International Journal of Mathematics and Soft Computing Vol.3, No.3 (2013), 15 - 19.



# Characterizations of stability for discrete semigroups of bounded linear operators

## Akbar Zada

Department of Mathematics, University of Peshawar, Peshawar, PAKISTAN. E-mail: akbarzada@upesh.edu.pk

Gul Rahmat, Afshan Tabassum Government College University,

Abdus Salam School of Mathematical Sciences, (ASSMS) Lahore, PAKISTAN. E-mail: {gulassms,afshintabassum}@gmail.com

## **Gohar Ali**

Department of Mathematics, University of Liverpool, UK. E-mail: gohar.ali@nu.edu.pk

#### Abstract

Let  $\mathbb{T} = \{T(n)\}_{n\geq 0}$  be a discrete semigroup of bounded linear operators acting on a Banach space X. We prove that if for each  $\mu \in \mathbb{R}$  and every q-periodic sequence f with f(0) = 0, the sequence  $n \to \sum_{k=0}^{n} e^{i\mu k} T(n-k)f(k)$  is bounded, then the semigroup  $\mathbb{T}$  is uniformly exponentially stable.

**Keywords**: Uniform stability, semigroups, periodic sequences. **AMS Subject Classification(2010):** 35B35.

# 1 Introduction

Let X be a real or complex Banach space and  $\mathcal{B}(X)$  the Banach algebra of all linear and bounded operators acting on X. We denote by  $\|\cdot\|$  the norms of operators and vectors. Denote by  $\mathbb{R}_+$  the set of real numbers and by  $\mathbb{Z}_+$  the set of all non-negative integers. Let  $B(\mathbb{Z}_+, X)$  be the space of X-valued bounded sequences with supremum norm, and  $P_0^q(\mathbb{Z}_+, X)$  be the space of q-periodic (with  $q \ge 2$ ) sequences f with f(0) = 0. Then clearly  $P_0^q(\mathbb{Z}_+, X)$  is a closed subspace of  $B(\mathbb{Z}_+, X)$ . We denote by  $AP_0(\mathbb{Z}_+, X)$  the space of almost periodic sequences f with f(0) = 0. For  $T \in \mathcal{B}(X)$ ,  $\sigma(T)$  the spectrum of T and the the spectral radius of T is defined as  $r(T) = \sup\{|\lambda| : \lambda \in \sigma(T)\}$ . It is also well known that  $r(T) := \lim_{n\to\infty} ||T^n||^{\frac{1}{n}}$ . The resolvent set of T is defined as  $\rho(T) := \mathbb{C}\setminus\sigma(T)$ , i.e the set of all  $\lambda \in \mathbb{C}$  for which  $T - \lambda I$  is an invertible operator in  $\mathcal{B}(X)$ . A well-known result in [1] says that if X is a Banach space of finite dimension and A a linear and bounded operator acting on X then A is stable if and only if for each  $\mu \in \mathbb{R}$  and each  $b \in X$  the solution of the discrete Cauchy problem

$$x_{n+1} = Ax(n) + e^{i\mu n}b, \ x(0) = 0, \ n \in \mathbb{Z}_+$$

is bounded, if and only if there exist positive constants N and  $\nu$  such that  $||A^n|| \le Ne^{-\nu n}$  for all  $n \ge 0$ , or equivalently the spectral radius of A is less than one. In [2] the stability of strongly continuous semi

groups are characterized by convolutions. This note is the discrete case of [2] for discrete semigroups of bounded linear operators acting on X. We give some results in the frame work of general Banach space and spaces of sequences as defined above.

# **2** Preliminary results

Recall that T is power bounded if there exists a positive constant M such that  $||T^n|| \leq M$  for all  $n \in \mathbb{Z}_+$ . We prove some lemmas which are used in the proofs of main results.

