

Domination number of distance *k***-complement graph**

M. Kalanithi, V. Swaminathan

Ramanujan Research Center in Mathematics, Saraswathi Narayanan College, Madurai-625 022, INDIA. E-mail:kalaadeline@gmail.com, sulanesri@yahoo.com

A. Selvam

Department of Mathematics, V.H.N.S.N. College, Virudhunagar, Tamilnadu, INDIA.

Abstract

In this paper the extremal graphs on the domination number of the distance k-complement graph G_k^c of a graph G are characterized and the relation between the domination number of G_k^c and the distance k-domination number of G are established.

Keywords: Domination number, distance *k*-domination number, distance *k*-complement graph. **AMS Subject Classification(2010):** 05C12, 05C69.

1 Introduction

Let G = (V, E) be a simple graph of order p and size q. The distance $d_G(u, v)$ or d(u, v) between two verifies u and v in G is the length of a shortest path joining u and v in the graph G. For $u \in V(G)$, let $N(u) = \{v \in V(G) : uv \in E(G)\}$ and d(u) = |N(u)|. The eccentricity of a vertex u is given by $e(u) = \max\{d(u, v) : v \in V(G)\}$. The radius and diameter of the graph G are given by $rad(G) = min\{e(u) : u \in V(G)\}$ and $diam(G) = max\{e(u) : u \in V(G)\}$ respectively. A vertex with eccentricity equal to rad(G) is called central vertex. A vertex v is called an eccentric vertex of some vertex u in G if $d_G(u, v) = e(u)$. The set of all eccentric vertices of a vertex u is denoted by C(u). The corona H^+ of a graph H is a graph obtained from H by adding new vertex u' corresponding to each vertex u in H and by joining u and u' by an edge. The complement graph \overline{G} is a graph with vertex set V(G) and two vertices are adjacent in \overline{G} if and only if $d_G(u, v) > 1$. The antipodal graph A(G) of a graph G is a graph with vertex set V(G) and two vertices u and v are adjacent in A(G) if and only if $d_G(u, v) = diam(G)$. In [3] the authors introduced the concept of distance k-complement graph, a natural generalization of the complement graph and hence the antipodal graph and in this paper the extremal graphs on the domination number of the distance k-complement graph G_k^c of a graph G are characterized and the relation between the domination number of G_k^c and the distance k-domination number of G are established.

Definition 1.1. For an integer $k \ge 0$, the distance k-complement graph, denoted by G_k^c , of a graph G = (V, E) is a graph whose vertex set is V(G) and two vertices are adjacent in G_k^c if and only if $d_G(u, v) > k$. That is, the edge set is $\{uv : d_G(u, v) > k\}$.

Definition 1.2. For $k \ge 1$, a graph G is said to be a distance k-complete graph if $diam(G) \le k$.

Theorem 1.3. [3] Let G be a graph. Then $k \leq rad(G) - 1$ if and only if G_k^c has no isolated vertices.

2 Domination in G_k^c

Definition 2.1. Let G = (V, E) be a graph. A subset D of V is said to be a dominating set of G if every vertex in V - D is adjacent to some vertex in D. The minimum cardinality of a dominating set is called the domination number of G and is denoted by $\gamma(G)$.

Definition 2.2. Let G = (V, E) be a graph and $k \ge 1$ be an integer. A subset D of V is said to be a distance k-dominating set of G if for every vertex u in V - D, there is some vertex v in D such that $d_G(u, v) \le k$. The minimum cardinality of a distance k-dominating set is called the distance k-domination number of G and is denoted by $\gamma_k(G)$.

Definition 2.3. A partition V_1, V_2, \dots, V_l of V(G) of a graph G is said to be a domatic partition of G if each V_i is a dominating set of G. The maximum size of a such partition is called the domatic number of G and is denoted by d(G).

By using the following theorem, we characterize the extremal graphs attaining the upper bound on the domination number of the distance *k*-complement graph.

