{-1}(y)$,for each $y \in Y$. If $f(y)$ denotes this point, then it is clear that $f$ is well defined and for each $x \in X, f(h(x))=g(x)$. We claim that $f$ is \#rgcontinuous. Let $U$ be any open set in $Z$. Since $g$ is continuous, $g^{-1}(U)$ is open in $X$. That is $h^{-1}\left(f^{-1}(U)\right)$ is open in $X$. Since $h$ is \#rg-quotient map, $f^{-l}(U)$ is \#rg-open and hence $f$ is \#rg-continuous.

Theorem 5.4. Let $f:(X, \tau) \rightarrow(Y, \sigma)$ be a \#rg-quotient map where $X$ and $Y$ are $T_{\text {*rg }}$-space. Then $g:(Y, \sigma) \rightarrow(Z, \eta)$ is strongly \#rg-continuous if and only if $g \circ f=(X, \tau) \rightarrow(Z, \eta)$ is strongly \#rgcontinuous.

Proof: Let $g:(Y, \sigma) \rightarrow(Z, \eta)$ be strongly \#rg-continuous and $U$ be a \#rg-open set in $Z$. Since $g$ is strongly \#rg-continuous, $g^{-1}(U)$ is open in $Y$. Then $f^{-1}\left(g^{-1}(U)\right.$ ) is \#rg-open in $X$ (since $f$ is \#rg-quotient). Thus $(g \circ f)^{-1}(U)$ is \#rg-open in $X$. Since $X$ is $T_{\text {\#rg }}$-Space, $(g \circ f)^{-1}(U)$ is open in $X$ and hence $g \circ f$ is strongly \#rg-continuous.

Conversely, suppose that $g \circ f$ is strongly \#rg-continuous. Let $V$ be a \#rg-oopen set in Z. Since $g \circ f$ is strongly \#rg-continuous, $(g \circ f)^{-1}$ is open in $X$. That is, $f^{-1}\left(g^{-1}(U)\right)$ is open in $X$. Since $f$ is \#rg-quotient, $g^{-1}(V)$ is \#rg-open in $Y . Y$ is $T_{\# r g}$-Space, implies that $g^{-1}(V)$ is open in $Y$. Hence, $g$ is strongly \#rg-continuous.

Theorem 5.5. Let $f:(X, \tau) \rightarrow(Y, \sigma)$ be surjective \#rg-open and \#rg-irresolute and $g:(Y, \sigma) \rightarrow(Z, \eta)$ be a $\# \mathrm{rg}^{*}$-quotient map then $g \circ f=(X, \tau) \rightarrow(Z, \eta)$ is \#rg ${ }^{*}$ quotient.

Proof: Let $V$ be a \#rg-open set in $Z$. Then $g^{-1}(V)$ is \#rg-open in $Y$ (since $g$ is \#rg ${ }^{*}$-quotient map). Since $f$ is \#rg-irresolute, $f^{-1}\left(g^{-1}(V)\right)$ is \#rg-open in $X$. That is, $(g \circ f)^{-1}(V)$ is \#rg-open in $X$. Hence $g \circ f=(X, \tau) \rightarrow(Z, \eta)$ is \#rg-irresolute. Let $(g \circ f)^{-1}(V)$ be \#rg-open in $X$. That is, $f^{-1}\left(g^{-1}(V)\right)$ is \#rgopen in $X$. Since $f$ is \#rg-open map, $f\left(f^{-1}\left(g^{-1}(V)\right)\right)=g^{-1}(V)$ is \#rg-open in $Y$. Since $g$ is a \#rg ${ }^{*}$-quotient map, $V$ is open and hence $g \circ f$ is $\# \mathrm{rg}^{*}$-quotient.

Theorem 5.6. Let $f:(X, \tau) \rightarrow(Y, \sigma)$ be a strongly \#rg-quotient map and $g:(Y, \sigma) \rightarrow(Z, \eta)$ be a \#rg ${ }^{*}$ quotient map and $Y$ be a $T_{\# r r g}$ Space. Then $g \circ f=(X, \tau) \rightarrow(Z, \eta)$ is \#rg ${ }^{*}$ quotient.

Proof: Let $V$ be a \#rg-open set in $Z$. Then $g^{-l}(V)$ is \#rg-open in $Y$ (since $g$ is \#rg ${ }^{*}$-quotient map). Since $Y$ is a $T_{\text {\#frg }}$ Space, $g^{-1}(V)$ is an open set in $Y$. Since $f$ is strongly \#rg-quotient, $f^{-1}\left(g^{-1}(V)\right.$ is \#rg-open in $X$. That is, $(g \circ f)^{-1}(V)$ is \#rg-open in $X$ and hence $g \circ f=(X, \tau) \rightarrow(Z, \eta)$ is \#rg-irresolute. Let $(g \circ f)^{-1}(V)$ be a \#rg-open set in $X$. That is, $f^{-1}\left(g^{-1}(V)\right.$ is \#rg-open in $X$. This implies $g^{-1}(V)$ is open in $Y$. Hence $g^{-l}(V)$ is \#rg-open set. Since $g$ is \#rg ${ }^{*}$-quotient, $V$ is open and hence $g \circ f$ is $\# \mathrm{rg}^{*}$-quotient map.

