On felicitous labelings of $P_{r, 2 m+1}, P_{r}^{2 m+1}$ and $C_{n} \times P_{m}$

V. Lakshmi alias Gomathi, A. Nagarajan, A. Nellai Murugan
Department of Mathematics,
V.O.C. College, Tuticorin, Tamilnadu, INDIA.

Abstract

A simple graph G is called felicitous if there exists a one-to-one function $f: V(G) \rightarrow\{0,1,2, \ldots$., $q\}$ such that the set of induced edge labels $f *(u v)=(f(u)+f(v))(\bmod q)$ are all distinct. In this paper we show that $P_{r, 2 m+1}, P_{r}^{2 m+1}$ and $C_{n} \times P_{m}$ are felicitous graphs.

Keywords: Labeling, felicitous labeling.
AMS Subject Classification(2010): 05C78.

1 Introduction

In this paper we consider only simple graphs. For notation and terminology, we refer to [2]. Lee, Schmeichel and Shee [7] introduced the concept of a felicitous graph as a generalization of a harmonious graph. A graph G with q edges is called harmonious if there is an injection $f: V(G) \rightarrow$ Z_{q}, the additive group of integers modulo q such that when each edge $x y$ of G is assigned the label $f(f x)$ $+f(y))(\bmod q)$, the resulting edge labels are all distinct. A felicitous labeling of a graph G, with q edges is an injection $f: V(G) \rightarrow\{0,1,2, \ldots, q\}$ so that the induced edge labels $f^{*}(x y)=(f(x)+f(y))$ $(\bmod q)$ are distinct. Clearly, a harmonious graph is felicitous. An example of a felicitous graph which is not harmonious is the graph $K_{m, n}$, where $m, n>1$.

Throughout this paper, f denotes a 1-1 function from $V(G)$ to a subset of the set of non-negative integers and for any edge $e=x y \in E(G), \quad f^{*}(e)=f(x)+f(y)$.

In $[4,5,6]$, Kathiresan introduced new classes of graphs denoted by $P_{a, b}$ and $P_{a}{ }^{b}$ and discussed the magic labeling of $P_{a, b}$ [5]. In [8], the gracefulness of $P_{a, b}$ was discussed. It motivates us to discuss the felicitousness of the graphs $P_{a, b}$ and $P_{a}{ }^{b}$.

2 Definitions and basic results

Definition 2.1. Let u and v be two fixed vertices. We connect u and v by means of $b \geq 2$ internally disjoint paths of length $a \geq 2$ each. The resulting graph embedded in a plane is denoted by $P_{a, b}$. Let $v_{o}{ }^{i}, v_{1}{ }^{i}, v_{2}{ }^{i}, \ldots, v_{a}{ }^{i}$ be the vertices of the $i^{\text {th }}$ copy of the path of length a, where $i=1,2,3, \ldots, b . v_{o}{ }^{i}=$ u and $v_{a}{ }^{i}=v$ for all i.

We observe that the graph $P_{a, b}$ has $(a-1) b+2$ vertices and $a b$ edges.
Definition 2.2. Let a and b be integers such that $a \geq 2$ and $b \geq 2$. Let $y_{1}, y_{2}, \ldots, y_{a}$ be the fixed vertices. We connect the vertices y_{i} and y_{i+1} by means of b internally disjoint paths P_{i}^{j} of length $i+1$
each, $1 \leq i \leq a-1$ and $1 \leq j \leq b$. Let $y_{i}, x_{i, j, 1}, x_{i, j, 2} \ldots, x_{i, j, i}, y_{i+1}$ be the vertices of the path $P_{i}^{j}, l \leq i \leq$ $a-1$ and $1 \leq j \leq b$. The resulting graph embedded in a plane is denoted by $P_{a}{ }^{b}$, where $V\left(P_{a}{ }^{b}\right)=\left\{y_{i}\right.$:

$1 \leq k \leq i-1\} \cup \bigcup_{i=1}^{a-1}\left\{x_{i, i, i} y_{i+1}: l \leq j \leq b\right\}$.
We observe that the number of vertices of the graph $P_{a}{ }^{b}$ is $\frac{b a(a-1)}{2}+a$ and the number of edges is $\frac{b(a-1)(a+2)}{2}$.

Definition 2.3. A subgraph H of a graph G is said to be an even subgraph of G, if the degree of every vertex of H is even in H.
Result 2.4. [1] An even subgraph of a felicitous graph with an even number of edges contains an even number of odd labelled edges.

Result 2.5. [1] No even graph with $4 n+2$ edges is felicitous.
Lemma 2.6. [1] Let G be a graph with an odd number of edges and let $f: V(G) \rightarrow\{0,1,2, \ldots, q\}$ be an odd edge labeling of G. Then, f is a felicitous labeling for G.
Proof. As f is an odd edge labeling of a graph G with odd number of edges, $f(E(G))=\{1,3,5, \ldots$, $2 q-1\}$. After taking $\bmod q, f(E(G))=\{1,2,3, \ldots, q\}$. So, f becomes felicitous labeling of G.