Theorem 2.4. [2] For a graph G with even order p and no isolated vertices, $\gamma(G) = \frac{p}{2}$ if and only if the components of G are the cycle C_4 or the corona H^+ for any connected graph H.

Proposition 2.5. A graph G has an isolated vertex if and only if $\gamma(G_k^c) = 1$.

Proposition 2.6. Let G be a graph of order p. If $k \leq rad(G) - 1$, then $\gamma(G_k^c) \leq \lfloor \frac{p}{2} \rfloor$.

Proof: This follows from Theorem1.3 and the classical Ore's Theorem [2] on the bound on domination number of a graph.

Theorem 2.7. Let G = (V, E) be graph and $k \le rad(G) - 1$ be an integer. Then the components of G_k^c are the cycle C_4 or the corona H^+ for some connected graph H if and only if there exists a partition V_1 and V_2 of V(G) such that $|V_1| = |V_2|$ and at least one of V_1 , V_2 , say V_1 has the following property: Every vertex u in V_1 has either the unique eccentric vertex x in V_2 or has two eccentric vertices x_1, x_2 in V_2 with $c(x_1) = c(x_2) = \{u, v\}$ and $c(u) = c(v) = \{x_1, x_2\}$ for some vertex v in V_1 and rad(G) = k + 1.

Proof: Let the components of G_k^c be the cycle C_4 or the corona H^+ for some connected graph H. Let V_1 be the set of all pendant vertices of H^+ if $H \neq K_1$, one pendant vertex of K_1^+ and the vertices in one partite set of C_4 and let $V_2 = V(G) - V_1$. Let $u \in V_1$. If u is a pendant vertex of some H^+ and x is its support vertex, then x is the unique eccentric vertex of u in G and k = rad(G) - 1. Let d(u) = 2 in G_k^c . Then there exist two vertices x_1 and x_2 such that $d(u, x_1) \geq k + 1$ and $d(u, x_2) \geq k + 1$. Since d(u) = 2 in G_k^c , $d(u, x_1) \leq k + 2$ and $d(u, x_2) \leq k + 2$. If $d(u, x_1) = k + 2$ and $d(u, x_2) = k + 2$, then there exists a vertex y such that $d_G(u, y) = k + 1$. Then $d(u) \geq 3$ in G_k^c which is a contradiction. Therefore, we have $d(u, x_1) = k + 1$ and $d(u, x_2) \leq k + 2$.

Suppose that $d(u, x_2) = k + 2$. If there exists a shortest $u - x_2$ path not containing x_1 in G, then there exists a vertex $y \neq x_1$ on the $u - x_2$ path such that $d_G(u, y) = k + 1$. Thus, $d(u) \ge 3$ in G_k^c which is a contradiction. Therefore, x_1 is on every shortest $u - x_2$ path in G. Let y be a vertex on a shortest $u - x_2$ path such that $d_G(u, y) = k$. Since G_k^c has no isolates, there exists a vertex z such that $d_G(y, z) = k + 1$. If $w \in N(x_2)$ such that w lies on a shortest $x_2 - z$ path, then $d_G(u, w) \ge k + 1$, since $d_G(u, x_2) = k + 2$. If $x_1 \ne w$, then $d(u) \ge 3$ in G_k^c which is a contradiction. Therefore, $w = x_1$. If $d_G(z, x_1) \le k - 1$, then the path containing the $z - x_1$ path followed by the edge $x_1 y$ is of length at most k which is a contradiction to $d_G(y, z) = k + 1$. Thus, $d_G(z, x_1) \ge k$ and hence $d_G(z, x_2) \ge k + 1$, since x_1 lies on every $z - x_2$ shortest path. Let u_1 be a vertex on the $u - x_2$ path such that $d_G(u_1, x_2) = k + 1$. Since $d_G(u, y) = k$ and $d_G(z, y) = k + 1$, $z \ne u_1$ and $z \ne u_1$. Therefore, $d(x_2) \ge 3$ in G_k^c which is a contradiction to x_2 lies on C_4 . Thus, $d(u, x_1) = k + 1$ and $d(u, x_2) = k + 1$. Hence $c(u) = \{x_1, x_2\}$. If v is the other vertex of C_4 , then $c(v) = \{x_1, x_2\}$. Hence $c(x_1) = c(x_2) = \{u, v\}$.