Theorem 5.7. The composition of two \#rg*-quotient maps is \#rg*-quotient.
Proof: Let $f:(X, \tau) \rightarrow(Y, \sigma)$ and $g:(Y, \sigma) \rightarrow(Z, \eta)$ be two \#rg ${ }^{*}$-quotient maps. Let $U$ be a \#rg-open set in $Z$. Then $g^{-1}(U)$ is a \#rg-open set in $Y$. Since $f$ is a \#rg*-quotient map, $f^{-1}\left(g^{-1}(U)\right.$ ) is a \#rg-open set in $X$. That is, $\quad(g \circ f)^{-1}(U)$ is \#rg-open in $X$. Hence $g \circ f=(X, \tau) \rightarrow(Z, \eta)$ is \#rg-irresolute. Let $(g \circ f)^{-1}(V)$ be a \#rg-open set in $X$. Then $f^{-1}\left(g^{-1}(V)\right)$ is \#rg-open in $X$. This implies $g^{-1}(V)$ is open in $Y$ and hence $g^{-l}(V)$ is \#rg-open. Since $g$ is a $\# \mathrm{rg}^{*}$-quotient map, $V$ is open. Hence $g \circ f$ is $\# \mathrm{rg}^{*}$-quotient map.

## References

[1] I. Arockiarani, Studies on generalizations of generalized closed sets and maps in topological spaces, Ph.D Thesis, 1997, Bharathiar University, Coimbatore.
[2] S.P. Arya and R.Gupta, On strongly continuous mappings, Kyungpook Math., J. 14(1974), 131143.
[3] K. Balachandran, P.Sundaram and H. Maki, On generalized continuous maps in topological spaces, Mem. I ac Sci. Kochi Univ. Math., 12(1991), 5-13.
[4] S.S. Benchalli and R.S. Wali, On RW-Closed sets in topological spaces, Bull. Malays. Math. Sci. Soc(2) 30(2)(2007)-99-110.
[5] P. Bhattacharyya and B.K. Lahiri, Semi-generalized closed sets in topology, Indian J. Math., 29(1987), 376-382.
[6] D.E. Cameron, Properties of S-closed spaces, Proc. Amer Math. Soc. 72(1978), 581-586.
[7] R. Devi, K.Balachandran and H.Maki, On generalized $\alpha$-continuous maps, Far. East J. Math. Sci. Special Volume, part 1(1997), 1-15.
[8] Y. Gnanambal, On generalized preregular closed sets in topological spaces, Indian J. Pure App. Math. 28(1997), 351-360.
[9] N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly,70(1963), 36-41.
[10] N. Levine, Generalized closed sets in topology, Rend. Circ. Mat. Palermo 19(1970), 89-96.
[11] A.S. Mashhour, M.E. Abd. El-Monsef and S.N. El-Deeb , On pre continuous mappings and weak pre-continuous mappings, Proc Math, Phys. Soc. Egypt, 53(1982), 47-53.
[12] J.R. Munkres, Topology, A first Course, Fourteenth Indian Reprint.
[13] N. Nagaveni, Studies on Generalizations of Homeomorphisms in Topological Spaces, Ph.D. Thesis 1999, Bharathiar University, Coimbatore.
[14] N. Palaniappan, and K.C. Rao, Regular generalized closed sets, Kyungpook Math. J. 33(1993), 211-219.
[15] M. Stone, Application of the theory of Boolean rings to general topology, Trans. Amer. Math. Soc. 41(1937), 374-481.
[16] S. Syed Ali Fathima.and M. Mariasingam, On \#regular generalized closed sets in topological spaces, International journal of mathematical archive-2(11)(2011), 2497-2502.
[17] S. Syed Ali Fathima and M. Mariasingam, On \#RG-Continuous and \#RG-irresolute functions,Journal of Advanced Studies in Topology, 3(4)(2012), 28-33.
[18] S. Syed Ali Fathima and M. Mariasingam, \#RG- Homeomorphisms in topological spaces, International Journal of Engineering Research and Technology, 1(5)(2012).
[19] S. Syed Ali Fathima and M. Mariasingam, On contra \#RG-Continuous functions, International journal of Modern Engineering Research, 3(2)(2013), 939-943.
[20] R.S. Wali, Some topics in general and fuzzy topological spaces, Ph.D., Thesis, 2006, Karnatak University, Karnataka.
[21] V. Zaitsav, On certain classes of topological spaces and their bicompactifications, Dokl. Akad. Nauk SSSR178(1968): 778-779.