Remark 2.7. It is observed that as in Result 2.5, most of the even graphs are not felicitous. So, finding felicitous graphs with even number of edges are very difficult.

3 Main Results

Theorem 3.1. $P_{r, 2 m+1}$ is a felicitous graph for all values of m and for odd values of r.
Proof : Let u and v be the origin and the terminal vertices of the $(2 m+1)$ internally disjoint paths of length r in $P_{r},{ }_{2 m+1}$. Let $v_{0}{ }^{i}, v_{1}{ }^{i}, v_{2}{ }^{i}, \ldots, v_{r}^{i}$ be the vertices of the $i^{\text {th }}$ copy of the path, where $i=1,2,3$, . $\ldots, 2 m+1, v_{\mathrm{o}}{ }^{i}=u$ and $v_{r}{ }^{i}=v$ for all i. The number of vertices of the graph $P_{r, 2 m+1}$ is $(r-1)(2 m+1)+2$ and the number of edges is $(2 m+1) r$.
It is enough to show that $P_{r, 2 m+1}$ admits odd edge labeling.
Define f on the vertex set of $P_{r, 2 m+1}$ as follows:
$f(u)=0 \quad f(v)=(2 m+1) r$
For $1 \leq j \leq \frac{r-1}{2}$,
$f\left(v_{2 j-1}^{i}\right)=(4 m+2)(j-1)+(2 i-1), 1 \leq i \leq 2 m+1$,
$f\left(v_{2 j}^{i}\right)= \begin{cases}(6 m+2)+(4 m+2)(j-1)-4(i-1), & 1 \leq i \leq m+1 \\ 6 m+(4 m+2)(j-1)-4(i-(m+2)), & m+2 \leq i \leq 2 m+1\end{cases}$

Let $\quad E_{1}=\left\{v_{o}^{i} v_{1}^{i}: 1 \leq i \leq 2 m+1\right\}$.
$E_{2}=\left\{v_{j}^{m+1} v_{j+1}^{m+1}, v_{j}^{m} v_{j+1}^{m}, \ldots, v_{j}^{1} v_{j+1}^{1}, v_{j}^{2 m+1} v_{j+1}^{2 m+1}, v_{j}^{2 m} v_{j+1}^{2 m}, \ldots, v_{j}^{m+2} v_{j+1}{ }^{m+2}: 1 \leq j \leq r-2\right\}$.
$E_{3}=\left\{v_{r-1}^{m+1} v_{r}^{m+1}, v_{r-1}^{2 m+1} v_{r}^{2 m+1}, v_{r-1}^{m} v_{r}^{m}, v_{r-1}^{2 m} v_{r}^{2 m}, \ldots, v_{r-1}^{2} v_{r}^{2}, v_{r-1}^{m+2} v_{r}^{m+2}, v_{r-1}^{1} v_{r}^{1}\right\}$.
The labels of the edges in E_{1} are $2 i-1,1 \leq i \leq 2 m+1$.
For $1 \leq j \leq r-2$, the labels of the edges in E_{2} are $2 j(2 m+1)+1,2 j(2 m+1)+3, \ldots, 2(j+1)(2 m+1)$ $-(2 m-1), 2(j+1)(2 m+1)-(2 m-3), \ldots, 2(j+1)(2 m+1)-1$.

The labels of the edges in E_{3} are $2(r-1)(2 m+1)+1, \quad 2(r-1)(2 m+1)+3, \ldots, 2 r(2 m+1)-1$.
$f\left(E_{1}\right)=\{1,3,5, \ldots, 2(2 m+1)-1)=\{1,3,5, \ldots, 4 m+1\}$.
$f\left(E_{2}\right)=\{2(2 m+1)+1,2(2 m+1)+3, \ldots, 4(2 m+1)-(2 m-1), 4(2 m+1)-(2 m-3), \ldots, 4(2 m$ $+1)-1, \ldots, 2(r-2)(2 m+1)+1,2(r-2)(2 m+1)+3, \ldots,(2(r-2)+2)(2 m+1)-1\}=\{4 m+3$,
$4 m+5, \ldots, 6 m+5,6 m+7, \ldots, 8 m+3, \ldots, 2(r-2)(2 m+1)+1,2(r-2)(2 m+1)+3, \ldots, 2(r-$ 1) $(2 m+1)-1\}$.
$f\left(E_{3}\right)=\{2(r-1)(2 m+1)+1,2(r-1)(2 m+1)+3, \ldots, 2 r(2 m+1)-1\}$.
Now, $f(E(G))=f\left(E_{1}\right) \cup f\left(E_{2}\right) \cup f\left(E_{3}\right)$.
$f(E(G))=\{1,3,5, \ldots, 4 m+1,4 m+3,4 m+5, \ldots, 6 m+5, \quad 6 m+7, \ldots, 8 m+3, \ldots, 2(r-$ $2)(2 m+1)+1,2(r-2)(2 m+1)+3, \ldots, 2(r-1)(2 m+1)-1,2(r-1)(2 m+1)+1,2(r-1)(2 m+1)$ $+3, \ldots, 2 r(2 m+1)-1\}=\{1,3,5 \ldots, 2 q-1\}$.