Conversely, let V_1 and V_2 be the partition of V(G) having the given property and k = rad(G) - 1. Then the vertices u, v, x_1 and x_2 induce the cycles C_4 in G_k^c . If u has the unique eccentric vertex x in G, then u is the pendant vertex and x is its support vertex in G_k^c . Thus, the components of G_k^c are the cycle C_4 or the corona H^+ for some connected graph H.

Corollary 2.8. Let G = (V, E) be a graph of order p and $k \leq rad(G) - 1$. Then $\gamma(G_k^c) = \frac{p}{2}$ if and only if there exists a partition V_1 and V_2 of V(G) such that at least one of V_1 , V_2 , say V_1 has the following property: Every vertex u in V_1 has either the unique eccentric vertex x in V_2 or two eccentric vertices x_1, x_2 in V_2 with $c(x_1) = c(x_2) = \{u, v\}$ and $c(u) = c(v) = \{x_1, x_2\}$ for some v in V_1 and rad(G) = k + 1.

Theorem 2.9. If a graph G has no isolated veritces and $diam(G) \ge 2k + 1$, then $\gamma(G_k^c) = 2$.

Proof: Since G has no full degree vertices, $\gamma(G_k^c) \ge 2$ by Proposition 2.5. Let u and v be two diametrical opposite vertices of G. Then $d_G(u, v) \ge 2k + 1$ and for every $w \in V(G) - \{u, v\}, d_G(u, w) > k$ or $d_G(w, v) > k$. Thus $\{u, v\}$ is a dominating set of G_k^c . Hence, $\gamma(G_k^c) = 2$.

Theorem 2.10. Let G be a graph of order p. Then for an integer $k \ge 1$, $\gamma_k(G) \cdot \gamma(G_k^c) \le p$.

Proof: For $S \subset V(G)$, define $D_e(S) = \{y \in V - S : d_G(y, x) \leq k \text{ for every } x \in S\}$ and $D_i(S) = \{y \in S : d_G(y, x) \leq k \text{ for every } x \in S\}$. Let $d_i(S) = |D_i(S)|$ and let $d_e(S) = |D_e(S)|$. Let $D = \{x_1, x_2, \dots, x_{\gamma_k}\}$ be a γ_k set of G and partition V(G) into γ_k subsets $B_1, B_2, \dots, B_{\gamma_k}$ such that $x_j \in B_j$ and all the vertices in B_j are adjacent to x_j , for $1 \leq j \leq \gamma_k$. Let P be a such partition for which $\sum_{i=1}^{\gamma_k} d_i(B_j)$ is maximum.

Suppose that $d_e(B_j) \ge 1$. Let $x \in D_e(B_j)$. Then $x \notin B_j$. Since B_j 's partition V(G), $x \in B_m$ for some $m \ne j$. If $x \in D_i(B_m)$, then $D - \{x_j, x_m\} \cup \{x\}$ is a distance k-dominating set of G, which is contradiction to D is a γ_k -set of G. Therefore, $x \notin D_i(B_m)$. Now let $B'_l = B_l$ for $l \ne m$ and $l \ne j$ and $B'_j = B_j \cup \{x\}$ and $B'_m = B_m - \{x\}$. Then $\{B'_1, B'_2, \cdots, B'_{\gamma_K}\}$ is a partition of V such that $\sum_{j=1}^{\gamma_k} d_i(B'_j) > \sum_{j=1}^{\gamma_k} d_i(B_j)$, which is a contradiction to our choice of the partition P. Thus $d_e(B_j) = 0$ and hence $D_e(B_j) = \phi$ for $1 \le j \le \gamma_k$. Thus for every $y \notin B_j$, there exists $x \in B_j$ such that $d_G(x, y) \ge k + 1$. Then x and y are adjacent in G_k^c . Thus, each B_j is a dominating set of G_k^c . Therefore $\gamma(G_k^c) \le |B_j|$ and hence, $p = \sum_{j=1}^{\gamma_k} |B_j| \ge \sum_{j=1}^{\gamma_k} \gamma(G_k^c) = \gamma_k(G)\gamma(G_k^c)$. In the proof of the above theorem, the partition P is a domatic partition of G_k^c . It gives the lower bound for the domatic number of G_k^c .

