International Journal of Mathematics and Soft Computing Vol.3, No.2. (2013), 49 - 58.



# Total restrained domination subdivision number for

# **Cartesian product graph**

#### P. Jeyanthi

Research Centre, Department of Mathematics, Govindammal Aditanar College for Women, Tiruchendur, Tamil Nadu, INDIA. Email: jeyajeyanthi@rediffmail.com

#### G. Hemalatha

Department of Mathematics, Shri Andal Alagar College of Engineering, Mamandur, Kancheepuram, Tamil Nadu, INDIA. Email: hemaraman2010@gmail.com

#### Abstract

In this paper we determine the total restrained dominating set and the total restrained domination subdivision number for Cartesian product graph.

**Keywords:** Total restrained dominating set, Cartesian product graph, total restrained domination subdivision number.

AMS Subject Classification (2010): 05C69.

#### **1** Introduction

Let G = (V, E) be a simple graph on the vertex set V. In a graph G, A set  $D \subseteq V$  is a dominating set of G if every vertex in V - D is adjacent to some vertex in D. The domination number of a graph  $G [\gamma(G)]$  is the minimum size of a dominating set of vertices in G. The domination subdivision number of a graph G is the minimum number of edges that must be subdivided in order to increase the domination number of a graph and is denoted by  $sd_{\gamma}(G)$ . A set S of vertices in a graph G(V,E) is called total restrained dominating set if every vertex  $v \in V$  is adjacent to an element of S and every vertex of V - S is adjacent to the vertex in V - S.

The Cartesian product of G and H [ $G \times H$ ] is the graph with vertex set  $V(G) \times V(H)$  specified by putting (u, v) adjacent to (u', v') if and only if (i) u = u' and vv' belongs to E(H), or (ii) v = v' and uu' belongs to E(G). Domination number of Cartesian products is further studied in [2], [3], [4], [8], [9] and [10]. The subdivision graph of G is a graph which is obtained by subdividing each edge of G exactly once and is denoted by S(G). The domination subdivision number of a graph G is the minimum number of edges that must be subdivided in order to increase the domination number of a graph [14] and is denoted by  $sd\gamma(G)$ . The total restrained domination in graphs was introduced in [15]. A set *S* of vertices in a graph G(V,E) is called a total restrained dominating set if every vertex  $v \in V$  is adjacent to an element of *S* and every vertex of V - S is adjacent to a vertex in V - S. The total restrained domination number of a graph  $G[\gamma_{rt}(G)]$  is the minimum cardinality of a total restrained dominating set in *G*. For a detailed literature on domination one can refer [6, 7]. Haynes et al. [5] showed that  $1 \leq sd\gamma_t(G) \leq 4$ . for any grid graph  $P_{n,m}$ . We use the following known results for the present work.

**Theorem 1.1.** [12] For  $n \ge 4$ , we have  $\gamma_t(P_{n,n}) = \gamma_t(P_{n-4,n-4}) + \gamma_t(C_{4n-4})$  and

$$\gamma_t(P_{n,n}) = \begin{cases} \frac{n^2 + 2n}{4} & \text{if } n \equiv 0,2 \pmod{4} \\ \frac{n^2 + 2n + 1}{4} & \text{if } n \equiv 1 \pmod{4} \\ \frac{n^2 + 2n - 3}{4} & \text{if } n \equiv 3 \pmod{4}. \end{cases}$$

**Theorem 1.2.** [12] For a graph G,  $\gamma_t(G) = \gamma_{tr}(G)$  if and only if G has a  $\gamma_t(G)$  set such that G[V(G) - S] has no isolated vertex.

# Theorem 1.3. [12]

1) For any  $n \ge 2$ ,  $\gamma_{tr}(P_{n,n}) = \gamma_t(P_{n,n})$ . 2) For any  $n \ge 2$ ,  $\gamma_{tr}(P_{n,n+2}) = \gamma_t(P_{n,n+2})$ . 3) For any  $n \ge 2$ ,  $\gamma_{tr}(P_{2n-1,n}) = \gamma_t(P_{2n-1,n})$ . 4) For any  $n \ge 2$ , and  $m \equiv n \pmod{n+1}$ ,  $\gamma_{tr}(P_{n,m}) = \gamma_t(P_{n,m})$ . 5) For any  $n \ge 8$ ,  $\gamma_{tr}(P_{8,n}) = \gamma_t(P_{8,n})$ . 6) For any  $n \ge 6$ ,  $\gamma_{tr}(P_{6,n}) = \gamma_t(P_{6,n})$ . 7) For any  $n \ge 5$ ,  $\gamma_{tr}(P_{5,n}) = \gamma_t(P_{5,n})$ . 8) For any  $n \ge 4$ ,  $\gamma_{tr}(P_{4,n}) = \gamma_t(P_{4,n})$ .

