International Journal of Mathematics and Soft Computing Vol.3, No.2 (2013), 5 - 9.

Total complementary acyclic domination in graphs

M. Valliammal

Department of Mathematics, N.M.S. Sermathai Vasan College for Women, Madurai-625 012, INDIA. E-mail:valliambu@gmail.com

S. P. Subbiah

Department of Mathematics, M.T.N. College, Madurai-04, INDIA. E-mail:drspsmtnc@gmail.com

V. Swaminathan

Ramanujan Research Centre, Saraswathi Narayanan College, Madurai-22, INDIA. E-mail:sulanesri@yahoo.com

Abstract

Let G = (V, E) be a graph without isolates. A subset S of V(G) is called a total dominating set of G if for every $v \in V$, there exists $u \in S$ such that u and v are adjacent. S is called a total complementary acyclic dominating set of G, if S is a total dominating set of G and $\langle V - S \rangle$ is acyclic. V(G) is a total complementary acyclic dominating set of G (since G has no isolates). The minimum cardinality of a total complementary acyclic dominating set of G is called the total complementary acyclic domination number of G and is denoted by $\gamma_{c-a}^t(G)$. In this paper, characterization of graphs for which $\gamma_{c-a}^t(G)$ takes specific values are found.

Keywords: Domination, total domination, total complementary acyclic dominating set, total complementary acyclic domination number.

AMS Subject Classification(2010): 05C69.

1 Introduction

By a graph, we mean a finite, undirected, without loops and multiple edges. A set S of vertices of a graph G = (V, E) is a dominating set of G if every vertex in V - S is adjacent to some vertex of S. The domination number $\gamma(G)$ is the minimum cardinality of a dominating set of G. Let G be a graph without isolated vertices. A set $S \subseteq V(G)$ is a total dominating set if every vertex in V(G) is adjacent to a vertex in S. Every graph without isolated vertices has a total dominating set , since S = V(G) is such a set. The total domination number of G, denoted by $\gamma_t(G)$, is the minimum cardinality of a total dominating set of G. A total dominating set of cardinality $\gamma_t(G)$, we call a $\gamma_t(G)$ -set. Total domination in graphs was introduced by Cockayne, Dawes and Hedetniemi[1] and is well studied in graph theory. A detailed survey on this subject is available in Slater[3,4].

Definition 1.1. Let G be a graph without isolates. A subset S of V(G) is said to be a total complementary acyclic dominating set(total c-a dominating set) of G if S is a total dominating set of G and $\langle V - S \rangle$ is acyclic.

For any graph G without isolates, V(G) is a total c-a dominating set of G.

Definition 1.2. The minimum cardinality of a total c-a dominating set of G is called the total c-a domination number of G and is denoted by $\gamma_{c-a}^t(G)$.

Example 1.3. A total c-a dominating set of a graph G is given below.

Figure 1: Total c-a dominating set of G.

 $S = \{3, 4\}$ is a total dominating set and $\langle V - S \rangle$ is acyclic. Therefore, S is a total c-a dominating set.

Definition 1.4. A total c-a dominating set S of G is minimal if no proper subset of S is a total c-a dominating set of G.

Remark 1.5. Any superset of a total c-a dominating set of G is also a total c-a dominating set of G, since if S is a total c-a dominating set of G and $u \in V - S$, then $S \cup \{u\}$ is a total c-a dominating set of G. Therefore, total c-a domination is superhereditary.

Remark 1.6. A total c-a dominating set of G is minimal iff it is 1-minimal.

2 Main Results

In this section, some results on minimal total c-a dominating set and $\gamma_{c-a}^t(G)$ for standard graphs are discussed.

Theorem 2.1. A total c-a dominating set D of G is minimal if and only if for each vertex $u \in D$, one of the following conditions holds.

- 1. u has a private neighbour in V D.
- 2. $\langle (V D) \cup \{u\} \rangle$ contains a cycle.

Proof: Let D be a total c-a dominating set of G. Suppose D is minimal.

Let $u \in D$. Then $D - \{u\}$ is not a total c-a dominating set of G.

Therefore, $\langle (V - D) \cup \{u\} \rangle$ contains a cycle or u has a private neighbour in V - D with respect to D. Conversely, suppose for every u in D, one of the conditions holds.

If (1) holds, then $D - \{u\}$ is not a dominating set.

If (2) holds, then $D - \{u\}$ is not a complementary acyclic. Therefore, D is a minimal total c-a dominating set of G.

Lemma 2.2.

