Domination number of distance k-complement graph

M. Kalanithi, V. Swaminathan
Ramanujan Research Center in Mathematics, Saraswathi Narayanan College, Madurai-625 022, INDIA.
E-mail:kalaadeline@gmail.com, sulanesri@yahoo.com

A. Selvam

Department of Mathematics, V.H.N.S.N. College, Virudhunagar, Tamilnadu, INDIA.

Abstract

In this paper the extremal graphs on the domination number of the distance k-complement graph G_{k}^{c} of a graph G are characterized and the relation between the domination number of G_{k}^{c} and the distance k-domination number of G are established.

Keywords: Domination number, distance k-domination number, distance k-complement graph. AMS Subject Classification(2010): 05C12, 05C69.

1 Introduction

Let $G=(V, E)$ be a simple graph of order p and size q. The distance $d_{G}(u, v)$ or $d(u, v)$ between two veritecs u and v in G is the length of a shortest path joining u and v in the graph G. For $u \in V(G)$, let $N(u)=\{v \in V(G): u v \in E(G)\}$ and $d(u)=|N(u)|$. The eccentricity of a vertex u is given by $e(u)=\max \{d(u, v): v \in V(G)\}$. The radius and diameter of of the graph G are given by $\operatorname{rad}(G)=\min \{e(u): u \in V(G)\}$ and $\operatorname{diam}(G)=\max \{e(u): u \in V(G)\}$ respectively. A vertex with eccentricity equal to $\operatorname{rad}(G)$ is called central vertex. A vertex v is called an eccentric vertex of some vertex u in G if $d_{G}(u, v)=e(u)$. The set of all eccentric vertices of a vertex u is denoted by $C(u)$. The corona H^{+}of a graph H is a graph obtained from H by adding new vertex u^{\prime} corresponding to each vertex u in H and by joining u and u^{\prime} by an edge. The complement graph \bar{G} is a graph with vertex set $V(G)$ and two vertices are adjacent in \bar{G} if and only if $d_{G}(u, v)>1$. The antipodal graph $A(G)$ of a graph G is a graph with vertex set $V(G)$ and two vertices u and v are adjacent in $A(G)$ if and only if $d_{G}(u, v)=\operatorname{diam}(G)$. In [3] the authors introduced the concept of distance k-complement graph, a natural generalization of the complement graph and hence the antipodal graph and in this paper the extremal graphs on the domination number of the distance k-complement graph G_{k}^{c} of a graph G are characterized and the relation between the domination number of G_{k}^{c} and the distance k-domination number of G are established.

Definition 1.1. For an integer $k \geq 0$, the distance k-complement graph, denoted by G_{k}^{c}, of a graph $G=(V, E)$ is a graph whose vertex set is $V(G)$ and two vertices are adjacent in G_{k}^{c} if and only if $d_{G}(u, v)>k$. That is, the edge set is $\left\{u v: d_{G}(u, v)>k\right\}$.

Definition 1.2. For $k \geq 1$, a graph G is said to be a distance k-complete graph if $\operatorname{diam}(G) \leq k$.
Theorem 1.3. [3] Let G be a graph. Then $k \leq \operatorname{rad}(G)-1$ if and only if G_{k}^{c} has no isolated vertices.

2 Domination in G_{k}^{c}

Definition 2.1. Let $G=(V, E)$ be a graph. A subset D of V is said to be a dominating set of G if every vertex in $V-D$ is adjacent to some vertex in D. The minimum cardinality of a dominating set is called the domination number of G and is denoted by $\gamma(G)$.

Definition 2.2. Let $G=(V, E)$ be a graph and $k \geq 1$ be an integer. A subset D of V is said to be a distance k-dominating set of G if for every vertex u in $V-D$, there is some vertex v in D such that $d_{G}(u, v) \leq k$. The minimum cardinality of a distance k-dominating set is called the distance k-domination number of G and is denoted by $\gamma_{k}(G)$.

Definition 2.3. A partition $V_{1}, V_{2}, \cdots, V_{l}$ of $V(G)$ of a graph G is said to be a domatic partition of G if each V_{i} is a dominating set of G. The maximum size of a such partition is called the domatic number of G and is denoted by $d(G)$.

By using the following theorem, we characterize the extremal graphs attaining the upper bound on the domination number of the distance k-complement graph.

Theorem 2.4. [2] For a graph G with even order p and no isolated vertices, $\gamma(G)=\frac{p}{2}$ if and only if the components of G are the cycle C_{4} or the corona H^{+}for any connected graph H.

