International Journal of Mathematics and Soft Computing Vol.3, No.3. (2013), 55-60.

g[#]p[#]-closed sets in topological spaces

K. Alli, A. Subramanian

Department of Mathematics, The M.D.T. Hindu College, Tirunelveli, INDIA. E-mail:allimdt@gmail.com, asmani1963@gmail.com

S. Pious Missier

Department of Mathematics, V.O. Chidambaram College, Thoothukudi, INDIA. E-mail:spmissier@gmail.com

Abstract

In this paper, we introduce $g^{\#}p^{\#}$ - closed sets of a topological space and study their properties.

Keywords: g[#]- closed set, g[#]p[#]-closed set.

AMS Subject Classification(2010): 54A05, 54D10.

1 Introduction

N. Levine [10] introduced the class of g-closed sets. M.K.R.S. Veera kumar [19, 20, 21] introduced several generalized closed sets namely, $g^{\#}$ -closed sets, g^{*} -closed sets, g^{*} p- closed sets and their properties. The authors [18] have already introduced $g^{\#}$ p-closed sets and study their properties. In this paper we have introduce $g^{\#}p^{\#}$ -closed sets and study their properties.

2 Preliminaries

Throughout this paper (X, τ) (or X) represent topological spaces on which no separation axioms are assumed unless otherwise mentioned. For a subset A of a space (X, τ) , cl(A), int(A)and A^c denote the closure of A, the interior of A and the complement of A respectively.

We recall the following definitions which are useful in the sequel.

Definition 2.1. A subset A of a space (X, τ) is called

(i) a preclosed [14] set if $cl(int(A)) \subseteq A$.

(ii) a semi-open set [11] if $A \subseteq cl(int(A))$ and a semi-closed [11] set if $int(cl(A)) \subseteq A$. (iii) an α -open set [16] if $A \subseteq int(cl(int(A)))$ and an α -closed set [15] if $cl(int(cl(A))) \subseteq A$. (iv) a semi-preclosed set [2] (= β -closed [1]) if $int(cl(int(A))) \subseteq A$.

(v) a regular open set [9] if A=int(cl(A)) and a regular closed [9] set if cl(int(A))=A.

The semi-closure (α -closure) of a subset A of (X,τ) is denoted by scl(A) (α cl(A)) and is the intersection of all semi-closed (α -closed) sets containing A.

Definition 2.2. A subset A of a space (X, τ) is called

- (i) a g^{*}-closed set [19] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is g-open in (X, τ) .
- (ii) semi-generalized closed (sg-closed) set [4] if $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is semiopen in (X, τ) .
- (iii) a generalized semi-closed (gs-closed) set [3] if $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ) .
- (iv) an α -generalized closed (α g-closed) set [12] if α cl(A) $\subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ) .
- (v) a generalized α -closed (g α -closed) set [13] if $\alpha cl(A) \subseteq U$ whenever $A \subseteq U$ and U is α -open in (X, τ) .
- (vi) a generalized semi-preclosed (gsp-closed) set [6] if $\operatorname{spcl}(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ) .
- (vii) a generalized preregular closed (gpr-closed) set [8] if $pcl(A) \subseteq U$ whenever $A \subseteq U$ and U is regular open in (X, τ) .
- (viii) a regular generalized closed (rg-closed) set [17] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is regular open in (X,τ) .
- (ix) a g[#]-closed set [20] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is α g-open in (X, τ) .
- (x) a $g^{\#}$ pre closed [18] ($g^{\#}$ p-closed) set if $pcl(A) \subseteq U$ whenever $A \subseteq U$ and U is $g^{\#}$ -open in (X, τ) .
- (xi) a g*- pre closed [21] (g*p-closed) set if $pcl(A) \subseteq U$ whenever $A \subseteq U$ and U is g-open in (X, τ) .
- (xii) locally closed set [5] if it is the intersection of an open set and a closed set in (X,τ) .

3 Basic properties of $g^{\#}p^{\#}$ -closed sets

Now we introduce the following definitions.

Definition 3.1. A subset A of a space (X, τ) is called a $\mathbf{g}^{\#}\mathbf{p}^{\#}$ -closed set if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is $\mathbf{g}^{\#}$ -open in (X, τ) .