Corollary 2.11. For any graph G, $d(G_k^c) \ge \gamma_k(G)$.

The proof for the following theorems are straight forward as given in [2] for the domination number of G.

Proposition 2.12. Let G be a (p,q) graph and k be an integer. Then $\gamma_k(G) + \gamma(G_k^c) \le p + 1$. Equality holds if and only if G is either a totally disconnected graph or a distance k-complete graph.

Theorem 2.13. Let G be a (p,q) graph and $k \ge 1$ be an integer. If the radius of each component of G is greater than or equal to k + 1, then $\gamma_k(G) + \gamma(G_k^c) \le \lfloor \frac{p}{2} \rfloor + 2$. The bound is attained by $G = C_{2k+2}$.

Theorem 2.14. Let the radius of each component of G be greater than or equal to k + 1. Then for $k \ge 2$, $\gamma_k(G) + \gamma(G_k^c) = \lfloor \frac{p}{2} \rfloor + 2$ if and only if $\gamma(G_k^c) = \lfloor \frac{p}{2} \rfloor$.

Proof: Since $\gamma_k(G) \leq \lfloor \frac{p}{k+1} \rfloor$ and $k \geq 2$, the theorem follows.

Theorem 2.15. $G_k^c = H^+$ for some graph H if and only if G has at least $\frac{p}{2}$ central vertices having unique eccentric vertices and k = rad(G) - 1.

Proof: Assume that G has at least $\frac{p}{2}$ central vertices having unique eccentric vertices and k = rad(G) - 1. Since all the central vertices having unique eccentric vertices in G are pendant vertices in G_k^c and the unique eccentric vertices in G are the support vertices in G_k^c , $G_k^c = H^+$ for some graph H.

Conversely, let $G_k^c = H^+$ for some graph H. Then each pendent vertices in H^+ must be a central vertex and have unique eccentric vertex in G. Since H^+ has no isolates, $e(u) \ge k + 1$, for every $u \in V(G)$. Since $\delta(G_k^c) = 1$, rad(G) = k + 1. In H^+ , some of the components may be K_2 . Therefore, G has at least $\frac{p}{2}$ central vertices having unique eccentric vertices and k = rad(G) - 1.

Corollary 2.16. If G has at least $\frac{p}{2}$ central vertices having unique eccentric vertices and k = rad(G) - 1, then $\gamma(G_k^c) = \frac{p}{2}$.

References

- [1] F. Haray, Graph Theory, Addison-Wesley Publishing Company. 1969.
- [2] T. W. Haynes, S. T. Hedetniemi, and P. J. Slater, *Fundamentals of Domination in Graphs*, Marcel Dekker, Inc. 1998.
- [3] M. Kalanithi, V. Swaminathan and A. Selvam, Distance k-complement graph of a graph, Preprint.
- [4] B. Rajendran, *Topics in Graph Theory : Antipodal Graphs*, Ph. D. Thesis, Madurai Kamaraj University, 1985.
- [5] E. Sampathkumar, K-dimensional Graph and Semi Graph Theory, DST Project Report No. DST/MS/131/2K, 2005.