**Theorem 1.4.** [13] For  $n \ge 2$ ,

$$sd\gamma_t(P_{2,n}) = \begin{cases} 1, & n \equiv 0,2 \pmod{3} \\ 2, & n \equiv 1 \pmod{3}. \end{cases}$$

**Theorem 1.5.** [13] For  $n \ge 2$ ,  $sd\gamma_t(P_{3,n})=1$ .

**Theorem 1.6.** [13] For *n* ≥ 4,

$$sd\gamma_t(P_{4,n}) = \begin{cases} 1, & n \equiv 0,2 \pmod{5} \\ 2, & n \equiv 1 \pmod{5}. \end{cases}$$

**Theorem 1.7.** [13] For  $n, m \ge 3$ ,  $sd\gamma_t(P_{m,n}) \le 3$ .

**Theorem 1.8.** [13] For  $n \ge 2$ ,  $\gamma_{tr}(P_2 \times P_n) = 2\left[\frac{n+2}{3}\right]$  and  $\gamma_t(P_2 \times P_n) = \gamma_t(P_2 \times P_{n-3}) + 2$ . **Theorem 1.9.** [13] For any graph  $\gamma_t(P_4 \times P_n) = \gamma_t(P_4 \times P_{n-5}) + 6$ .

### 2 Main Results

In this section we determine the value of the total restrained domination subdivision number of  $P_n \times P_n$  for  $n \ge 4$ .

**Theorem 2.1.** Let *G* be the Cartesian product graph of  $P_n \times P_n$  of order  $n \ge 4$ , Then  $sd\gamma_{tr}(G) = 1$ .

**Proof:** Let *G* be the Cartesian product graph of  $P_n \times P_n$  of order  $n \ge 4$ . Consider  $V(G) = \{(u_1, v_1), (u_1, v_2), (u_1, v_3), \dots, (u_1, v_n)\}$ 

- $(u_2,v_1), (u_2,v_2), (u_2,v_3), \dots, (u_2,v_n)$  $(u_3,v_1), (u_3,v_2), (u_3,v_3), \dots, (u_3,v_n)$
- $(u_n,v_1), (u_n,v_2), (u_n,v_3), \ldots, (u_n,v_n)\}.$

Let  $D_n$  be a total restrained dominating set of  $(P_n \times P_n)$  and  $\mathfrak{D}_n$  be a total restrained dominating set of the first row  $\mathcal{R}_1$ , first column  $\mathcal{C}_1$ , last row  $\mathcal{R}_n$  and last column  $\mathcal{C}_n$  of  $(P_n \times P_n)$ . Let  $(P_n \times P_n)'$ be the graph that is obtained from  $(P_n \times P_n)$  by subdividing the edge  $(u_i, v_j)(u_{i+1}, v_j)$ , i, j =1,2,3,4 ... ... , *n* with the vertex *x*. Let *D'* be the total restrained dominating set of  $(P_n \times P_n)'$ . We show that  $sd\gamma_{tr}((P_n \times P_n)) = 1$ . We prove the theorem by considering the following cases.

**Case** (i): For  $n \equiv 0 \pmod{4}$ .

Put n = 4. Let *D* be a total restrained dominating set of  $(P_4 \times P_4)$ . We show that  $sd\gamma_{tr}((P_4 \times P_4)) = 1$ . We have  $\gamma_{tr}(P_4 \times P_4) = 6$  [see Figure 3].

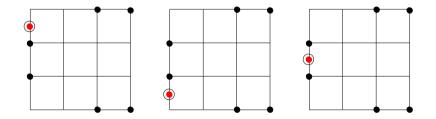


Figure 1:  $(P_4 \times P_4)'$ .

