On disconnected domination number of a graph

S. Balamurugan
PG \& Research Department of Mathematics, Raja Doraisingam Government Arts College, Sivagangai - 630 561, INDIA.
Email: balapoojaa2009@gmail.com
\section*{G. Prabakaran}
Research Department of Mathematics, Thiagarajar College, Madurai - 625009, INDIA. E-mail: tcmath@gmail.com

Abstract

A dominating set D of graph $G=(V, E)$ is a disconnected dominating set, if the induced subgraph $\langle D\rangle$ is disconnected. The disconnected dominating number $\gamma_{d c}(G)$ of G is the minimum cardinality of a disconnected dominating set of G. In this paper, we relate this parameter to other parameters of graph G and obtain some bounds also.

Keywords: Domination, disconnected domination, independence number, disconnected domination number.

AMS Subject Classification (2010): 05C69.

1 Introduction

All the graphs considered in this paper are non-complete and of order $n \geq 2$. Let $G=(V, E)$ be a non complete graph of order at least 2 . A subset D of vertices is a dominating set, if every vertex v in $V-D$ is adjacent to some vertex in D. The minimum cardinality of a dominating set is called the domination number of G and is denoted by $\gamma(G)$. It is clear that every isolated vertex is in every dominating set. A comprehensive survy on the fundamentals of domination is given by Haynes et al [1]. Prof . E. Sampathkumar [3] introduced the concept of connected domination in graphs. A set $D \subseteq$ V is called a connected dominating set, if D is a dominating set and $\langle D>$ is connected. The minimum cardinality of a connected dominating set of G is called the connected domination number of G and is denoted by $\gamma_{c}(G)$. A set $D \subseteq V$ is said to be a disconnected dominating set if the induced subgraph < $D>$ is disconnected. The disconnected dominating number $\gamma_{d c}(G)$ of G is the minimum cardinality of a disconnected dominating set of G. Two vertices are said to be independent, if they are not adjacent. A set D of vertices is said to be an independent set, if no two vertices of D are adjacent. The maximum cardinality of an independent set of G is called the independence number of G and is denoted by α_{0} (G).

Remark 1.1. In $K_{n,}$ no vertex subset is disconnected. Therefore, disconnected dominating set does not exist in complete graphs. Hence, we consider only non complete graphs.
Definition 1.2. A dominating set D of graph $G=(V, E)$ is a disconnected dominating set, if the induced subgraph $\left\langle D>\right.$ is disconnected. The disconnected dominating number $\gamma_{d c}(G)$ of G is the minimum cardinality of a disconnected dominating set of G.

Proposition 1.3.

1. For any complete bipartite graph $K_{m, n}$ with $2 \leq m \leq n$,

$$
\gamma_{d c}\left(K_{m, n}\right)=m
$$

2. For any cycle C_{n} with $n \geq 4$,

$$
\gamma_{d c}\left(C_{n}\right)=\left\lceil\frac{n}{3}\right\rceil
$$

3. For any path P_{n} with $n \geq 3$,

$$
\gamma_{d c}\left(P_{n}\right)=\left\{\begin{array}{l}
2 \text { if } n=3 \\
\left\lceil\frac{n}{3}\right\rceil \quad \text { if } n \geq 4
\end{array}\right.
$$

4. For any star $K_{l, n-1}$ with $n \geq 3$,

$$
\gamma_{d c}\left(K_{l, n-1}\right)=n-1
$$

5. For any double star $D_{r, s}$ with $2 \leq r \leq s$,

$$
\gamma_{d c}\left(D_{r, s}\right)=r+1
$$

2 Main Results

Theorem 2.1. For any graph $G, \gamma(G) \leq \gamma_{d c}(G) \leq \alpha_{0}(G)$, where $\alpha_{0}(G)$ is the independence number of G.

Proof: Clearly, $\gamma(G) \leq \gamma_{d c}(G)$.
Let D be a maximum independent set of vertices in G. Since G is not complete, D has at least two vertices. Since D is a maximum independent set, every vertex in $V-D$ is adjacent to some vertex in D. This implies that D is a dominating set. Since the vertices in D are independent, D is a disconnected dominating set. Therefore, $\gamma_{d c}(G) \leq \alpha_{0}(G)$.

Theorem 2.2. For any graph $G, \gamma_{d c}(G)=n$ if and only if $G=\overline{K_{n}}$.
Proof: If $G=\overline{K_{n}}$, then $\gamma_{d c}(G)=n$.
Let G be a graph with $\gamma_{d c}(G)=n$. If all the vertices are isolates, then $G=\overline{K_{n}}$. If G has non isolated vertices, then the set D of independent vertices is a disconnected dominating set and $|S|<n$, a contradiction.

Theorem 2.3. Given any integer $k \geq 0$, there exists a graph G such that $\gamma_{d c}(G)-\gamma(G)=k$.
Proof: Let G be the complete bipartite graph $K_{k+2, k+3}$. Then $\gamma(G)=2$ and $\gamma_{d c}(G)=k+2$.