1.
$$\gamma_{c-a}^{t}(K_{n}) = n - 2, \ n \ge 4.$$

2. $\gamma_{c-a}^{t}(K_{1,n}) = 2$
3. $\gamma_{c-a}^{t}(D_{r,s}) = 2$

4.
$$\gamma_{c-a}^t(W_n) = 2$$

5. $\gamma_{c-a}^t(P_n) = \begin{cases} \frac{n}{2} & \text{if } n \equiv 0 \pmod{4} \\ \\ \lfloor \frac{n}{2} \rfloor + 1 \text{ otherwise} \end{cases}$

Theorem 2.3. For any cycle C_n ,

$$\gamma_{c-a}^{t}(C_{n}) = \begin{cases} \frac{n}{2} & \text{if } n \equiv 0 \pmod{4} \\\\ \frac{n}{2} + 1 & \text{if } n \equiv 2 \pmod{4} \\\\ \left\lceil \frac{n}{2} \right\rceil & \text{if } n \text{ is odd, } n \geq 3 \end{cases}$$

Proof: Case (i): $n \equiv 0 \pmod{4}$.

Let $n = 4k, k \ge 1$.

Let $V(C_n) = \{v_1, v_2, ..., v_{4k}\}$ and $D = \{v_1, v_2, v_5, v_6, ..., v_{4k-3}, v_{4k-2}\}$. Then |D| = 2k. Clearly D is a total c-a dominating set of C_n . Therefore, $\gamma_{c-a}^t(C_n) \leq 2k$.

Let D_1 be a minimum total c-a dominating set of C_n . Let $v_i \in D_1$. Then either v_{i-1} or $v_{i+1} \in D_1$. If D_1 contains k - 1 pairs of adjacent vertices, then D_1 can totally dominate at most 4k-4 vertices of C_n , which is a contradiction. Therefore, $|D_1| \ge 2k$.

Hence, $\gamma_{c-a}^t(C_n) = 2k = \frac{n}{2}$.

Case (ii): $n \equiv 2 \pmod{4}$.

Let $n = 4k + 2, k \ge 1$.

Let $V(C_n) = \{v_1, v_2, ..., v_{4k+2}\}$ and $D = \{v_1, v_2, v_5, v_6, ..., v_{4k+1}, v_{4k+2}\}$. Then |D| = 2k + 2. Clearly D is a total c-a dominating set of C_n . Therefore, $\gamma_{c-a}^t(C_n) \leq 2k + 2$.

Let D_1 be a minimum total c-a dominating set of C_n . Let $v_i \in D_1$. Then either v_{i-1} or $v_{i+1} \in D_1$. If D_1 contains k pairs of adjacent vertices, then D_1 can totally dominate at most 4k vertices of C_n , which is a contradiction. Therefore, $|D_1| \ge 2k + 2$.

Hence,
$$\gamma_{c-a}^t(C_n) = 2k + 2 = \frac{n}{2} + 1.$$

Case (iii): $n \equiv 1 \pmod{4}$.

Let $n = 4k + 1, k \ge 1$.

Let $V(C_n) = \{v_1, v_2, ..., v_{4k+1}\}$ and $D = \{v_1, v_2, v_5, v_6, ..., v_{4k+1}\}$. Then |D| = 2k + 1. Clearly D is a total c-a dominating set of C_n . Therefore, $\gamma_{c-a}^t(C_n) \leq 2k + 1$.

Let D_1 be a minimum total c-a dominating set of C_n . Let $v_i \in D_1$. Then either v_{i-1} or $v_{i+1} \in D_1$. If D_1 contains k pairs of adjacent vertices, then D_1 can totally dominate at most 4k vertices of C_n , a contradiction. Therefore, $|D_1| \ge 2k + 1$.

Hence,
$$\gamma_{c-a}^t(C_n) = 2k + 1 = \lceil \frac{n}{2} \rceil$$
.
Case (iv): $n \equiv 3 \pmod{4}$.
Let $n = 4k + 3, k \ge 0$.
Let $V(C_n) = \{v_1, v_2, \dots, v_{4k+3}\}$ and $D = \{v_1, v_2, v_5, v_6, \dots, v_{4k+1}, v_{4k+2}\}$. Then $|D| = 2k + 2$.

Clearly D is a total c-a dominating set of C_n . Therefore, $\gamma_{c-a}^t(C_n) \leq 2k+2$.

Let D_1 be a minimum total c-a dominating set of C_n . Let $v_i \in D_1$. Then either v_{i-1} or $v_{i+1} \in D_1$. If D_1 contains k pairs of adjacent vertices, then D_1 can totally dominate at most 4k vertices of C_n , a contradiction. Therefore, $|D_1| \ge 2k + 2$. Hence, $\gamma_{c-a}^t(C_n) = 2k + 2 = \lfloor \frac{n}{2} \rfloor$.