If  $(u_i, v_j) \notin D$  and  $(u_{i+1}, v_j) \in D$  or  $(u_i, v_j) \in D$  and  $(u_{i+1}, v_j) \notin D$  or  $(u_i, v_j) \in D$  and  $(u_{i+1}, v_j) \in D$ , then the last two columns of  $(P_4 \times P_4)'$  is a block *B*. We need four vertices for totally restrained domination of block *B*. To totally restrained dominate the first column of  $(P_4 \times P_4)'$  we need three vertices and then  $x \in D'$  [see Figure 1]. The second column of  $(P_4 \times P_4)'$  can be totally restrained dominated from the adjacent columns of block *B* and the first column of  $(P_4 \times P_4)'$ . We get  $\gamma_{tr}(P_4 \times P_4)' = 7 > \gamma_{tr}(P_4 \times P_4)$ . Therefore, the domination number is increased by subdividing one edge. Hence we proved that  $sd\gamma_{tr}((P_4 \times P_4)) = 1$ .

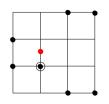
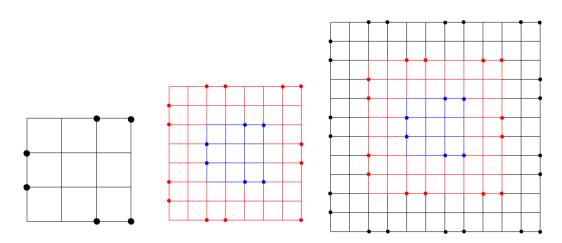


Figure 2:  $(P_4 \times P_4)'$ 

If  $(u_i, v_j) \notin D$  and  $(u_{i+1}, v_j) \notin D$ . The last two columns of  $(P_4 \times P_4)'$  is a block *B*. We need four vertices for totally restrained domination of block *B*. To totally restrained dominate the first column of  $(P_4 \times P_4)'$  we need two vertices and for the second column we need one vertex [see Figure 2]. We get  $\gamma_{tr}(P_4 \times P_4)' = 7 = \gamma_{tr}(P_4 \times P_4) + 1 > \gamma_{tr}(P_4 \times P_4)$ . Therefore, the domination number is increased by subdividing one edge and we get  $sd\gamma_{tr}((P_4 \times P_4)) = 1$ .



**Figure 3:** Total restrained dominating set of  $P_4 \times P_4$ ,  $P_8 \times P_8$  and  $P_{12} \times P_{12}$ .

Now we construct  $P_n \times P_n$  from  $P_{n-4} \times P_{n-4}$ ,  $n \ge 8$  by adding two columns (two rows) at the first and two columns (two rows) at the last of  $P_{n-4} \times P_{n-4}$ , respectively [see Figure 3]. The union of the first row, the first column, the last row and the last column of  $P_n \times P_n$  is a cycle of length 4n - 4. Consider  $D_n = D_{n-4} \cup \mathfrak{D}_n$  where  $D_{n-4}$  is the totally restrained dominating set of  $P_{n-4} \times P_{n-4}$ . By Theorem 1.1 and Theorem 1.3, we have  $\gamma_{tr}(P_n \times P_n) = \frac{n^2 + 2n}{4}$  if  $n \equiv 0 \pmod{4}$ .

In this case  $n \ge 4$  and for  $\mathfrak{D}_n = \mathcal{R}_1 \cup \mathcal{C}_1 \cup \mathcal{R}_n \cup \mathcal{C}_n$  where  $\mathcal{R}_1 = \{ (u_1, v_3), (u_1, v_4), (u_1, v_7), (u_1, v_8), \dots, (u_1, v_{n-5}), (u_1, v_{n-4}), (u_1, v_{n-1}), (u_1, v_n) \}$   $\mathcal{R}_n = \{ (u_n, v_3), (u_n, v_4), (u_n, v_7), (u_n, v_8), \dots, (u_n, v_{n-5}), (u_n, v_{n-4}), (u_n, v_{n-1}), (u_n, v_n) \}$   $\mathcal{C}_1 = \{ (u_2, v_1), (u_3, v_1), (u_6, v_1), (u_7, v_1), \dots, (u_{n-6}, v_1), (u_{n-5}, v_1), (u_{n-2}, v_1), (u_{n-1}, v_1) \}$   $\mathcal{C}_n = \{ (u_1, v_n), (u_4, v_n), (u_5, v_n), \dots, (u_{n-8}, v_n), (u_{n-7}, v_n), (u_{n-4}, v_n), (u_{n-3}, v_n), (u_n, v_n) \}.$ 