Proposition 2.5. A graph G has an isolated vertex if and only if $\gamma\left(G_{k}^{c}\right)=1$.
Proposition 2.6. Let G be a graph of order p. If $k \leq \operatorname{rad}(G)-1$, then $\gamma\left(G_{k}^{c}\right) \leq\left\lfloor\frac{p}{2}\right\rfloor$.
Proof: This follows from Theorem1.3 and the classical Ore's Theorem [2] on the bound on domination number of a graph.

Theorem 2.7. Let $G=(V, E)$ be graph and $k \leq \operatorname{rad}(G)-1$ be an integer. Then the components of G_{k}^{c} are the cycle C_{4} or the corona H^{+}for some connected graph H if and only if there exists a partition V_{1} and V_{2} of $V(G)$ such that $\left|V_{1}\right|=\left|V_{2}\right|$ and at least one of V_{1}, V_{2}, say V_{1} has the following property: Every vertex u in V_{1} has either the unique eccentric vertex x in V_{2} or has two eccentric vertices x_{1}, x_{2} in V_{2} with $c\left(x_{1}\right)=c\left(x_{2}\right)=\{u, v\}$ and $c(u)=c(v)=\left\{x_{1}, x_{2}\right\}$ for some vertex v in V_{1} and $\operatorname{rad}(G)=k+1$.

Proof: Let the components of G_{k}^{c} be the cycle C_{4} or the corona H^{+}for some connected graph H. Let V_{1} be the set of all pendant vertices of H^{+}if $H \neq K_{1}$, one pendant vertex of K_{1}^{+}and the vertices in one partite set of C_{4} and let $V_{2}=V(G)-V_{1}$. Let $u \in V_{1}$. If u is a pendant vertex of some H^{+}and x is its support vertex, then x is the unique eccentric vertex of u in G and $k=\operatorname{rad}(G)-1$. Let $d(u)=2$ in G_{k}^{c}. Then there exist two vertices x_{1} and x_{2} such that $d\left(u, x_{1}\right) \geq k+1$ and $d\left(u, x_{2}\right) \geq k+1$. Since $d(u)=2$ in $G_{k}^{c}, d\left(u, x_{1}\right) \leq k+2$ and $d\left(u, x_{2}\right) \leq k+2$. If $d\left(u, x_{1}\right)=k+2$ and $d\left(u, x_{2}\right)=k+2$, then there exists a vertex y such that $d_{G}(u, y)=k+1$. Then $d(u) \geq 3$ in G_{k}^{c} which is a contradiction. Therefore, we have $d\left(u, x_{1}\right)=k+1$ and $d\left(u, x_{2}\right) \leq k+2$.

Suppose that $d\left(u, x_{2}\right)=k+2$. If there exists a shortest $u-x_{2}$ path not containing x_{1} in G, then there exists a vertex $y \neq x_{1}$ on the $u-x_{2}$ path such that $d_{G}(u, y)=k+1$. Thus, $d(u) \geq 3$ in G_{k}^{c} which is a contradiction. Therefore, x_{1} is on every shortest $u-x_{2}$ path in G. Let y be a vertex on a
shortest $u-x_{2}$ path such that $d_{G}(u, y)=k$. Since G_{k}^{c} has no isolates, there exists a vertex z such that $d_{G}(y, z)=k+1$. If $w \in N\left(x_{2}\right)$ such that w lies on a shortest $x_{2}-z$ path, then $d_{G}(u, w) \geq k+1$, since $d_{G}\left(u, x_{2}\right)=k+2$. If $x_{1} \neq w$, then $d(u) \geq 3$ in G_{k}^{c} which is a contradiction. Therefore, $w=x_{1}$. If $d_{G}\left(z, x_{1}\right) \leq k-1$, then the path containing the $z-x_{1}$ path followed by the edge $x_{1} y$ is of length at most k which is a contradiction to $d_{G}(y, z)=k+1$. Thus, $d_{G}\left(z, x_{1}\right) \geq k$ and hence $d_{G}\left(z, x_{2}\right) \geq k+1$, since x_{1} lies on every $z-x_{2}$ shortest path. Let u_{1} be a vertex on the $u-x_{2}$ path such that $d_{G}\left(u_{1}, x_{2}\right)=k+1$. Since $d_{G}(u, y)=k$ and $d_{G}(z, y)=k+1, z \neq u_{1}$ and $z \neq u_{1}$. Therefore, $d\left(x_{2}\right) \geq 3$ in G_{k}^{c} which is a contradiction to x_{2} lies on C_{4}. Thus, $d\left(u, x_{1}\right)=k+1$ and $d\left(u, x_{2}\right)=k+1$. Hence $c(u)=\left\{x_{1}, x_{2}\right\}$. If v is the other vertex of C_{4}, then $c(v)=\left\{x_{1}, x_{2}\right\}$. Hence $c\left(x_{1}\right)=c\left(x_{2}\right)=\{u, v\}$.

