Total complementary acyclic domination in graphs

M. Valliammal
Department of Mathematics, N.M.S. Sermathai Vasan College for Women, Madurai-625 012, INDIA.
E-mail:valliambu@gmail.com
\section*{S. P. Subbiah}
Department of Mathematics, M.T.N. College, Madurai-04, INDIA.
E-mail:drspsmtnc@gmail.com
\section*{V. Swaminathan}
Ramanujan Research Centre, Saraswathi Narayanan College, Madurai-22, INDIA.
E-mail:sulanesri@yahoo.com

Abstract

Let $G=(V, E)$ be a graph without isolates. A subset S of $V(G)$ is called a total dominating set of G if for every $v \in V$, there exists $u \in S$ such that u and v are adjacent. S is called a total complementary acyclic dominating set of G, if S is a total dominating set of G and $\langle V-S\rangle$ is acyclic. $V(G)$ is a total complementary acyclic dominating set of G (since G has no isolates). The minimum cardinality of a total complementary acyclic dominating set of G is called the total complementary acyclic domination number of G and is denoted by $\gamma_{c-a}^{t}(G)$. In this paper, characterization of graphs for which $\gamma_{c-a}^{t}(G)$ takes specific values are found.

Keywords: Domination, total domination, total complementary acyclic dominating set, total complementary acyclic domination number.
AMS Subject Classification(2010): 05C69.

1 Introduction

By a graph, we mean a finite, undirected, without loops and multiple edges. A set S of vertices of a graph $G=(V, E)$ is a dominating set of G if every vertex in $V-S$ is adjacent to some vertex of S. The domination number $\gamma(G)$ is the minimum cardinality of a dominating set of G. Let G be a graph without isolated vertices. A set $S \subseteq V(G)$ is a total dominating set if every vertex in $V(G)$ is adjacent to a vertex in S. Every graph without isolated vertices has a total dominating set, since $S=V(G)$ is such a set. The total domination number of G, denoted by $\gamma_{t}(G)$, is the minimum cardinality of a total dominating set of G. A total dominating set of cardinality $\gamma_{t}(G)$, we call a $\gamma_{t}(G)$-set. Total domination in graphs was introduced by Cockayne, Dawes and Hedetniemi[1] and is well studied in graph theory. A detailed survey on this subject is available in Slater[3,4].

Definition 1.1. Let G be a graph without isolates. A subset S of $V(G)$ is said to be a total complementary acyclic dominating set(total c-a dominating set) of G if S is a total dominating set of G and $\langle V-S\rangle$ is acyclic.
For any graph G without isolates, $V(G)$ is a total c-a dominating set of G.

Definition 1.2. The minimum cardinality of a total c-a dominating set of G is called the total c-a domination number of G and is denoted by $\gamma_{c-a}^{t}(G)$.

Example 1.3. A total c-a dominating set of a graph G is given below.

Figure 1: Total c-a dominating set of G.
$S=\{3,4\}$ is a total dominating set and $\langle V-S\rangle$ is acyclic. Therefore, S is a total c-a dominating set.
Definition 1.4. A total c-a dominating set S of G is minimal if no proper subset of S is a total c-a dominating set of G.

Remark 1.5. Any superset of a total $\mathrm{c}-\mathrm{a}$ dominating set of G is also a total $\mathrm{c}-\mathrm{a}$ dominating set of G, since if S is a total c-a dominating set of G and $u \in V-S$, then $S \cup\{u\}$ is a total c-a dominating set of G. Therefore, total c-a domination is superhereditary.

Remark 1.6. A total c-a dominating set of G is minimal iff it is 1-minimal.

2 Main Results

In this section, some results on minimal total c-a dominating set and $\gamma_{c-a}^{t}(G)$ for standard graphs are discussed.

Theorem 2.1. A total c-a dominating set D of G is minimal if and only if for each vertex $u \in D$, one of the following conditions holds.

1. u has a private neighbour in $V-D$.
2. $\langle(V-D) \cup\{u\}\rangle$ contains a cycle.

Proof: Let D be a total c-a dominating set of G. Suppose D is minimal.
Let $u \in D$. Then $D-\{u\}$ is not a total c-a dominating set of G.
Therefore, $\langle(V-D) \cup\{u\}\rangle$ contains a cycle or u has a private neighbour in $V-D$ with respect to D. Conversely, suppose for every u in D, one of the conditions holds.
If (1) holds, then $D-\{u\}$ is not a dominating set.
If (2) holds, then $D-\{u\}$ is not a complementary acyclic. Therefore, D is a minimal total c-a dominating set of G.

Lemma 2.2.

