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Abstract

In this paper the extremal graphs on the domination number of the distancek-complement graph

Gc
k of a graphG are characterized and the relation between the domination number ofGc

k and the

distancek-domination number ofG are established.
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1 Introduction

Let G = (V,E) be a simple graph of orderp and sizeq. The distancedG(u, v) or d(u, v) between

two veritecsu andv in G is the length of a shortest path joiningu andv in the graphG. Foru ∈ V (G),
let N(u) = {v ∈ V (G) : uv ∈ E(G)} and d(u) = |N(u)|. The eccentricity of a vertexu is

given bye(u) =max{d(u, v) : v ∈ V (G)}. The radius and diameter of of the graphG are given by

rad(G) = min{e(u) : u ∈ V (G)} anddiam(G) = max{e(u) : u ∈ V (G)} respectively. A vertex

with eccentricity equal torad(G) is called central vertex. A vertexv is called an eccentric vertex of

some vertexu in G if dG(u, v) = e(u). The set of all eccentric vertices of a vertexu is denoted by

C(u). The coronaH+ of a graphH is a graph obtained fromH by adding new vertexu′ corresponding

to each vertexu in H and by joiningu andu′ by an edge. The complement graphG is a graph with

vertex setV (G) and two vertices are adjacent inG if and only if dG(u, v) > 1 . The antipodal graph

A(G) of a graphG is a graph with vertex setV (G) and two verticesu andv are adjacent inA(G) if

and only ifdG(u, v) = diam(G). In [3] the authors introduced the concept of distancek-complement

graph, a natural generalization of the complement graph and hence the antipodal graph and in this paper

the extremal graphs on the domination number of the distancek-complement graphGc
k of a graphG

are characterized and the relation between the domination number ofGc
k and the distancek-domination

number ofG are established.

Definition 1.1. For an integerk ≥ 0, the distance k-complement graph, denoted byGc
k, of a graph

G = (V, E) is a graph whose vertex set isV (G) and two vertices are adjacent inGc
k if and only if

dG(u, v) > k . That is, the edge set is{uv : dG(u, v) > k}.

Definition 1.2. Fork ≥ 1, a graphG is said to be a distancek-complete graph ifdiam(G) ≤ k.

Theorem 1.3. [3] Let G be a graph. Thenk ≤ rad(G)− 1 if and only if Gc
k has no isolated vertices.
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2 Domination in Gc
k

Definition 2.1. Let G = (V,E) be a graph. A subsetD of V is said to be a dominating set ofG if every

vertex inV −D is adjacent to some vertex inD. The minimum cardinality of a dominating set is called

the domination number ofG and is denoted byγ(G).

Definition 2.2. Let G = (V,E) be a graph andk ≥ 1 be an integer. A subsetD of V is said to be

a distancek-dominating set ofG if for every vertexu in V − D, there is some vertexv in D such

that dG(u, v) ≤ k. The minimum cardinality of a distancek-dominating set is called the distance

k-domination number ofG and is denoted byγk(G).

Definition 2.3. A partition V1, V2, · · · , Vl of V (G) of a graphG is said to be a domatic partition ofG

if eachVi is a dominating set ofG. The maximum size of a such partition is called the domatic number

of G and is denoted byd(G).

By using the following theorem, we characterize the extremal graphs attaining the upper bound on

the domination number of the distancek-complement graph.

Theorem 2.4. [2] For a graphG with even orderp and no isolated vertices,γ(G) = p
2 if and only if the

components ofG are the cycleC4 or the coronaH+ for any connected graphH.

Proposition 2.5. A graphG has an isolated vertex if and only ifγ(Gc
k) = 1.

Proposition 2.6. Let G be a graph of orderp. If k ≤ rad(G)− 1, thenγ(Gc
k) ≤ bp

2c.

Proof: This follows from Theorem1.3 and the classical Ore’s Theorem [2] on the bound on domination

number of a graph.

Theorem 2.7.Let G = (V,E) be graph andk ≤ rad(G)−1 be an integer. Then the components ofGc
k

are the cycleC4 or the coronaH+ for some connected graphH if and only if there exists a partitionV1

andV2 of V (G) such that|V1| = |V2| and at least one ofV1, V2, sayV1 has the following property: Every

vertexu in V1 has either the unique eccentric vertexx in V2 or has two eccentric verticesx1, x2 in V2

with c(x1) = c(x2) = {u, v} andc(u) = c(v) = {x1, x2} for some vertexv in V1 andrad(G) = k+1.