Conversely, let V_{1} and V_{2} be the partition of $V(G)$ having the given property and $k=\operatorname{rad}(G)-1$. Then the vertices u, v, x_{1} and x_{2} induce the cycles C_{4} in G_{k}^{c}. If u has the unique eccentric vertex x in G, then u is the pendant vertex and x is its support vertex in G_{k}^{c}. Thus, the components of G_{k}^{c} are the cycle C_{4} or the corona H^{+}for some connected graph H.

Corollary 2.8. Let $G=(V, E)$ be a graph of order p and $k \leq \operatorname{rad}(G)-1$. Then $\gamma\left(G_{k}^{c}\right)=\frac{p}{2}$ if and only if there exists a partition V_{1} and V_{2} of $V(G)$ such that at least one of V_{1}, V_{2}, say V_{1} has the following property: Every vertex u in V_{1} has either the unique eccentric vertex x in V_{2} or two eccentric vertices x_{1}, x_{2} in V_{2} with $c\left(x_{1}\right)=c\left(x_{2}\right)=\{u, v\}$ and $c(u)=c(v)=\left\{x_{1}, x_{2}\right\}$ for some v in V_{1} and $\operatorname{rad}(G)=k+1$.

Theorem 2.9. If a graph G has no isolated veritces and $\operatorname{diam}(G) \geq 2 k+1$, then $\gamma\left(G_{k}^{c}\right)=2$.
Proof: Since G has no full degree vertices, $\gamma\left(G_{k}^{c}\right) \geq 2$ by Proposition 2.5. Let u and v be two diametrical opposite vertices of G. Then $d_{G}(u, v) \geq 2 k+1$ and for every $w \in V(G)-\{u, v\}, d_{G}(u, w)>k$ or $d_{G}(w, v)>k$. Thus $\{u, v\}$ is a dominating set of G_{k}^{c}. Hence, $\gamma\left(G_{k}^{c}\right)=2$.

Theorem 2.10. Let G be a graph of order p. Then for an integer $k \geq 1, \gamma_{k}(G) \cdot \gamma\left(G_{k}^{c}\right) \leq p$.
Proof: For $S \subset V(G)$, define $D_{e}(S)=\left\{y \in V-S: d_{G}(y, x) \leq k\right.$ for every $\left.x \in S\right\}$ and $D_{i}(S)=$ $\left\{y \in S: d_{G}(y, x) \leq k\right.$ for every $\left.x \in S\right\}$. Let $d_{i}(S)=\left|D_{i}(S)\right|$ and let $d_{e}(S)=\left|D_{e}(S)\right|$. Let $D=\left\{x_{1}, x_{2}, \cdots, x_{\gamma_{k}}\right\}$ be a γ_{k} set of G and partition $V(G)$ into γ_{k} subsets $B_{1}, B_{2}, \cdots, B_{\gamma_{k}}$ such that $x_{j} \in B_{j}$ and all the vertices in B_{j} are adjacent to x_{j}, for $1 \leq j \leq \gamma_{k}$. Let P be a such partition for which $\sum_{j=1}^{\gamma_{k}} d_{i}\left(B_{j}\right)$ is maximum.