Theorem 3.2. In a topological space (X, τ) ,

- (i) Every closed set is $g^{\#}p^{\#}$ -closed.
- (ii) Every $g^{\#}p^{\#}$ -closed set is αg -closed.
- (iii) Every $g^{\#}p^{\#}$ -closed set is gs-closed.
- (iv) Every $g^{\#}p^{\#}$ -closed set is gsp-closed.
- (v) Every $g^{\#}p^{\#}$ -closed set is $g^{\#}p$ -closed.
- (vi) Every $g^{\#}p^{\#}$ -closed set is gpr-closed.
- (vii) Every g^* -closed set is $g^{\#}p^{\#}$ -closed.
- (viii) Every $g^{\#}$ -closed set is $g^{\#}p^{\#}$ -closed.

Proof. (i) It follows from the fact that cl(A)=A for any closed set A of (X, τ) .

(ii) Since every open set is $g^{\#}$ -open and $\alpha cl(A) \subseteq cl(A)$ for any subset A of (X, τ) , (ii) follows.

(iii) is the consequence of the fact that every open set is $g^{\#}$ -open and $scl(A) \subseteq cl(A)$ for any subset A of (X, τ) .

(iv) follows from the fact that every open set is $g^{\#}$ -open and $\operatorname{spcl}(A) \subseteq \operatorname{cl}(A)$ for any subset A of (X, τ) .

(v) Since $pcl(A) \subseteq cl(A)$ for any subset A of (X,τ) , (v) follows.

(vi) Every regular open set is $g^{\#}$ -open and $pcl(A) \subseteq cl(A)$ for any subset A of (X,τ) . Hence (vi) follows.

(vii) is the consequence of the fact that every $g^{\#}$ - open set is g-open.

(viii) follows from the fact that every $g^{\#}$ - open set is αg -open.

The converses of Theorem 3.2 need not be true as seen from the following examples.

Example 3.3. Consider the space (X, τ) where $X = \{a, b, c\}$ and $\tau = \{X, \Phi, \{a, b\}\}$. Let $A = \{b, c\}$, then *A* is $g^{\#}p^{\#}$ -closed but not a closed set.

Example 3.4. Consider the space (X, τ) where $X = \{a, b, c\}$ and $\tau = \{X, \Phi, \{c\}, \{b, c\}\}$. Let $A = \{b\}$, then A is α g-closed, gs-closed and $g^{\#}p$ -closed sets but not a $g^{\#}p^{\#}$ -closed set.

Example 3.5. Consider the space (X, τ) where $X = \{a, b, c\}$ and $\tau = \{X, \Phi, \{c\}\}$. Let $A = \{c\}$, then A is gprclosed but not a $g^{\#}p^{\#}$ -closed set.

Example 3.6. Consider the space (X, τ) given in Example 3.5. Let $A = \{a\}$, then A is $g^{\#}p^{\#}$ -closed but not a $g^{\#}$ -closed set and $g^{\#}$ -closed set.

Thus the class of $g^{\#}p^{\#}$ -closed sets properly contains the class of closed sets, g^{*} -closed sets, $g^{\#}$ -closed sets and is properly contained in the classes of αg -closed set, gs-closed sets, gsp-closed sets, gpr-closed sets.

Remark 3.7. $g^{\#}p^{\#}$ -closed sets are independent of semiclosed set, α -closed set, semipre-closed set, sgclosed set, g α -closed set, preclosed set, rg-closed set, and $g^{*}p$ -closed sets as it can be seen in the following examples.

Example 3.8. Consider the space (X,τ) given in Example 3.4. Let $A = \{a, c\}$. Then A is $g^{\#}p^{\#}$ -closed but not a semi-closed, α -closed, semi-preclosed, sg-closed, g α -closed and preclosed sets. Also the set $B = \{b\}$ is semi-closed, α -closed, semi-preclosed, sg-closed, g α -closed and preclosed sets but not a $g^{\#}p^{\#}$ -closed.

Example 3.9. Consider the space (X,τ) where $X=\{a, b, c\}$ and $\tau=\{X,\Phi,\{a\},\{b\},\{a, b\}\}$. Let $A=\{b, c\}$, then *A* is $g^{\#}p^{\#}$ -closed set but not rg-closed set. Also the set $B=\{a, b\}$ is rg-closed but not a $g^{\#}p^{\#}$ -closed set.

Example 3.10. Consider the space (X,τ) given in Example 3.4. Let $A = \{b\}$, then A is g^*p -closed but not a $g^{\#}p^{\#}$ - closed set.

Example 3.11. Consider the space (X,τ) given in Example 3.5. Let $A = \{b, c\}$, then A is $g^{\#}p^{\#}$ -closed but not a $g^{\#}p$ - closed set.

Remark 3.12. Union of two $g^{\#}p^{\#}$ -closed set is $g^{\#}p^{\#}$ -closed.

Remark 3.13. Intersection of two $g^{\#}p^{\#}$ -closed sets need not be $g^{\#}p^{\#}$ -closed set as seen in the following example.