Proof: Let the components ofGc
k be the cycleC4 or the coronaH+ for some connected graphH. Let

V1 be the set of all pendant vertices ofH+ if H 6= K1, one pendant vertex ofK+
1 and the vertices in

one partite set ofC4 and letV2 = V (G) − V1. Let u ∈ V1. If u is a pendant vertex of someH+ andx

is its support vertex, thenx is the unique eccentric vertex ofu in G andk = rad(G)− 1. Let d(u) = 2
in Gc

k. Then there exist two verticesx1 andx2 such thatd(u, x1) ≥ k + 1 andd(u, x2) ≥ k + 1. Since

d(u) = 2 in Gc
k, d(u, x1) ≤ k + 2 andd(u, x2) ≤ k + 2. If d(u, x1) = k + 2 andd(u, x2) = k + 2,

then there exists a vertexy such thatdG(u, y) = k + 1. Thend(u) ≥ 3 in Gc
k which is a contradiction.

Therefore, we haved(u, x1) = k + 1 andd(u, x2) ≤ k + 2.

Suppose thatd(u, x2) = k + 2. If there exists a shortestu − x2 path not containingx1 in G, then

there exists a vertexy 6= x1 on theu − x2 path such thatdG(u, y) = k + 1. Thus,d(u) ≥ 3 in Gc
k

which is a contradiction. Therefore,x1 is on every shortestu − x2 path inG. Let y be a vertex on a
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shortestu − x2 path such thatdG(u, y) = k. SinceGc
k has no isolates, there exists a vertexz such that

dG(y, z) = k+1. If w ∈ N(x2) such thatw lies on a shortestx2−z path, thendG(u, w) ≥ k+1, since

dG(u, x2) = k + 2. If x1 6= w, thend(u) ≥ 3 in Gc
k which is a contradiction. Therefore,w = x1. If

dG(z, x1) ≤ k−1, then the path containing thez−x1 path followed by the edgex1y is of length at most

k which is a contradiction todG(y, z) = k+1. Thus,dG(z, x1) ≥ k and hencedG(z, x2) ≥ k+1, since

x1 lies on everyz−x2 shortest path. Letu1 be a vertex on theu−x2 path such thatdG(u1, x2) = k+1.

SincedG(u, y) = k anddG(z, y) = k + 1, z 6= u1 andz 6= u1. Therefore,d(x2) ≥ 3 in Gc
k which is a

contradiction tox2 lies onC4. Thus,d(u, x1) = k + 1 andd(u, x2) = k + 1. Hencec(u) = {x1, x2}.

If v is the other vertex ofC4, thenc(v) = {x1, x2}. Hencec(x1) = c(x2) = {u, v}.

Conversely, letV1 andV2 be the partition ofV (G) having the given property andk = rad(G) − 1.

Then the verticesu, v, x1 andx2 induce the cyclesC4 in Gc
k. If u has the unique eccentric vertexx in

G, thenu is the pendant vertex andx is its support vertex inGc
k. Thus, the components ofGc

k are the

cycleC4 or the coronaH+ for some connected graphH.

Corollary 2.8. Let G = (V,E) be a graph of orderp andk ≤ rad(G) − 1. Thenγ(Gc
k) = p

2 if

and only if there exists a partitionV1 andV2 of V (G) such that at least one ofV1, V2, sayV1 has the

following property: Every vertexu in V1 has either the unique eccentric vertexx in V2 or two eccentric

verticesx1, x2 in V2 with c(x1) = c(x2) = {u, v} andc(u) = c(v) = {x1, x2} for somev in V1 and

rad(G) = k + 1.

Theorem 2.9. If a graphG has no isolated veritces anddiam(G) ≥ 2k + 1, thenγ(Gc
k) = 2.

Proof: SinceG has no full degree vertices,γ(Gc
k) ≥ 2 by Proposition 2.5. Letu andv be two diamet-

rical opposite vertices ofG. ThendG(u, v) ≥ 2k + 1 and for everyw ∈ V (G)− {u, v}, dG(u, w) > k

or dG(w, v) > k. Thus{u, v} is a dominating set ofGc
k. Hence,γ(Gc

k) = 2.