**Lemma 2.1.** [2] Let  $T \in \mathcal{B}(X)$ . If there exists M > 0 such that

$$\sup_{n \in \mathbb{Z}_+} \|I + T + \dots + T^n\| = M < \infty$$
(2.1)

then T is power bounded and  $1 \in \rho(T)$ .

**Proof:** The proof is given in [2], but for convenience we prove this. We have the identity

$$T^{n+1} = I + (T - I)(I + T + \dots + T^n).$$

By using the inequality (2.1) we get that T is power bounded. Next, suppose that  $1 \in \sigma(T)$ . Then there exists a sequence  $(x_m)_{m \in \mathbb{Z}_+}$  with  $x_m \in X$ ,  $||x_m|| = 1$  and  $(I - T)x_m \to 0$  as  $m \to \infty$ , see [[3], Proposition 2.2, p. 64]. Since T is power bounded,  $T^k(I - T)x_m \to 0$  as  $m \to \infty$  uniformly for  $k \in \mathbb{Z}_+$ . Let  $N \in \mathbb{Z}_+$ , N > 2M and  $m \in \mathbb{Z}_+$  such that  $||T^k(I - T)x_m|| \le \frac{1}{2N}$ ,  $k = 0, 1, \ldots N$ . Then

$$M \geq \|\sum_{k=0}^{N} T^{k} x_{m}\| = \|x_{m} + \sum_{k=1}^{N} T^{k} x_{m}\|$$
$$= \|x_{m} + \sum_{k=1}^{N} (x_{m} + \sum_{j=0}^{k-1} T^{j} (T - I) x_{m})\|$$
$$= \|(N+1)x_{m} + \sum_{k=1}^{N} \sum_{j=0}^{k-1} T^{j} (T - I) x_{m}\|$$
$$\geq (N+1) - \frac{N(N+1)}{4N} > \frac{N}{2} > M$$

which is absurd and hence  $1 \in \rho(T)$ .

**Lemma 2.2.** [2] Let  $U \in \mathcal{B}(X)$  and  $\mu \in \mathbb{R}$ . If

$$\sup_{n \in \mathbb{Z}_+} \|\sum_{k=0}^n e^{i\mu k} U^k\| = M_\mu < \infty.$$
(2.2)

Then U is power bounded and  $e^{-i\mu} \in \rho(U)$ .

**Proof:** Let  $T = e^{i\mu}U$ , then by Lemma 2.1 T is power bounded. Since ||T|| = ||U||, U is power bounded. Again by Lemma 2.1 we have  $1 \in \rho(T) = \rho(e^{i\mu}U)$ , i.e.  $e^{i\mu}U - I$  is invertible, from this we get  $U - e^{-i\mu}I$  is invertible. Hence  $e^{-i\mu} \in \rho(U)$ .

**Lemma 2.3.** Let  $U \in \mathcal{B}(X)$ . If the inequality (2.2) is true for all  $\mu \in \mathbb{R}$ , then r(U) < 1.

**Proof:** From Lemma 2.2 we have U is power bounded. So there exists M > 0 such that  $||U^n|| \le M$ for all  $n \in \mathbb{Z}_+$ . Then clearly  $r(U) = \lim_{n \to \infty} \|U^n\|^{\frac{1}{n}} \leq 1$ . But  $e^{i\mu} \in \rho(U)$  for all  $\mu \in R$  and  $\sigma(U)$  is compact. Hence r(U) < 1. 

#### 3 Main results

We recall that a discrete semigroup is a family  $\mathbb{T} = \{T(n) : n \in \mathbb{Z}_+\}$  of bounded linear operators on X which satisfying the following conditions

(1) T(0) = I, the identity operator on X,

(2) T(n+m) = T(n)T(m) for all  $n, m \in \mathbb{Z}_+$ .

