International Journal of Mathematics and Soft Computing Vol.3, No.2 (2013), 17 - 20.

On disconnected domination number of a graph

S. Balamurugan

PG & Research Department of Mathematics, Raja Doraisingam Government Arts College, Sivagangai – 630 561, INDIA. Email: balapoojaa2009@gmail.com

G. Prabakaran

Research Department of Mathematics, Thiagarajar College, Madurai - 625009, INDIA. E-mail: tcmath@gmail.com

Abstract

A dominating set *D* of graph G = (V, E) is a disconnected dominating set, if the induced subgraph $\langle D \rangle$ is disconnected. The disconnected dominating number $\gamma_{dc}(G)$ of *G* is the minimum cardinality of a disconnected dominating set of *G*. In this paper, we relate this parameter to other parameters of graph *G* and obtain some bounds also.

Keywords: Domination, disconnected domination, independence number, disconnected domination number.

AMS Subject Classification (2010): 05C69.

1 Introduction

All the graphs considered in this paper are non-complete and of order $n \ge 2$. Let G = (V, E) be a non complete graph of order at least 2. A subset D of vertices is a dominating set, if every vertex v in V-D is adjacent to some vertex in D. The minimum cardinality of a dominating set is called the domination number of G and is denoted by $\gamma(G)$. It is clear that every isolated vertex is in every dominating set. A comprehensive survy on the fundamentals of domination is given by Haynes et al [1]. Prof. E. Sampathkumar [3] introduced the concept of connected domination in graphs. A set $D \subseteq$ V is called a connected dominating set, if D is a dominating set and $\langle D \rangle$ is connected. The minimum cardinality of a connected dominating set of G is called the connected domination number of G and is denoted by $\gamma_c(G)$. A set $D \subseteq V$ is said to be a disconnected dominating set if the induced subgraph $\langle D \rangle$ is disconnected. The disconnected dominating number $\gamma_{dc}(G)$ of G is the minimum cardinality of a disconnected dominating set of G. Two vertices are said to be independent, if they are not adjacent. A set D of vertices is said to be an independent set, if no two vertices of D are adjacent. The maximum cardinality of an independent set of G is called the independence number of G and is denoted by α_0 (G). **Remark 1.1.** In K_n no vertex subset is disconnected. Therefore, disconnected dominating set does not exist in complete graphs. Hence, we consider only non complete graphs.

Definition 1.2. A dominating set *D* of graph G = (V, E) is a disconnected dominating set, if the induced subgraph $\langle D \rangle$ is disconnected. The disconnected dominating number $\gamma_{dc}(G)$ of *G* is the minimum cardinality of a disconnected dominating set of *G*.

Proposition 1.3.

1. For any complete bipartite graph $K_{m,n}$ with $2 \le m \le n$,

$$\gamma_{dc}(K_{m,n}) = m$$

2. For any cycle C_n with $n \ge 4$,

$$\gamma_{dc}(C_n) = \left\lceil \frac{n}{3} \right\rceil.$$

3. For any path P_n with $n \ge 3$,

$$\gamma_{dc}(P_n) = \begin{cases} 2 \text{ if } n = 3 \\ \left\lceil \frac{n}{3} \right\rceil & \text{if } n \ge 4 \end{cases}$$

4. For any star $K_{1, n-1}$ with $n \ge 3$,

$$\gamma_{dc} (K_{l, n-1}) = n-1.$$

For any double star $D_{r, s}$ with $2 \le r \le s$,
 $\gamma_{dc} (D_{r, s}) = r + 1.$

2 Main Results

5.

Theorem 2.1. For any graph G, $\gamma(G) \leq \gamma_{dc}(G) \leq \alpha_0(G)$, where $\alpha_0(G)$ is the independence number of G.

Proof: Clearly, $\gamma(G) \leq \gamma_{dc}(G)$.

Let *D* be a maximum independent set of vertices in *G*. Since *G* is not complete, *D* has at least two vertices. Since *D* is a maximum independent set, every vertex in V - D is adjacent to some vertex in *D*. This implies that *D* is a dominating set. Since the vertices in *D* are independent, *D* is a disconnected dominating set. Therefore, $\gamma_{dc}(G) \le \alpha_0(G)$.

Theorem 2.2. For any graph *G*, $\gamma_{dc}(G) = n$ if and only if $G = \overline{K_n}$.

Proof: If $G = \overline{K_n}$, then $\gamma_{dc}(G) = n$.

Let G be a graph with γ_{dc} (G) = n. If all the vertices are isolates, then $G = \overline{K_n}$. If G has non isolated vertices, then the set D of independent vertices is a disconnected dominating set and |S| < n, a contradiction.

Theorem 2.3. Given any integer $k \ge 0$, there exists a graph G such that $\gamma_{dc}(G) - \gamma(G) = k$.