Then we know that  $\gamma_{tr}(P_n \times P_n) = \gamma_{tr}(P_{n-4} \times P_{n-4}) + \gamma_{tr}(\mathfrak{D}_n)$ . Let  $(P_n \times P_n)'$  be the graph obtained from  $(P_n \times P_n)$  by subdividing an edge with one vertex. We can prove  $\gamma_{tr}(P_n \times P_n)' = \gamma_{tr}(P_{n-4} \times P_{n-4}) + 1 + \gamma_{tr}(\mathfrak{D}_n) = \gamma_{tr}(P_n \times P_n) + 1$ . [Since  $\gamma_{tr}(P_4 \times P_4)' = \gamma_{tr}(P_4 \times P_4) + 1$ ]. Hence we get  $sd\gamma_{tr}((P_n \times P_n)) = 1$  for  $n \equiv 0 \pmod{4}$ .

Put n = 5. Let D be the total restrained dominating set of  $(P_5 \times P_5)$ . We show that  $sd\gamma_{tr}((P_5 \times P_5)) = 1$ .

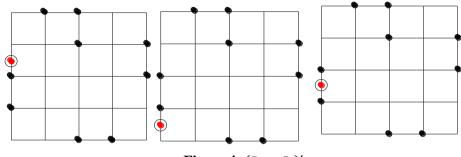


Figure 4:  $(P_5 \times P_5)'$ 

If  $(u_i, v_j) \notin D$  and  $(u_{i+1}, v_j) \in D$  or  $(u_i, v_j) \in D$  and  $(u_{i+1}, v_j) \notin D$  or  $(u_i, v_j) \in D$  and  $(u_{i+1}, v_j) \in D$ , then the last three columns of  $(P_5 \times P_5)'$  is a block *B*. We need six vertices for totally restrained domination of block *B*. To totally restrained dominate the second column of  $(P_5 \times P_5)'$  we need one vertex and for the first column of  $(P_5 \times P_5)'$  we need three vertices. Then we get  $x \in D'$  [see Figure 4]. We get  $\gamma_{tr}(P_5 \times P_5)' = 10 > \gamma_{tr}(P_5 \times P_5)$  [since  $\gamma_{tr}(P_5 \times P_5) = 9$ ]. Therefore, the domination number is increased by subdividing one edge. Hence we proved that  $sd\gamma_{tr}((P_5 \times P_5)) = 1$ .

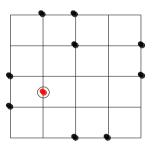


Figure 5:  $(P_5 \times P_5)'$ .

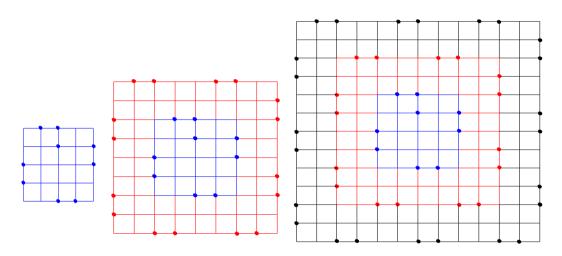
If  $(u_i, v_j) \notin D$  and  $(u_{i+1}, v_j) \notin D$ . The last three columns of  $(P_5 \times P_5)'$  is a block *B*. We need six vertices for totally restrained domination of *B*. To totally restrained dominate the first column of  $(P_5 \times P_5)'$  we need two vertices and for the second column we need two vertices [see Figure 5]. We get  $\gamma_{tr}(P_5 \times P_5)' = 7 = \gamma_{tr}(P_5 \times P_5) + 1 > \gamma_{tr}(P_5 \times P_5)$ . Therefore the domination number is increased by subdividing one edge. Hence we proved that  $sd\gamma_{tr}((P_5 \times P_5)) = 1$ .

Now we construct  $P_n \times P_n$  from  $P_{n-4} \times P_{n-4}$ ,  $n \ge 9$  by adding two columns (two rows) at the first and two columns (two rows) at the last of  $P_{n-4} \times P_{n-4}$ , respectively [see Figure 6]. The union of the first row, the first column, the last row and the last column of  $P_n \times P_n$  is a cycle of length 4n - 4. Consider  $D_n = D_{n-4} \cup \mathfrak{D}_n$  where  $D_{n-4}$  is the totally restrained dominating set of  $P_{n-4} \times P_{n-4}$ . By Theorem 1.1 and 1.3, we have  $\gamma_{tr}(P_n \times P_n) = \frac{n^2 + 2n + 1}{4}$  if  $n \equiv 1 \pmod{4}$ .

