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Abstract 

A dominating set D of graph G = (V, E) is a disconnected dominating set, if the induced 

subgraph < D > is disconnected. The disconnected dominating number dc (G) of G is the 

minimum cardinality of a disconnected dominating set of G. In this paper, we relate this parameter 

to other parameters of graph G and obtain some bounds also.  
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1    Introduction 

All the graphs considered in this paper are non-complete and of order n   2. Let G = (V, E) be a 

non complete graph of order at least 2. A subset D of vertices is a dominating set, if every vertex v in 

V-D is adjacent to some vertex in D. The minimum cardinality of a dominating set is called the 

domination number of G and is denoted by  (G). It is clear that every isolated vertex is in every 

dominating set. A comprehensive survy on the fundamentals of domination is given by Haynes et al 

[1].  Prof . E. Sampathkumar [3] introduced the concept of connected domination in graphs. A set D   

V is called a connected dominating set, if D is a dominating set and < D > is connected. The minimum 

cardinality of a connected dominating set of G is called the connected domination number of G and is 

denoted by  c(G). A set   D   V is said to be a disconnected dominating set if the induced subgraph < 

D > is disconnected. The disconnected dominating number dc (G) of G is the minimum cardinality of 

a disconnected dominating set of G. Two vertices are said to be independent, if they are not adjacent. 

A set D of vertices is said to be an independent set, if no two vertices of D are adjacent. The maximum 

cardinality of an independent set of G is called the independence number of G and is denoted by  0 

(G).  
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Remark 1.1. In Kn, no vertex subset is disconnected. Therefore, disconnected dominating set does not 

exist in complete graphs. Hence, we consider only non complete graphs. 

Definition 1.2.  A dominating set D of graph G = (V, E) is a disconnected dominating set, if the 

induced subgraph < D > is disconnected. The disconnected dominating number dc (G) of G is the 

minimum cardinality of a disconnected dominating set of G. 

Proposition 1.3. 

1. For any complete bipartite graph Km,n with 2   m   n,  

   dc (Km,n ) = m. 

2. For any cycle Cn with n ≥ 4,  

  dc (Cn ) =  .
3





n
 

3. For any path Pn with n ≥ 3,   

  dc (Pn) =  
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4. For any star K1, n-1 with n ≥3, 

  dc (K1, n-1) = n-1. 

5. For any double star Dr, s with 2   r   s, 

  dc (Dr, s) = r +1. 

2    Main Results 

Theorem 2.1.  For any graph G,  (G)  dc (G)   0 (G), where  0(G) is the independence number 

of G. 

Proof:  Clearly,  (G)  dc (G).  

Let D be a maximum independent set of vertices in G. Since G is not complete, D has at least two 

vertices. Since D is a maximum independent set, every vertex in V – D is adjacent to some vertex in D. 

This implies that D is a dominating set. Since the vertices in D are independent, D is a disconnected 

dominating set. Therefore, dc (G)    0(G).             

Theorem 2.2.  For any graph G, dc (G) = n if and only if G = nK .
  

Proof:  If G = nK , then  dc  (G) = n. 

Let G be a graph with dc  (G) = n. If all the vertices are isolates, then G = nK . If G has non 

isolated vertices, then the set D of independent vertices is a disconnected dominating set and S  < n, a 

contradiction.                     

Theorem 2.3. Given any integer k  0, there exists a graph G such that dc (G) -  (G) = k. 

Proof:  Let G be the complete bipartite graph Kk+2, k+3. Then  (G) = 2 and dc (G) = k+2.  
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Therefore, dc (G) - dc (G) = (k + 2) – 2 = k.             

Theorem 2.4. Given any integer k  0, there exists a graph G such that  0 (G) - dc (G) = k. 

Proof:  Let G be the complete bipartite graph K2, k+2. Then  0 (G) = k+2 and dc (G) = 2. Therefore, 

 0 (G) - dc (G) = (k + 2) - 2 = k.              

Theorem 2.5. For any two integers a, b with 2  a  b, there exists a graph G such that dc (G) = a 

and 0 (G) = b. 

Proof:  Let G be the complete bipartite graph Ka, b. Then dc (G) = min {a, b} = a and  0 (G) = 

max{a, b} =  b. Therefore, dc (G) = a and 0 (G) = b.            

Theorem 2.6. Let G be a graph. Then dc (G) = n - 1 if and only if G = K1, n-1 or G = K2  (n - 2) K1. 

Proof:   If G = K1,n-1, then dc (G) = n-1 or if  G = K2  (n - 2) K1, then dc (G) = n-1. Conversely, let G 

be a graph with dc (G) = n - 1.               

Let D be a dc -set of G and V – D = {v}. 

We claim that  < D > has no edge. 

Suppose there exist two vertices x and y in D such that xy  E (G). 

Case (i): v is adjacent to exactly one of x and y.  

Let xv   E (G ) and vy  E(G). Then D1 = D – {y} is a disconnected dominating set of cardinality 

less than dc (G), which is a contradiction. 

Case (ii): v is adjacent to neither x nor y. 

In this case, vx   E(G) and vy E(G). Then D1 = D – {x} or D – {v} is a disconnected dominating 

set of cardinality less than dc (G), which is a contradiction. 

Case (iii): v is adjacent to both x and y.  

In this case, vx, vy  E(G). Then D1 = D-{x} or D-{y} is a disconnected dominating of cardinality 

less than dc (G), which is a contradiction. Hence, < D > has no edges. 

Next, we show that G = K1,n-1 or G = K2  (n-2) K1. 

Case (a): G is connected. 

Let D = {u1, u2, …, un-1} be a dc -set of G. Since D is a dominating set, v is adjacent to some ui, 1  i 

 n-1. Suppose there exists uj, 1  j  n-1 such that uj is not adjacent to v. Then there is no path 

between uj and v, which contradicts the assumption that G is connected.  

Therefore, each ui is adjacent to v, 1  i  n-1. Hence G = K1, n - 1.  

Case (b):  G is disconnected. 

Since dc (G) = n-1 < n. G ≠ nK . 

Therefore, G has edges. Since < D > is disconnected and DV   = 1, every edge has one end in D 

and other end in V – D.  
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Suppose there exist x1, x2,…,xr  in D such that vxi  E(G), 1  i  r.  

If r = n-1, then G = K1,n-1, a connected graph, a contradiction. Therefore, r  n-2. 

If r ≥ 2, then D1 = D – {x1, x2,…,xr}  {v} is a disconnected dominating set of cardinality n – r  n-2, 

which is a contradiction. 

Therefore, r = 1 and hence G = K2  (n-2) K1.             
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