Suppose that $d_{e}\left(B_{j}\right) \geq 1$. Let $x \in D_{e}(B j)$. Then $x \notin B_{j}$. Since B_{j} 's partition $V(G), x \in B_{m}$ for some $m \neq j$. If $x \in D_{i}\left(B_{m}\right)$, then $D-\left\{x_{j}, x_{m}\right\} \cup\{x\}$ is a distance k-dominating set of G, which is contradiction to D is a γ_{k}-set of G. Therefore, $x \notin D_{i}\left(B_{m}\right)$. Now let $B_{l}^{\prime}=B_{l}$ for $l \neq m$ and $l \neq j$ and $B_{j}^{\prime}=B_{j} \cup\{x\}$ and $B_{m}^{\prime}=B_{m}-\{x\}$. Then $\left\{B_{1}^{\prime}, B_{2}^{\prime}, \cdots, B_{\gamma_{K}}^{\prime}\right\}$ is a partition of V such that $\sum_{j=1}^{\gamma_{k}} d_{i}\left(B_{j}^{\prime}\right)>\sum_{j=1}^{\gamma_{k}} d_{i}\left(B_{j}\right)$, which is a contradiction to our choice of the partition P. Thus $d_{e}\left(B_{j}\right)=0$ and hence $D_{e}\left(B_{j}\right)=\phi$ for $1 \leq j \leq \gamma_{k}$. Thus for every $y \notin B_{j}$, there exists $x \in B_{j}$ such that $d_{G}(x, y) \geq k+1$. Then x and y are adjacent in G_{k}^{c}. Thus, each B_{j} is a dominating set of G_{k}^{c}. Therefore $\gamma\left(G_{k}^{c}\right) \leq\left|B_{j}\right|$ and hence, $p=\sum_{j=1}^{\gamma_{k}}\left|B_{j}\right| \geq \sum_{j=1}^{\gamma_{k}} \gamma\left(G_{k}^{c}\right)=\gamma_{k}(G) \gamma\left(G_{k}^{c}\right)$.

In the proof of the above theorem, the partition P is a domatic partition of G_{k}^{c}. It gives the lower bound for the domatic number of G_{k}^{c}.

Corollary 2.11. For any graph $G, d\left(G_{k}^{c}\right) \geq \gamma_{k}(G)$.
The proof for the following theorems are straight forward as given in [2] for the domination number of G.

Proposition 2.12. Let G be a (p,q) graph and k be an integer. Then $\gamma_{k}(G)+\gamma\left(G_{k}^{c}\right) \leq p+1$. Equality holds if and only if G is either a totally disconnected graph or a distance k-complete graph.

Theorem 2.13. Let G be a (p, q) graph and $k \geq 1$ be an integer. If the radius of each component of G is greater than or equal to $k+1$, then $\gamma_{k}(G)+\gamma\left(G_{k}^{c}\right) \leq\left\lfloor\frac{p}{2}\right\rfloor+2$. The bound is attained by $G=C_{2 k+2}$.

Theorem 2.14. Let the radius of each component of G be greater than or equal to $k+1$. Then for $k \geq 2, \gamma_{k}(G)+\gamma\left(G_{k}^{c}\right)=\left\lfloor\frac{p}{2}\right\rfloor+2$ if and only if $\gamma\left(G_{k}^{c}\right)=\left\lfloor\frac{p}{2}\right\rfloor$.

Proof: Since $\gamma_{k}(G) \leq\left\lfloor\frac{p}{k+1}\right\rfloor$ and $k \geq 2$, the theorem follows.
Theorem 2.15. $G_{k}^{c}=H^{+}$for some graph H if and only if G has at least $\frac{p}{2}$ central vertices having unique eccentric vertices and $k=\operatorname{rad}(G)-1$.

Proof: Assume that G has at least $\frac{p}{2}$ central vertices having unique eccentric vertices and $k=\operatorname{rad}(G)-$ 1. Since all the central vertices having unique eccentric verices in G are pendant vertices in G_{k}^{c} and the unique eccentric vertices in G are the support vertices in $G_{k}^{c}, G_{k}^{c}=H^{+}$for some graph H.

Conversely, let $G_{k}^{c}=H^{+}$for some graph H. Then each pendent verices in H^{+}must be a central vertex and have unique eccentric vertex in G. Since H^{+}has no isolates, $e(u) \geq k+1$, for every $u \in V(G)$. Since $\delta\left(G_{k}^{c}\right)=1, \operatorname{rad}(G)=k+1$. In H^{+}, some of the components may be K_{2}. Therefore, G has at least $\frac{p}{2}$ central vertices having unique eccentric vertices and $k=\operatorname{rad}(G)-1$.

Corollary 2.16. If G has at least $\frac{p}{2}$ central vertices having unique eccentric vertices and $k=\operatorname{rad}(G)-1$, then $\gamma\left(G_{k}^{c}\right)=\frac{p}{2}$.

References

[1] F. Haray, Graph Theory, Addison-Wesley Publishing Company. 1969.
[2] T. W. Haynes, S. T. Hedetniemi, and P. J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, Inc.. 1998.
[3] M. Kalanithi, V. Swaminathan and A. Selvam, Distance k-complement graph of a graph, Preprint.
[4] B. Rajendran, Topics in Graph Theory : Antipodal Graphs, Ph. D. Thesis, Madurai Kamaraj University, 1985.
[5] E. Sampathkumar, K-dimensional Graph and Semi Graph Theory, DST Project Report No. DST/MS/131/2K, 2005.