In this case  $n \ge 4$  and for  $\mathfrak{D}_n = \mathcal{R}_1 \cup \mathcal{C}_1 \cup \mathcal{R}_n \cup \mathcal{C}_n$  where

$$\begin{aligned} &\mathcal{R}_{1} = \{ (u_{1}, v_{3}), (u_{1}, v_{4}), (u_{1}, v_{7}), (u_{1}, v_{8}), \dots, (u_{1}, v_{n-6}), (u_{1}, v_{n-5}), (u_{1}, v_{n-2}), (u_{1}, v_{n-1}) \} \\ &\mathcal{R}_{n} = \{ (u_{n}, v_{2}), (u_{n}, v_{3}), (u_{n}, v_{6}), (u_{n}, v_{7}), \dots, (u_{n}, v_{n-7}), (u_{n}, v_{n-6}), (u_{n}, v_{n-3}), (u_{n}, v_{n-2}) \} \\ &\mathcal{C}_{1} = \{ (u_{2}, v_{1}), (u_{3}, v_{1}), (u_{6}, v_{1}), (u_{7}, v_{1}), \dots, (u_{n-7}, v_{1}), (u_{n-6}, v_{1}), (u_{n-3}, v_{1}), (u_{n-2}, v_{1}) \} \\ &\mathcal{C}_{n} = \{ (u_{3}, v_{n}), (u_{4}, v_{n}), (u_{7}, v_{n}), (u_{8}, v_{n}), \dots, (u_{n-6}, v_{n}), (u_{n-2}, v_{n}), (u_{n-1}, v_{n}) \}. \end{aligned}$$

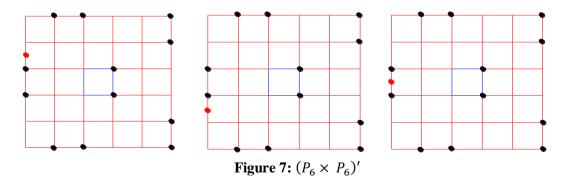
Then we know that  $\gamma_{tr}(P_n \times P_n) = \gamma_{tr}(P_{n-4} \times P_{n-4}) + \gamma_{tr}(\mathfrak{D}_n)$ . Let  $(P_n \times P_n)'$  be the graph that is obtained from  $(P_n \times P_n)$  by subdividing an edge with one vertex. Clearly we can prove  $\gamma_{tr}(P_n \times P_n)' = \gamma_{tr}(P_{n-4} \times P_{n-4}) + 1 + \gamma_{tr}(\mathfrak{D}_n) = \gamma_{tr}(P_n \times P_n) + 1$  [::  $\gamma_{tr}(P_5 \times P_5)' = \gamma_{tr}(P_5 \times P_5) + 1$ ]. Thus we proved that  $\mathrm{sd}\gamma_{tr}((P_n \times P_n)) = 1$  for  $n \equiv 1 \pmod{4}$ .



**Figure 6:** Total restrained dominating set of  $P_5 \times P_5$ ,  $P_9 \times P_9$  and  $P_{13} \times P_{13}$ .

**Case (iii):** If  $n \equiv 2 \pmod{4}$ 

Put n = 6. Let D be the total restrained dominating set of  $(P_6 \times P_6)$ . We show that  $sd\gamma_{tr}((P_6 \times P_6)) = 1$ . We have  $\gamma_{tr}(P_6 \times P_6) = 12$ .



If  $(u_i, v_j) \notin D$  and  $(u_{i+1}, v_j) \in D$  or  $(u_i, v_j) \in D$  and  $(u_{i+1}, v_j) \notin D$  or  $(u_i, v_j) \in D$  and  $(u_{i+1}, v_j) \in D$  then the last four columns of  $(P_6 \times P_6)'$  is a block *B*. We need eight vertices for totally restrained domination of the block *B*. To totally restrained dominate the second column of  $(P_6 \times P_6)$  we need two vertices and for the first column of  $P_6 \times P_6$  we need three vertices. Then  $x \in D'$  [see Figure 7]. We get  $\gamma_{tr}(P_6 \times P_6)' = 13 > \gamma_{tr}(P_6 \times P_6)$  [since  $\gamma_{tr}(P_6 \times P_6) = 12$ ]. Therefore the

domination number is increased by subdividing one edge. Hence we proved that  $sd\gamma_{tr}((P_6 \times P_6)) = 1$ .