Example 3.14. Consider the space (X,τ) in Example 3.5. Let $A = \{b, c\}$ and $B = \{a, c\}$, then A and B are $g^{\#}p^{\#}$ -closed sets but $A \cap B$ is not a $g^{\#}p^{\#}$ -closed set of (X,τ) .

Theorem 3.15. If A is $g^{\#}$ -open and $g^{\#}p^{\#}$ -closed, then A is a closed set.

The proof is obvious from Definition 2.2.(xi) and 3.1.

Theorem 3.16. If A is a $g^{\#}p^{\#}$ -closed set of (X,τ) , then cl(A)-A does not contain any non-empty $g^{\#}$ -closed set.

Proof. Let *F* be a $g^{\#}$ -closed set contained in cl(A)-*A*. Then $A \subseteq X$ -*F* and *X*-*F* is a $g^{\#}$ -open set of (X,τ) . Since *A* is $g^{\#}p^{\#}$ -closed, $cl(A) \subseteq X$ -*F*. This implies $F \subseteq X$ -cl(A). Then $F \subseteq (X$ - $cl(A)) \cap (cl(A)-A) \subseteq (X$ - $cl(A)) \cap cl(A) = \Phi$. Therefore, $F = \Phi$.

Theorem 3.17. If A is a $g^{\#}p^{\#}$ -closed set of (X,τ) and $A \subseteq B \subseteq cl(A)$, then B is also a $g^{\#}p^{\#}$ -closed set of (X,τ) .

Proof. Let *U* be an $g^{\#}$ -open set of (X,τ) such that $B \subseteq U$. Then $A \subseteq U$. Since *A* is $g^{\#}p^{\#}$ -closed, $cl(A) \subseteq U$. Since $B \subseteq cl(A)$, $cl(B) \subseteq cl(cl(A)) = cl(A) \subseteq U$. Therefore, *B* is also a $g^{\#}p^{\#}$ -closed set.

Theorem 3.18. Let A be a locally closed set of (X,τ) . Then A is closed iff A is $g^{\#}p^{\#}$ -closed. **Proof.** Let U be a $g^{\#}$ -open set of (X,τ) such that $A \subseteq U$. Since A is closed, cl(A)=A, $cl(A) \subseteq U$. Hence A is $g^{\#}p^{\#}$ -closed.

Conversely, suppose *A* is $g^{\#}p^{\#}$ -closed. By Proposition 5.1.3.3 of Bouraki [5], AU(X-cl(A)) is open in (X,τ) , since *A* is locally closed. Now AU(X-cl(A)) is a $g^{\#}$ - open set of (X,τ) such that $A \subseteq AU(X-cl(A))$. Since *A* is $g^{\#}p^{\#}$ -closed, then $cl(A) \subseteq AU(X-cl(A))$. But $cl(A) \cap (X-cl(A)) = \Phi$. Thus we have $cl(A) \subseteq A$. Trivially $A \subseteq cl(A)$. Hence *A* is a closed set.

Corollary 3.19. In a submaximal space (X, τ) , every $g^{\#}p^{\#}$ -closed set is closed.

Proof. Ganster and Reilly [7] proved that (X,τ) is submaximal iff every subset of X is locally closed. By Theorem 3.18 every $g^{\#}p^{\#}$ -closed set is closed.

Theorem 3.20. Let *A* be a $g^{\#}p^{\#}$ -closed set of a topological space (*X*, τ). Then

(i) pcl(A) is $g^{\#}p^{\#}$ -closed set.

(ii) If A is regular open, then scl(A) is $g^{\#}p^{\#}$ -closed set.

Proof. First we note that for a subset A of (X,τ) , $scl(A)=A \cup int(cl(A))$ and $pcl(A)=A \cup cl(int(A))$. (i) Since cl(int(A)) is a closed set, then A and cl(int(A)) are $g^{\#}p^{\#}$ -closed sets. By Theorem 3.12, $A \cup cl(int(A))$ is also a $g^{\#}p^{\#}$ -closed set.

(ii) Since A is regular open, A = int(cl(A)). Then, $scl(A) = A \cup int(cl(A)) = A$. Thus scl(A) is $g^{\#}p^{\#}$ -closed set.

The converse of Theorem 3.20 need not be true as seen from the following examples.

Example 3.21. Consider the space (X,τ) given in Example 3.4. Let $A = \{c\}$, then A is not a $g^{\#}p^{\#}$ -closed but pcl(A) = X is $g^{\#}p^{\#}$ - closed set.