Theorem 2.10.Let G be a graph of orderp. Then for an integerk ≥ 1, γk(G).γ(Gc
k) ≤ p.

Proof: For S ⊂ V (G), defineDe(S) = {y ∈ V − S : dG(y, x) ≤ k for everyx ∈ S} andDi(S) =
{y ∈ S : dG(y, x) ≤ k for everyx ∈ S} . Let di(S) = |Di(S)| and letde(S) = |De(S)|. Let

D = {x1, x2, · · · , xγk
} be aγk set ofG and partitionV (G) into γk subsetsB1, B2, · · · , Bγk

such that

xj ∈ Bj and all the vertices inBj are adjacent toxj , for 1 ≤ j ≤ γk. Let P be a such partition for

which
γk∑

j=1
di(Bj) is maximum.

Suppose thatde(Bj) ≥ 1. Let x ∈ De(Bj) . Thenx /∈ Bj . SinceBj ’s partitionV (G), x ∈ Bm for

somem 6= j. If x ∈ Di(Bm), thenD − {xj , xm} ∪ {x} is a distancek-dominating set ofG, which is

contradiction toD is aγk-set ofG. Therefore,x /∈ Di(Bm). Now let B′
l = Bl for l 6= m andl 6= j

andB′
j = Bj ∪ {x} andB′

m = Bm − {x}. Then{B′
1, B

′
2, · · · , B′

γK
} is a partition ofV such that

γk∑
j=1

di(B′
j) >

γk∑
j=1

di(Bj), which is a contradiction to our choice of the partitionP . Thusde(Bj) = 0

and henceDe(Bj) = φ for 1 ≤ j ≤ γk. Thus for everyy /∈ Bj , there existsx ∈ Bj such that

dG(x, y) ≥ k +1. Thenx andy are adjacent inGc
k. Thus, eachBj is a dominating set ofGc

k. Therefore

γ(Gc
k) ≤ |Bj | and hence,p =

γk∑
j=1

|Bj | ≥
γk∑

j=1
γ(Gc

k) = γk(G)γ(Gc
k).
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In the proof of the above theorem, the partitionP is a domatic partition ofGc
k. It gives the lower

bound for the domatic number ofGc
k..

Corollary 2.11. For any graphG, d(Gc
k) ≥ γk(G).

The proof for the following theorems are straight forward as given in [2] for the domination number

of G.

Proposition 2.12. Let G be a (p,q) graph andk be an integer. Thenγk(G) + γ(Gc
k) ≤ p + 1. Equality

holds if and only ifG is either a totally disconnected graph or a distancek-complete graph.

Theorem 2.13.Let G be a (p,q) graph andk ≥ 1 be an integer. If the radius of each component ofG is

greater than or equal tok + 1, thenγk(G) + γ(Gc
k) ≤ bp

2c+ 2. The bound is attained byG = C2k+2.

Theorem 2.14. Let the radius of each component ofG be greater than or equal tok + 1. Then for

k ≥ 2, γk(G) + γ(Gc
k) = bp

2c+ 2 if and only if γ(Gc
k) = bp

2c.

Proof: Sinceγk(G) ≤ b p
k+1c andk ≥ 2, the theorem follows.

Theorem 2.15. Gc
k = H+ for some graphH if and only if G has at leastp2 central vertices having

unique eccentric vertices andk = rad(G)− 1.

Proof: Assume thatG has at leastp2 central vertices having unique eccentric vertices andk = rad(G)−
1. Since all the central vertices having unique eccentric verices inG are pendant vertices inGc

k and the

unique eccentric vertices inG are the support vertices inGc
k , Gc

k = H+ for some graphH.

Conversely, letGc
k = H+ for some graphH. Then each pendent verices inH+ must be a central

vertex and have unique eccentric vertex inG. SinceH+ has no isolates,e(u) ≥ k + 1, for every

u ∈ V (G). Sinceδ(Gc
k) = 1, rad(G) = k +1. In H+, some of the components may beK2. Therefore,

G has at leastp2 central vertices having unique eccentric vertices andk = rad(G)− 1.

Corollary 2.16. If G has at leastp2 central vertices having unique eccentric vertices andk = rad(G)−1,

thenγ(Gc
k) = p

2 .
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