It is clear that  $T(n) = T^n(1)$  for all  $n \in \mathbb{Z}_+$ , T(1) is called the algebraic generator of the semigroup  $\mathbb{T}.$ 

The growth bound of  $\mathbb{T}$  denoted by  $\omega_0(\mathbb{T})$  is defined as  $\omega_0(\mathbb{T}) = \inf_{n \in \mathbb{Z}_+} \{ \omega \in \mathbb{R} : \text{ there exists } M_\omega \geq 0 \}$ 1 such that  $||T(n)|| \leq M_{\omega} e^{\omega n}$ .

The family  $\mathbb{T}$  is uniformly exponentially stable if  $\omega_0(\mathbb{T})$  is negative, or equivalently, if there exists  $M \ge 1$  and  $\omega > 0$  such that  $||T(n)|| \le Me^{-\omega n}$  for all  $n \in \mathbb{Z}_+$ . The general theory of semigroups can be found in [3], [4] and [5].

**Theorem 3.1.** Let  $\mathbb{T} = \{T(n) : n \in \mathbb{Z}_+\}$  be a discrete semigroup on X and  $\mu \in \mathbb{R}$ . If

$$\sup_{n \ge 0} \|\sum_{k=0}^{n} e^{i\mu k} T(n-k) f(k)\| < \infty$$
(3.1)

for all  $f \in P_0^q(\mathbb{Z}_+, X)$  then T(1) is power bounded and  $e^{i\mu} \in \rho(T(1))$ .

**Proof:** Let n = Nq + r for some  $N \in \mathbb{Z}_+$ , where  $r \in \{0, 1, \dots, q-1\}$ . For each  $j \in \mathbb{Z}_+$ , we consider the set  $A_j = \{1 + jq, 2 + jq, \dots, q - 1 + jq\}$ . Let  $B_N = \{Nq + jq\}$  $1, Nq + 2, \ldots, Nq + r$  if  $r \ge 1$  and  $C = \{0, q, 2q, \ldots, Nq\}$ . Then clearly  $\bigcup_{i=0}^{N-1} A_i \cup B_N \cup C =$  $\{0, 1, 2, \ldots, Nq + r\}.$ 

For a fixed non-zero  $x \in X$ , let us consider the sequence defined as  $f(k) = \begin{cases} (k - jq)[(1 + j)q - k]T(k - jq)x, & \text{if } k \in A_j, \\ 0, & \text{if } k \in \{0, q, 2q, \dots\}. \end{cases}$  Then clearly  $f \in P_0^q(\mathbb{Z}_+, X).$ 

Now for this sequence we have

$$\sum_{k=0}^{n} e^{i\mu k} T(n-k)f(k) = \sum_{k=0}^{Nq+r} e^{i\mu k} T(Nq+r-k)f(k)$$
$$= \sum_{j=0}^{N-1} \sum_{k=1+jq}^{(q-1+jq)} e^{i\mu k} T(Nq+r-k)f(k) + \sum_{k=Nq+1}^{Nq+r} e^{i\mu k} T(Nq+r-k)f(k)$$

$$= I_1 + I_2.$$

where

$$I_{1} = \sum_{j=0}^{N-1} \sum_{k=1+jq}^{(q-1+jq)} e^{i\mu k} T(Nq + r - k)(k - jq)[q - (k - jq)]T(k - jq)x$$

$$= \sum_{j=0}^{N-1} T(Nq + r - jq) \sum_{k=1+jq}^{(q-1+jq)} e^{i\mu k}(k - jq)[q - (k - jq)]x$$

$$= \sum_{j=0}^{N-1} T(Nq + r - jq)e^{i\mu jq} \sum_{\nu=1}^{q-1} e^{i\mu\nu}\nu(q - \nu)x$$

$$= \sum_{j=0}^{N-1} e^{-i\mu(Nq + r - jq)}T(Nq + r - jq)e^{i\mu(Nq + r)} \sum_{\nu=1}^{q-1} e^{i\mu\nu}\nu(q - \nu)x$$