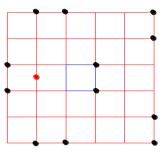
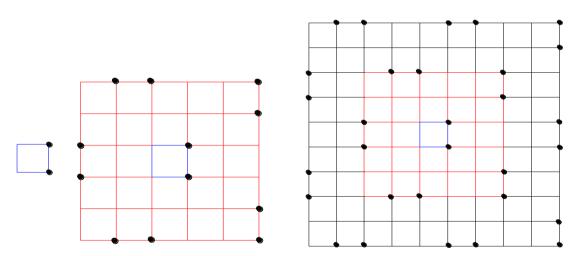


Figure 8:  $(P_6 \times P_6)'$ .

If  $(u_i, v_j) \notin D$  and  $(u_{i+1}, v_j) \notin D$ . The last four columns of  $(P_6 \times P_6)'$  is a block *B*. We need eight vertices for totally restrained domination of block *B*. To totally restrained dominate the first column of  $P_6 \times P_6$  we need two vertices and for the second column of  $(P_6 \times P_6)$  we need three vertices [see Figure 8]. We get  $\gamma_{tr}(P_6 \times P_6)' = 13 = \gamma_{tr}(P_6 \times P_6) + 1 > \gamma_{tr}(P_6 \times P_6)$ . Therefore, the domination number is increased by subdividing one edge. Hence we proved that  $sd\gamma_{tr}((P_6 \times P_6)) = 1$ .

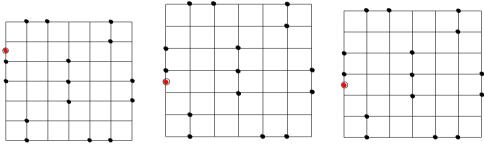


**Figure 9:** Total restrained dominating set of  $P_2 \times P_2$ ,  $P_6 \times P_6$ ,  $P_{10} \times P_{10}$ .

Now we construct  $P_n \times P_n$  from  $P_{n-4} \times P_{n-4}$ ,  $n \ge 10$  by adding two columns (two rows) at the first and two columns (two rows) at the last of  $P_{n-4} \times P_{n-4}$  respectively [see Figure 9]. The union of the first row, the first column, the last row and the last column of  $P_n \times P_n$  is a cycle of length 4n - 4. Consider  $D_n = D_{n-4} \cup \mathfrak{D}_n$  where  $D_{n-4}$  is the totally restrained dominating set of  $P_{n-4} \times P_{n-4}$ . By Theorem 1.1 and 1.3, we have  $\gamma_{tr}(P_n \times P_n) = \frac{n^2 + 2n}{4}$  if  $n \equiv 2 \pmod{4}$ . In this case  $n \ge 4$  and for  $\mathfrak{D}_n = \mathcal{R}_1 \cup \mathcal{C}_1 \cup \mathcal{R}_n \cup \mathcal{C}_n$  where  $\begin{aligned} &\mathcal{R}_{1} = \{ (u_{1}, v_{2}), (u_{1}, v_{3}), (u_{1}, v_{6}), (u_{1}, v_{7}), \dots, (u_{1}, v_{n-8}), (u_{1}, v_{n-7}), (u_{1}, v_{n-4}), (u_{1}, v_{n-3}), (u_{1}, v_{n}) \} \\ &\mathcal{R}_{n} = \{ (u_{n}, v_{2}), (u_{n}, v_{3}), (u_{n}, v_{6}), (u_{n}, v_{7}), \dots, (u_{n}, v_{n-8}), (u_{n}, v_{n-7}), (u_{n}, v_{n-4}), (u_{n}, v_{n-3}), (u_{n}, v_{n}) \} \\ &\mathcal{C}_{1} = \{ (u_{3}, v_{1}), (u_{4}, v_{1}), (u_{7}, v_{1}), (u_{8}, v_{1}), \dots, (u_{n-7}, v_{1}), (u_{n-6}, v_{1}), (u_{n-3}, v_{1}), (u_{n-2}, v_{1}) \} \\ &\mathcal{C}_{n} = \{ (u_{1}, v_{n}), (u_{2}, v_{n}), (u_{5}, v_{n}), (u_{6}, v_{n}), \dots, (u_{n-5}, v_{n}), (u_{n-4}, v_{n}), (u_{n-1}, v_{n}), (u_{n}, v_{n}) \} . \\ &\text{Then we know that } \gamma_{tr}(P_{n} \times P_{n}) = \gamma_{tr}(P_{n-4} \times P_{n-4}) + \gamma_{tr}(\mathfrak{D}_{n}). \text{ Let } (P_{n} \times P_{n})' \text{ be the graph that} \\ &\text{ is obtained from } (P_{n} \times P_{n}) \text{ by subdividing an edge with one vertex. We can prove } \gamma_{tr}(P_{n} \times P_{n})' = \\ &\gamma_{tr}(P_{n-4} \times P_{n-4}) + 1 + \gamma_{tr}(\mathfrak{D}_{n}) = \gamma_{tr}(P_{n} \times P_{n}) + 1. [\text{ since } \gamma_{tr}(P_{6} \times P_{6})' = \gamma_{tr}(P_{6} \times P_{6}) + 1]. \\ &\text{ Then we get } \text{ sd}\gamma_{tr}((P_{n} \times P_{n})) = 1 \text{ for } n \equiv 2(mod 4). \end{aligned}$ 