Theorem 2.4. $\gamma_{c-a}^{t}(K_{m,n}) = min\{m,n\}, m, n \ge 2.$

Proof: Let $G = K_{m,n}$, $m, n \ge 2$. Let $m \le n$ Let V_1 , V_2 be the bipartite sets of G. Let $|V_1| = m$ and $|V_2| = n$.

Case (i): m = 2.

Choose a vertex u from V_1 and a vertex v from V_2 . Then $\{u, v\}$ is a total c-a dominating set of G. Hence, $\gamma_{c-a}^t(G) = 2 = min\{m, n\}$. Case (ii): $m \ge 3$.

Let $D = V_1 - \{u\} \cup \{v\}$, where $u \in V_1$ and $v \in V_2$. Then D is a total c-a dominating set of G. Therefore, $\gamma_{c-a}^t(G) \leq m$.

Let D_1 be a minimum total c-a dominating set of G. If D_1 contains m - 2 or less points from V_1 , then the remaining vertices of V_1 will form a cycle with any set of vertices of V_2 of cardinality greater than or equal to 2. Therefore, D_1 contains at least m - 1 vertices from V_1 . For total domination, D_1 contains at least one vertex from V_2 and hence $|D_1| \ge m = min\{m, n\}$. Therefore, $\gamma_{c-a}^t(G) = m = min\{m, n\}$.

Theorem 2.5. $\gamma_{c-a}^t(G) = 2$ iff G is obtained from an acyclic graph H of cardinality n - 2 and adding two vertices to H and making them adjacent and dominating H.

Proof: Obvious.

Theorem 2.6. $\gamma_{c-a}^t(G) = n$ if and only if $G = \frac{n}{2}K_2$

Proof: Suppose $\gamma_{c-a}^t(G) = n$ **Case(i):** G is connected.

If G is of order 2, then $G = K_2$ and $\gamma_{c-a}^t(G) = 2$. Suppose G is of order greater than or equal to 3. Then for any u in V(G), V(G)- $\{u\}$ is an acyclic dominating set of G. If V(G)- $\{u\}$ is independent, then u is adjacent with every vertex of V(G)- $\{u\}$. Therefore, G is a star of order greater than or equal to 3. In this case $\gamma_{c-a}^t(G) = 2 < |V(G)|$, a contradiction. Therefore, V(G)- $\{u\}$ is not independent. Therefore, V(G)- $\{u\}$ is a c-a dominating set of G. Let $N_i(u)$ be the set all independent neighbours of u. If $N_i(u) \ge 2$ and any vertex in $N_i(u)$ is not adjacent with any vertex in V(G)- $\{u\}$, then $(V(G) - N_i(u)) \cup \{u, u_1\}$ is a total c-a dominating set of G. If $N_i(u) = \{u_1\}$ and $|N(u)| \ge 3$, then there are atleast two adjacent neighbours of u say u_2, u_3 . Then V(G)- $\{u_2, u_3\}$ is a total c-a dominating set of G. If $N_i(u) = 1$, then $\langle \{u, u_1\} \rangle$ is a contradiction. In this case $\gamma_{c-a}^t(G) < n$, a contradiction. Therefore, G is of order 2 and hence $G = K_2$. **Case(ii):** G is disonnected.

 $\gamma_{c-a}^t(G) = \sum_{i=1}^k \gamma_{c-a}^t(G_i)$, where $G_1, G_2, ..., G_k$ are the components of $G, k \ge 2$. Since $\gamma_{c-a}^t(G) = n$, $\gamma_{c-a}^t(G_i) = |V(G_i|, 1 \le i \le k$. Arguing as in Case(i), we get that $G_i = K_2$ for $1 \le i \le k$. Therefore, G is of even order and $G = \frac{n}{2}K_2$. The converse is obvious.

References

- [1] E. J. Cockayne, R.M.Dawes, and S.T, Hedetniemi, *Totl domination in graphs*, Networks 10(1980), 211-219.
- [2] Frank Harary, Graph Theory, Narosa Publishing House, Reprint 1997.
- [3] T. W. Haynes, S.T.Hedetniemi and P. J. Slater, *Fundamentals of Domination in Graphs*, Marcel Dekker, Inc, New York, 1998.
- [4] T. W. Haynes, S.T.Hedetniemi and P. J. Slater, *Domination in Graphs:Advanced Topics*, Marcel Dekker, Inc, New York, 1998.
- [5] O. Ore, *Theory of Graphs*, Amer. Math. Soc. Colloq. Publ, Vol.38, American Mathematical Society, Providence RI, 1962.