Therefore, $\gamma_{d c}(G)-\gamma_{d c}(G)=(k+2)-2=k$.
Theorem 2.4. Given any integer $k \geq 0$, there exists a graph G such that $\alpha_{o}(G)-\gamma_{d c}(G)=k$.
Proof: Let G be the complete bipartite graph $K_{2, k+2}$. Then $\alpha_{0}(G)=k+2$ and $\gamma_{d c}(G)=2$. Therefore, $\alpha_{0}(G)-\gamma_{d c}(G)=(k+2)-2=k$.

Theorem 2.5. For any two integers a, b with $2 \leq a \leq b$, there exists a graph G such that $\gamma_{d c}(G)=a$ and $\alpha_{o}(G)=b$.

Proof: Let G be the complete bipartite graph $K_{a, b}$. Then $\gamma_{d c}(G)=\min \{a, b\}=a$ and $\alpha_{0}(G)=$ $\max \{a, b\}=b$. Therefore, $\gamma_{d c}(G)=a$ and $\alpha_{0}(G)=b$.

Theorem 2.6. Let G be a graph. Then $\gamma_{d c}(G)=n-1$ if and only if $G=K_{l, n-l}$ or $G=K_{2} \cup(n-2) K_{l}$.
Proof: If $G=K_{1, n-1}$, then $\gamma_{d c}(G)=n-1$ or if $G=K_{2} \cup(n-2) K_{1}$, then $\gamma_{d c}(G)=n-1$. Conversely, let G be a graph with $\gamma_{d c}(G)=n-1$.

Let D be a $\gamma_{d c}$-set of G and $V-D=\{v\}$.
We claim that $\langle D\rangle$ has no edge.
Suppose there exist two vertices x and y in D such that $x y \in E(G)$.
Case (i): v is adjacent to exactly one of x and y.
Let $x \mathrm{v} \in E(G)$ and $v y \notin E(G)$. Then $\mathrm{D}_{1}=D-\{y\}$ is a disconnected dominating set of cardinality less than $\gamma_{d c}(G)$, which is a contradiction.

Case (ii): v is adjacent to neither x nor y.
In this case, $v x \notin E(G)$ and $v y \notin E(G)$. Then $D_{1}=D-\{x\}$ or $D-\{v\}$ is a disconnected dominating set of cardinality less than $\gamma_{d c}(G)$, which is a contradiction.
Case (iii): v is adjacent to both x and y.
In this case, $v x, v y \in E(G)$. Then $\mathrm{D}_{1}=D-\{x\}$ or $D-\{y\}$ is a disconnected dominating of cardinality less than $\gamma_{d c}(G)$, which is a contradiction. Hence, $\langle D\rangle$ has no edges.

Next, we show that $G=K_{1, n-1}$ or $G=K_{2} \cup(n-2) K_{1}$.
Case (a): G is connected.
Let $D=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{\mathrm{n}-1}\right\}$ be a $\gamma_{d c}$-set of G. Since D is a dominating set, v is adjacent to some $\mathrm{u}_{\mathrm{i}}, 1 \leq \mathrm{i}$ $\leq n-1$. Suppose there exists $u_{j, 1} \leq j \leq n-1$ such that u_{j} is not adjacent to v. Then there is no path between u_{j} and v, which contradicts the assumption that G is connected.

Therefore, each u_{i} is adjacent to $v, 1 \leq i \leq n-1$. Hence $G=K_{1, n-1}$.
Case (b): G is disconnected.
Since $\gamma_{d c}(G)=n-1<n . G \neq \overline{K_{n}}$.
Therefore, G has edges. Since $\langle D>$ is disconnected and $| V-D \mid=1$, every edge has one end in D and other end in $V-D$.

Suppose there exist $x_{1,}, x_{2}, \ldots, x_{\mathrm{r}}$ in D such that $v x_{\mathrm{i}} \in E(G), 1 \leq i \leq r$.
If $r=n-1$, then $G=K_{1, n-1,}$, a connected graph, a contradiction. Therefore, $r \leq n-2$.
If $r \geq 2$, then $\mathrm{D}_{1}=D-\left\{x_{1}, x_{2}, \ldots, x_{\mathrm{r}}\right\} \cup\{v\}$ is a disconnected dominating set of cardinality $n-\mathrm{r} \leq n-2$, which is a contradiction.
Therefore, $r=1$ and hence $G=K_{2} \cup(n-2) K_{1}$.

References

[1] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs, Marcel Docker Inc.. New york, 1998.
[2] S.T. Hedetniemi and Renu Lasker, Connected domination in Graphs, Graph Theory and Combinatorics, Academic Press, London(1984), 209-217.
[3] E. Sambathkumar and H. B. Walikar, The connected domination of a graph, Math. Phys. Sci. 13(1979), 607-613.