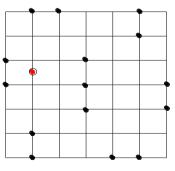
Case (iv): If  $n \equiv 3 \pmod{4}$ .

Put n = 7. Let D be the total restrained dominating set of  $(P_7 \times P_7)$ . We show that  $sd\gamma_{tr}((P_7 \times P_7)) = 1$ .



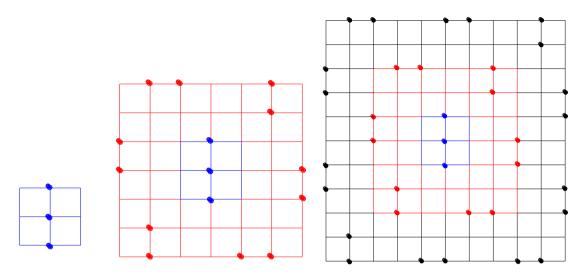
**Figure 10:**  $(P_7 \times P_7)'$ .

If  $(u_i, v_j) \notin D$  and  $(u_{i+1}, v_j) \in D$  or  $(u_i, v_j) \in D$  and  $(u_{i+1}, v_j) \notin D$  or  $(u_i, v_j) \in D$  and  $(u_{i+1}, v_j) \in D$  then the last five columns of  $(P_7 \times P_7)'$  is a block *B*. we need ten vertices for totally restrained domination of block B. To totally restrained dominate the first and second column of  $(P_7 \times P_7)$  we need three vertices. Then we get  $x \in D'$  [see Figure 10]. We get  $\gamma_{tr}(P_7 \times P_7)' = 16 > \gamma_{tr}(P_7 \times P_7)$  [since  $\gamma_{tr}(P_7 \times P_7) = 15$ ]. Therefore the domination number is increased by subdividing one edge and we get  $sd\gamma_{tr}((P_7 \times P_7)) = 1$ .



**Figure 11:**  $(P_7 \times P_7)'$ .

If  $(u_i, v_j) \notin D$  and  $(u_{i+1}, v_j) \notin D$  then the last five columns of  $(P_7 \times P_7)'$  is a block *B*. We need ten vertices for totally restrained domination of *B*. To totally restrained dominate the first column of  $P_7 \times P_7$  we need two vertices and for the second column of  $(P_7 \times P_7)$  we need four vertices [see Figure 11]. We get  $\gamma_{tr}(P_7 \times P_7)' = 16 = \gamma_{tr}(P_7 \times P_7) > \gamma_{tr}(P_7 \times P_7)$ . Therefore the domination number is increased by subdividing one edge. Hence we proved that  $sd\gamma_{tr}((P_7 \times P_7)) = 1$ .



**Figure 12:** *Total restrained dominating set of*  $P_3 \times P_3$ ,  $P_7 \times P_7$  *and*  $P_{11} \times P_{11}$ .