Example 3.22. Consider the space (X,τ) given in Example 3.3. Let $A = \{b, c\}$. Cleary A is not regular open but A is $g^{\#}p^{\#}$ -closed and scl(A) = X is $g^{\#}p^{\#}$ - closed set.

The following diagram shows the relationships of $g^{\#}p^{\#}$ -closed sets with other sets.

 $A \rightarrow B(A \nleftrightarrow B)$ represents A implies B but not conversely (A and B are independent).

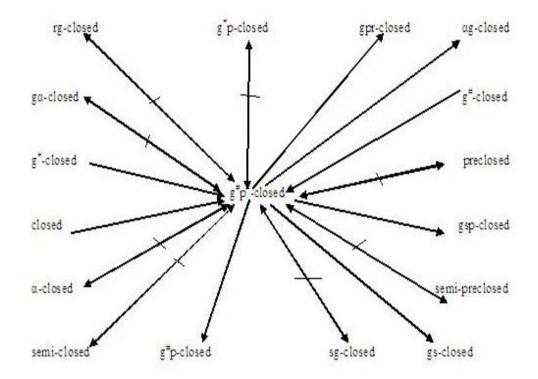


Figure 1: Relationships of $g^{\#}p^{\#}$ -closed sets with other sets.

References

- M.E. Abd EI-Monsef, S.N. EI-Deeb and R.A. Mahmoud, β-open sets and β-continuous mappings, Bull. Assiut Univ., 12(1983), 77-90.
- [2] D. Andrijevic, Semi-preopen sets, Mat. Vesnik, 38(1) (1986), 24-32.
- [3] S.P. Arya and T. Nour, *Characterizations of s-normal spaces*, Indian J. Pure Appl. Math., 21(8) (1990), 717-719.
- [4] P. Bhattacharya and B.K. Lahiri, *Semi-generalized closed sets in topology*, Indian J. Math., 29(3) (1987), 375-382.
- [5] N. Bourbaki, General Topology Part I, Addision-Wesley, Reading, Mass., 1966.
- [6] J. Dontchev, On generalizing semi-preopen sets, Mem. Fac. Sci. Kochi Univ. Ser. A. Math., 16(1995), 35-48.

- M. Ganster and I.L. Reilly, *Locally closed sets and LC-continuous functions*, Internat. J. Math., & Math. Sci., 12(3)(1989),417-424.
- [8] Y. Gnanambal, On generalized pre regular closed sets in topological spaces, Indian J. Pure. Appl. Math., 28(3) (1997), 351-360.
- [9] C. Kuratowski, Topology I, Hafner, New York, 1958.
- [10] N. Levine, Generalized closed sets in topology, Rend. Circ. Math. Palermo, 19(2)(1970), 89-96.
- [11] N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70(1963), 36-41.
- [12] H. Maki, R. Devi and K. Balachandran, Associated topologies of generalized α closed sets and α -generalized closed sets, Mem. Fac. Sci. Kochi Univ. Ser. A. Math., 15(1994), 51-63.
- [13] H. Maki, R. Devi and K. Balachandran, *Generalized α-closed sets in topology*, Bull. Fukuoka Univ. Ed. Part III, 42(1993), 13-21.
- [14] A.S. Mashhour, M.E. Abd El-Monsef and S.N. El-Deeb, On pre-continuous and weak precontinuous mappings, Proc. Math. and Phys. Soc. Egypt, 53(1982),47-53.
- [15] A.S. Mashhour, I.A. Hasanein and S.N. El-Deeb, α-continuous and α-open mappings, Acta Math Hung., 41(3-4)(1983), 213-218.
- [16] O. Njastad, On some classes of nearly open sets, Pacific J. Math., 15 (1965), 961-970.
- [17] N. Palaniappan and K.C. Rao, *Regular generalized closed sets*, Kyungpook Math.J., 33(1993), 211-219.
- [18] S. Pious Missier, K. Alli and A. Subramanian, g[#]p-closed set in topological spaces, International Journal of Mathematical Archive, 4(1) (2013), 176-181
- [19] M.K.R.S.Veera kumar, *Between closed sets and g-closed sets*, Mem. Fac. Sci., Kochi Univ. Ser. A. Math., 21(2000), 1-19.
- [20] M.K.R.S. Veera kumar, g[#]-closed sets in topological spaces, Mem. Fac. Sci. Kochi Univ. Ser. A. Math 24(2003), 1-13.
- [21] M.K.R.S. Veera kumar, g*-*preclosed sets*, Acta ciencia Indica (Maths) Meerut XXVIII(M)(1) 2002, 51-60.