1. $\gamma_{c-a}^{t}\left(K_{n}\right)=n-2, n \geq 4$.
2. $\gamma_{c-a}^{t}\left(K_{1, n}\right)=2$
3. $\gamma_{c-a}^{t}\left(D_{r, s}\right)=2$
4. $\gamma_{c-a}^{t}\left(W_{n}\right)=2$
5. $\gamma_{c-a}^{t}\left(P_{n}\right)=\left\{\begin{array}{l}\frac{n}{2} \quad \text { if } n \equiv 0(\bmod 4) \\ \left\lfloor\frac{n}{2}\right\rfloor+1 \text { otherwise }\end{array}\right.$

Theorem 2.3. For any cycle C_{n},

$$
\gamma_{c-a}^{t}\left(C_{n}\right)=\left\{\begin{array}{l}
\frac{n}{2} \quad \text { if } n \equiv 0(\bmod 4) \\
\frac{n}{2}+1 \text { if } n \equiv 2(\bmod 4) \\
\left\lceil\frac{n}{2}\right\rceil \quad \text { if } n \text { is odd }, n \geq 3
\end{array}\right.
$$

Proof: Case $(\mathbf{i}): n \equiv 0(\bmod 4)$.
Let $n=4 k, k \geq 1$.
Let $V\left(C_{n}\right)=\left\{v_{1}, v_{2}, \ldots, v_{4 k}\right\}$ and $D=\left\{v_{1}, v_{2}, v_{5}, v_{6}, \ldots, v_{4 k-3}, v_{4 k-2}\right\}$. Then $|D|=2 k$. Clearly D is a total c-a dominating set of C_{n}. Therefore, $\gamma_{c-a}^{t}\left(C_{n}\right) \leq 2 k$.

Let D_{1} be a minimum total c-a dominating set of C_{n}. Let $v_{i} \in D_{1}$. Then either v_{i-1} or $v_{i+1} \in D_{1}$. If D_{1} contains $k-1$ pairs of adjacent vertices, then D_{1} can totally dominate at most $4 \mathrm{k}-4$ vertices of C_{n}, which is a contradiction. Therefore, $\left|D_{1}\right| \geq 2 k$.
Hence, $\gamma_{c-a}^{t}\left(C_{n}\right)=2 k=\frac{n}{2}$.
Case (ii): $n \equiv 2(\bmod 4)$.
Let $n=4 k+2, k \geq 1$.
Let $V\left(C_{n}\right)=\left\{v_{1}, v_{2}, \ldots, v_{4 k+2}\right\}$ and $D=\left\{v_{1}, v_{2}, v_{5}, v_{6}, \ldots, v_{4 k+1}, v_{4 k+2}\right\}$. Then $|D|=2 k+2$.
Clearly D is a total c-a dominating set of C_{n}. Therefore, $\gamma_{c-a}^{t}\left(C_{n}\right) \leq 2 k+2$.
Let D_{1} be a minimum total c-a dominating set of C_{n}. Let $v_{i} \in D_{1}$. Then either v_{i-1} or $v_{i+1} \in D_{1}$. If D_{1} contains k pairs of adjacent vertices, then D_{1} can totally dominate at most 4 k vertices of C_{n}, which is a contradiction. Therefore, $\left|D_{1}\right| \geq 2 k+2$.
Hence, $\gamma_{c-a}^{t}\left(C_{n}\right)=2 k+2=\frac{n}{2}+1$.
Case (iii): $n \equiv 1(\bmod 4)$.
Let $n=4 k+1, k \geq 1$.
Let $V\left(C_{n}\right)=\left\{v_{1}, v_{2}, \ldots, v_{4 k+1}\right\}$ and $D=\left\{v_{1}, v_{2}, v_{5}, v_{6}, \ldots, v_{4 k+1}\right\}$. Then $|D|=2 k+1$. Clearly D is a total c-a dominating set of C_{n}. Therefore, $\gamma_{c-a}^{t}\left(C_{n}\right) \leq 2 k+1$.

Let D_{1} be a minimum total c-a dominating set of C_{n}. Let $v_{i} \in D_{1}$. Then either v_{i-1} or $v_{i+1} \in D_{1}$. If D_{1} contains k pairs of adjacent vertices, then D_{1} can totally dominate at most 4 k vertices of C_{n}, a contradiction. Therefore, $\left|D_{1}\right| \geq 2 k+1$.
Hence, $\gamma_{c-a}^{t}\left(C_{n}\right)=2 k+1=\left\lceil\frac{n}{2}\right\rceil$.
Case (iv): $n \equiv 3(\bmod 4)$.
Let $n=4 k+3, k \geq 0$.
Let $V\left(C_{n}\right)=\left\{v_{1}, v_{2}, \ldots \ldots, v_{4 k+3}\right\}$ and $D=\left\{v_{1}, v_{2}, v_{5}, v_{6}, \ldots \ldots \ldots, v_{4 k+1}, v_{4 k+2}\right\}$. Then $|D|=2 k+2$.