Now we construct  $P_n \times P_n$  from  $P_{n-4} \times P_{n-4}$ ,  $n \ge 11$  by adding two columns (two rows) at the first and two columns (two rows) at the last of  $P_{n-4} \times P_{n-4}$  respectively [see Figure 12]. The union of the first row, the first column, the last row and the last column of  $P_n \times P_n$  is a cycle of length 4n - 4. Consider  $D_n = D_{n-4} \cup \mathfrak{D}_n$  where  $D_{n-4}$  is the totally restrained dominating set of  $P_{n-4} \times P_{n-4}$ . By Theorem 1.1 and 1.3, we have  $\gamma_{tr}(P_n \times P_n) = \frac{n^2 + 2n - 3}{4}$  if  $n \equiv 3 \pmod{4}$ . In this case  $n \ge 4$  and for  $\mathfrak{D}_n = \mathcal{R}_1 \cup \mathcal{C}_1 \cup \mathcal{R}_n \cup \mathcal{C}_n$  where  $\mathcal{R}_1 = \{(u_1, v_2), (u_1, v_5), (u_1, v_6), \dots, (u_1, v_{n-5}), (u_1, v_{n-2}), (u_1, v_{n-1})\}$  $\mathcal{R}_n = \{(u_n, v_2), (u_n, v_3), (u_n, v_6), \dots, (u_n, v_{n-5}), (u_n, v_{n-4}), (u_n, v_{n-1})\}$  $\mathcal{C}_1 = \{(u_3, v_n), (u_4, v_n), (u_7, v_n), (u_8, v_n), \dots, (u_{n-8}, v_n), (u_{n-7}, v_n), (u_{n-4}, v_n), (u_{n-3}, v_n)\}$ .

Then we know that  $\gamma_{tr}(P_n \times P_n) = \gamma_{tr}(P_{n-4} \times P_{n-4}) + \gamma_{tr}(\mathfrak{D}_n)$ . Let  $(P_n \times P_n)'$  be the graph that is obtained from  $(P_n \times P_n)$  by subdividing an edge with one vertex. We can prove  $\gamma_{tr}(P_n \times P_n)' =$  $\gamma_{tr}(P_{n-4} \times P_{n-4}) + 1 + \gamma_{tr}(\mathfrak{D}_n) = \gamma_{tr}(P_n \times P_n) + 1[\text{Since } \gamma_{tr}(P_7 \times P_7)' = \gamma_{tr}(P_7 \times P_7) + 1].$ Hence we get  $\mathrm{sd}\gamma_{tr}((P_n \times P_n)) = 1$  for  $n \equiv 3 \pmod{4}$ .

From all the above four cases we get  $sd\gamma_{tr}((P_n \times P_n)) = 1$ .

### References

- [1] C. Berge, *Graphs and Hyper graphs*, North-Holland, Amsterdam (1973).
- [2] M. El-Zahar and C.M. Pareek, Domination *number of products of graphs*, Ars Combinatoria, 31(1991), 223-227.

- [3] R. J. Faudree and R.H. Schelp, *The domination number for the product of graphs*, Congressus Numerantium, 79(1990), 29-33.
- [4] S. Gravier, *Total domination number of grid graphs*, Discrete Applied Math.121 (2002), 119-128.
- [5] T.W. Haynes, S.T. Hedetniemi and L.C. VanderMerwe, *Total domination subdivision numbers*, J.Combin. Math. Combin. Comput., 44(2003), 115–128.
- [6] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, *Fundamentals of domination in graphs*, Marcel Dekker Inc., New York, (1998).
- [7] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, *Domination in graphs: Advanced Topics*, Marcel Dekker Inc., New York, (1998).
- [8] M. S. Jacobson and L.F. Kinch, *On the domination number of products of graphs I*, Ars Combinatoria, 18(1983), 33-44.
- [9] M.S. Jacobson, L. F. Kinch, *On the domination number of the products of graphs II : Trees*, J. Graph Theory, 10(1986), 97-106.
- [10] S. Klav zar and N. Seifter, *Dominating Cartesian products of cycles*, Discrete Appl. Math. 59(1995), 129-136.
- [11] Nar Singh Deo, *Graph theory with operations to engineering and computer science*, Prentice Hall of India, New Delhi, 1993.
- [12] Nasrin Soltankhah, *Results on Total Domination and Total Restrained Domination in Grid Graphs*, International Mathematical Forum.5, No. 7 (2010), 319-332.
- [13] Nasrin Soltankhah, On Total Domination Subdivision number of Grid Graphs, Int. J. Contemp. Math. Sciences, Vol. 5, No. 49(2010), 2419-2432.
- [14] Odilie Favaron, Teresa W. Haynes and Stephen T. Hedetniemi, *Domination subdivision Numbers in graphs*, Utilitas Mathematica, 66(2004), 195-209.
- [15] J.A. Telle and A. Proskurowski, *Algorithms for vertex partitioning problems on partial K-trees*, SIAM Discrete Math., 10 (1997), 529-550.