$$= \sum_{\alpha=r+q}^{r+Nq} e^{-i\mu\alpha}T^{\alpha}(1)e^{i\mu n} \sum_{\nu=1}^{q-1} e^{i\mu\nu}\nu(q - \nu)x$$

$$= \sum_{\alpha=r+q}^{n} e^{-i\mu\alpha}T^{\alpha}(1)y$$

with 
$$y = e^{i\mu n} \sum_{\nu=1}^{q-1} e^{i\mu\nu} \nu (q-\nu) x$$
.  
and

$$I_{2} = \sum_{\rho=0}^{r-1} e^{i\mu(Nq+r-\rho)} T(\rho) f(Nq+r-\rho) x$$
$$= \sum_{\rho=0}^{r-1} e^{i\mu(Nq+r-\rho)} T(\rho) f(r-\rho) x.$$

Hence,

$$\sum_{k=0}^{n} e^{i\mu k} T(n-k)f(k) = \sum_{\alpha=r+q}^{n} e^{-i\mu\alpha} T^{\alpha}(1)y + \sum_{\rho=0}^{r-1} e^{i\mu(n-\rho)} T(\rho)f(r-\rho)x.$$

Now by inequality (3.1) we have  $I_1$  is bounded. That is,  $\sup_{n\geq 0} \|\sum_{\alpha=r+q}^n e^{-i\mu\alpha}T^{\alpha}(1)\| < \infty$ . From this we obtain that

$$\sup_{n\geq 0} \|\sum_{\alpha=0}^{n} e^{-i\mu\alpha} T^{\alpha}(1)\| < \infty.$$

By Lemma 2.2 we conclude that T(1) is power bounded and  $e^{i\mu} \in \rho(T(1))$ . This completes the proof.

The application of this result to the uniform exponential stability of discrete semigroups is presented as a corollary.

**Corollary 3.2.** Let  $\mathbb{T} = \{T(n) : n \in \mathbb{Z}_+\}$  be a discrete semigroup on X. If condition (3.1) holds for all  $\mu \in \mathbb{R}$  and every  $f \in P_0^q(\mathbb{Z}_+, X)$ , then r(T(1)) < 1 and  $\mathbb{T}$  is uniformly exponentially stable.

**Proof:** By Theorem 3.1 we have T is power bounded and  $e^{i\mu} \in \rho(U)$  for all  $\mu \in \mathbb{R}$ . Now by Lemma 2.3 we get that r(T(1)) < 1 but  $r(T(1)) = e^{\omega_0(\mathbb{T})}$ . From this we obtain that  $\omega_0(\mathbb{T})$  is negative and hence  $\mathbb{T}$  is uniformly exponentially stable.

**Corollary 3.3.** Let  $\mathbb{T} = \{T(n) : n \in \mathbb{Z}_+\}$  be a discrete semigroup on X. If condition 3.1 holds for all  $\mu \in \mathbb{R}$  and every  $f \in AP_0(\mathbb{Z}_+, X)$ , then r(T(1)) < 1 and  $\mathbb{T}$  is uniformly exponentially stable.

Acknowledgment. This research work was supported by Higher Education Commission of Pakistan.

# References

- C. Buse and A. Zada, *Dichotomy and boundedness of solutions for some discrete Cauchy Problems*, Proceedings of IWOTA- 2008, Operator Theory Advances and Applications, Vol. 203, (2010), 165-174.
- [2] C. Buse, S. S. Dragomir, V. Lupulescu, Characterizations of stability for strongly continuous semigroups by boundedness of its convolutions with almost periodic functions, International Journal of Differential Equations and Applications, Vol. 2, No 1, (2001), 103-109.
- [3] R. Nagel, One-parameter semigroups of positive operators, Lect. Notes in Math. 1184, Springer-Verlag, Berlin-New York, 1986.
- [4] J.M.A.M. Van Neerven, *The Asymptotic Behaviour of Semigroups of Linear Operators*, Birkhäuser-Verlag, 1996.
- [5] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer- Verlag, 1983.