Clearly D is a total c-a dominating set of C_{n}. Therefore, $\gamma_{c-a}^{t}\left(C_{n}\right) \leq 2 k+2$.
Let D_{1} be a minimum total c-a dominating set of C_{n}. Let $v_{i} \in D_{1}$. Then either v_{i-1} or $v_{i+1} \in D_{1}$. If D_{1} contains k pairs of adjacent vertices, then D_{1} can totally dominate at most 4 k vertices of C_{n}, a contradiction. Therefore, $\left|D_{1}\right| \geq 2 k+2$.
Hence, $\gamma_{c-a}^{t}\left(C_{n}\right)=2 k+2=\left\lceil\frac{n}{2}\right\rceil$.
Theorem 2.4. $\gamma_{c-a}^{t}\left(K_{m, n}\right)=\min \{m, n\}, m, n \geq 2$.
Proof: Let $G=K_{m, n}, m, n \geq 2$.
Let $m \leq n$ Let V_{1}, V_{2} be the bipartite sets of G.
Let $\left|V_{1}\right|=m$ and $\left|V_{2}\right|=n$.
Case (i): $m=2$.
Choose a vertex u from V_{1} and a vertex v from V_{2}. Then $\{u, v\}$ is a total c-a dominating set of G. Hence, $\gamma_{c-a}^{t}(G)=2=\min \{m, n\}$.
Case (ii): $m \geq 3$.
Let $D=V_{1}-\{u\} \cup\{v\}$, where $u \in V_{1}$ and $v \in V_{2}$. Then D is a total c-a dominating set of G. Therefore, $\gamma_{c-a}^{t}(G) \leq m$.

Let D_{1} be a minimum total c-a dominating set of G. If D_{1} contains $m-2$ or less points from V_{1}, then the remaining vertices of V_{1} will form a cycle with any set of vertices of V_{2} of cardinality greater than or equal to 2 . Therefore, D_{1} contains at least $m-1$ vertices from V_{1}. For total domination, D_{1} contains at least one vertex from V_{2} and hence $\left|D_{1}\right| \geq m=\min \{m, n\}$. Therefore, $\gamma_{c-a}^{t}(G)=m=$ $\min \{m, n\}$.

Theorem 2.5. $\gamma_{c-a}^{t}(G)=2$ iff G is obtained from an acyclic graph H of cardinality $n-2$ and adding two vertices to H and making them adjacent and dominating H.

Proof: Obvious.
Theorem 2.6. $\gamma_{c-a}^{t}(G)=n$ if and only if $G=\frac{n}{2} K_{2}$
Proof: Suppose $\gamma_{c-a}^{t}(G)=n$
Case(i): G is connected.
If G is of order 2 , then $G=K_{2}$ and $\gamma_{c-a}^{t}(G)=2$. Suppose G is of order greater than or equal to 3 . Then for any u in $V(G), V(G)-\{u\}$ is an acyclic dominating set of G. If $V(G)-\{u\}$ is independent, then u is adjacent with every vertex of $V(G)-\{u\}$. Therefore, G is a star of order greater than or equal to 3 . In this case $\gamma_{c-a}^{t}(G)=2<|V(G)|$, a contradiction. Therefore, $V(G)-\{u\}$ is not independent. Therefore, $V(G)-\{u\}$ is a c-a dominating set of G. Let $N_{i}(u)$ be the set all independent neighbours of u. If $N_{i}(u) \geq$ 2 and any vertex in $N_{i}(u)$ is not adjacent with any vertex in $V(G)-\{u\}$, then $\left(V(G)-N_{i}(u)\right) \cup\left\{u, u_{1}\right\}$ is a total c-a dominating set of G. If $N_{i}(u)=\left\{u_{1}\right\}$ and $|N(u)| \geq 3$, then there are atleast two adjacent neighbours of u say u_{2}, u_{3}. Then $V(G)-\left\{u_{2}, u_{3}\right\}$ is a total c-a dominating set of G.If $|N(u)|=2$, then $N_{i}(u)=\left\{u_{1}, u_{2}\right\}$, a contradiction. If $N(u)=1$, then $\left\langle\left\{u, u_{1}\right\}\right\rangle$ is a component of G, a contradiction.In
this case $\gamma_{c-a}^{t}(G)<n$, a contradiction. Therefore, G is of order 2 and hence $G=K_{2}$.
Case(ii): G is disonnected.
$\gamma_{c-a}^{t}(G)=\sum_{i=1}^{k} \gamma_{c-a}^{t}\left(G_{i}\right)$, where $G_{1}, G_{2}, \ldots, G_{k}$ are the components of $G, k \geq 2$. Since $\gamma_{c-a}^{t}(G)=$ $n, \gamma_{c-a}^{t}\left(G_{i}\right)=\mid V\left(G_{i} \mid, 1 \leq i \leq k\right.$. Arguing as in Case(i), we get that $G_{i}=K_{2}$ for $1 \leq i \leq k$. Therefore, G is of even order and $G=\frac{n}{2} K_{2}$.
The converse is obvious.

References

[1] E. J. Cockayne, R.M.Dawes, and S.T,Hedetniemi, Totl domination in graphs, Networks 10(1980), 211-219.
[2] Frank Harary, Graph Theory, Narosa Publishing House, Reprint 1997.
[3] T. W. Haynes, S.T.Hedetniemi and P. J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, Inc, New York, 1998.
[4] T. W. Haynes, S.T.Hedetniemi and P. J. Slater, Domination in Graphs:Advanced Topics, Marcel Dekker, Inc, New York, 1998.
[5] O. Ore, Theory of Graphs, Amer. Math. Soc. Colloq. Publ, Vol.38, American Mathematical Society, Providence RI, 1962.