Proof: Let *G* be the complete bipartite graph $K_{k+2, k+3}$. Then $\gamma(G) = 2$ and $\gamma_{dc}(G) = k+2$.

Therefore, $\gamma_{dc}(G) - \gamma_{dc}(G) = (k+2) - 2 = k$.

Theorem 2.4. Given any integer $k \ge 0$, there exists a graph G such that $\alpha_0(G) - \gamma_{dc}(G) = k$.

Proof: Let *G* be the complete bipartite graph $K_{2, k+2}$. Then $\alpha_0(G) = k+2$ and $\gamma_{dc}(G) = 2$. Therefore, $\alpha_0(G) - \gamma_{dc}(G) = (k+2) - 2 = k$.

Theorem 2.5. For any two integers *a*, *b* with $2 \le a \le b$, there exists a graph *G* such that $\gamma_{dc}(G) = a$ and $\alpha_0(G) = b$.

Proof: Let G be the complete bipartite graph $K_{a,b}$. Then $\gamma_{dc}(G) = \min \{a, b\} = a$ and $\alpha_0(G) = \alpha_0(G)$

 $\max\{a, b\} = b$. Therefore, $\gamma_{dc}(G) = a$ and $\alpha_0(G) = b$.

Theorem 2.6. Let G be a graph. Then $\gamma_{dc}(G) = n - 1$ if and only if $G = K_{l, n-1}$ or $G = K_2 \cup (n - 2) K_l$.

Proof: If $G = K_{1,n-1}$, then $\gamma_{dc}(G) = n-1$ or if $G = K_2 \cup (n-2) K_1$, then $\gamma_{dc}(G) = n-1$. Conversely, let G be a graph with $\gamma_{dc}(G) = n-1$.

Let *D* be a γ_{dc} -set of *G* and $V - D = \{v\}$.

We claim that $\langle D \rangle$ has no edge.

Suppose there exist two vertices x and y in D such that $xy \in E(G)$.

Case (i): *v* is adjacent to exactly one of *x* and *y*.

Let $xv \in E(G)$ and $vy \notin E(G)$. Then $D_1 = D - \{y\}$ is a disconnected dominating set of cardinality less than $\gamma_{dc}(G)$, which is a contradiction.

Case (ii): v is adjacent to neither x nor y.

In this case, $vx \notin E(G)$ and $vy \notin E(G)$. Then $D_1 = D - \{x\}$ or $D - \{v\}$ is a disconnected dominating set of cardinality less than $\gamma_{dc}(G)$, which is a contradiction.

Case (iii): *v* is adjacent to both *x* and *y*.

In this case, vx, $vy \in E(G)$. Then $D_1 = D - \{x\}$ or $D - \{y\}$ is a disconnected dominating of cardinality less than $\gamma_{dc}(G)$, which is a contradiction. Hence, $\langle D \rangle$ has no edges.

Next, we show that $G = K_{1,n-1}$ or $G = K_2 \cup (n-2) K_1$.

Case (a): G is connected.

Let $D = \{u_1, u_2, ..., u_{n-1}\}$ be a γ_{dc} -set of G. Since D is a dominating set, v is adjacent to some $u_i, 1 \le i$

 $\leq n-1$. Suppose there exists u_j , $1 \leq j \leq n-1$ such that u_j is not adjacent to v. Then there is no path between u_j and v, which contradicts the assumption that *G* is connected.

Therefore, each u_i is adjacent to v, $1 \le i \le n-1$. Hence $G = K_{1, n-1}$.

Case (b): G is disconnected.

Since $\gamma_{dc}(G) = n-1 < n. \ G \neq \overline{K_n}$.

Therefore, G has edges. Since $\langle D \rangle$ is disconnected and |V - D| = 1, every edge has one end in D and other end in V - D.

Suppose there exist $x_1, x_2, ..., x_r$ in *D* such that $vx_i \in E(G), 1 \le i \le r$.

If r = n-1, then $G = K_{1,n-1}$, a connected graph, a contradiction. Therefore, $r \le n-2$.

If $r \ge 2$, then $D_1 = D - \{x_1, x_{2,...,}, x_r\} \cup \{v\}$ is a disconnected dominating set of cardinality $n - r \le n-2$, which is a contradiction.

Therefore, r = 1 and hence $G = K_2 \cup (n-2) K_1$.

References

- T.W. Haynes, S.T. Hedetniemi and P.J. Slater, *Fundamentals of Domination in Graphs*, Marcel Docker Inc., New york, 1998.
- [2] S.T. Hedetniemi and Renu Lasker, *Connected domination in Graphs*, Graph Theory and Combinatorics, Academic Press, London(1984), 209-217.
- [3] E. Sambathkumar and H. B. Walikar, *The connected domination of a graph*, Math. Phys. Sci. 13(1979), 607-613.