Clearly, the above edge labelings are distinct and odd and hence G admits odd edge labeling. Therefore, by Lemma 2.6, $P_{r, 2 m+1}$ is a felicitous graph for all the values of m and for odd values of r.

Example 3.2. A felicitous labeling of $P_{7,5}$ is shown in Figure 1.

Figure 1: A felicitous labeling of $P_{7,5}$.

Corollary 3.3. $P_{a, b}$ is not a felicitous graph when $a \equiv 1(\bmod 2)$ and $b \equiv 2(\bmod 4)$.

Proof. The number of edges of $P_{a, b}=a b=(2 k+1)(4 m+2)=(8 k m+4 k+4 m+2)=4(2 k m+k+m)+$ $2=4 l+2$ where $l=2 k m+k+m$ and $l \in Z^{+}$. Further, the graph $P_{a, b}$ is even. Hence, $P_{a, b}$ is not a felicitous graph when $a \equiv 1(\bmod 4)$ and $b \equiv 2(\bmod 4)$.
Theorem 3.4. $P_{r}^{2 m+1}$ is a felicitous graph for all values of m and $r \equiv 0,3(\bmod 4)$.
Proof. Let $y_{1}, y_{2, \ldots} \ldots, y_{\mathrm{r}}$ be the fixed vertices. We connect the vertices y_{i} and y_{i+1} by means of $2 m+1$ internally disjoint paths $\quad P_{i}^{j}$ of length $i+1$ each, $1 \leq i \leq r-1$ and $1 \leq j \leq 2 m+1$. Let $y_{i}, x_{i, j, 1}, x_{i, j, 2, \ldots}$ $., x_{i, j, i}, y_{i+1}$ be the vertices of the path $P_{i}^{j}, \quad 1 \leq i \leq r-1$ and $1 \leq j \leq 2 m+1$. We observe that the number of vertices of the graph $P_{r}^{2 m+1}$ is $\frac{(2 m+1) r(r-1)}{2}+r$ and the number of edges is $\frac{(2 m+1)(r-1)(r+2)}{2}$.
It is enough to show that $P_{r}^{2 m+1}$ admits odd edge labeling.
Define f on $V\left(P_{r}^{2 m+1}\right)$ as follows :
$f\left(y_{i}\right)=\left(\frac{i(i+1)}{2}-1\right)(2 m+1), 1 \leq i \leq r$,
$f\left(x_{1, j, 1}\right)=2 j-1, \quad 1 \leq j \leq 2 m+1$,
$f\left(x_{2, j, 2}\right)= \begin{cases}5(2 m+1)-1-4(j-1), & 1 \leq j \leq m+1 \\ 5(2 m+1)-3-4(j-(m+2)), & m+2 \leq j \leq 2 m+1\end{cases}$
For $1 \leq j \leq 2 m+1$,

$$
f\left(x_{i, j, k}\right)= \begin{cases}f\left(x_{i-1, j, k}\right)+(2 m+1) i & \text { if } k=1,2 \text { and } k+1 \leq i \leq r-1 \\ f\left(x_{i, j, 1}\right)+(k-1)(2 m+1) & \text { if } k \text { is odd, } 3 \leq k \leq r-1 \text { and } k \leq i \leq r-1 \\ f\left(x_{i, j, 2}\right)+(k-2)(2 m+1) & \text { if } k \text { is even, } 4 \leq k \leq r-1 \text { and } k \leq i \leq r-1\end{cases}
$$

Let $E_{1}=\left\{y_{i} x_{i, 1,1}, y_{i} x_{i, 2,1}, y_{i} x_{i, 3,1}, \ldots, y_{i} x_{i, 2 m+1,1}: 1 \leq i \leq r-1\right\}, E_{2}=\left\{x_{i, m+1, k} x_{i, m+1, k+1}, x_{i, m, k} x_{i, m, k+1}, \ldots\right.$, $x_{i, 1, k} x_{i, 1, k+1}, \quad x_{i, 2 m+1, k} x_{i, 2 m+1, k+1}, \quad x_{i, 2 m, k} x_{i, 2 m, k+1}, \quad \ldots, x_{i, m+2, k} \quad x_{i, m+2, k+1}: 2 \leq i \leq r-1$ and $\left.1 \leq k \leq i-1\right\}$, $E_{3}=\left\{x_{i, 1, i} y_{i+1}, x_{i, 2, i} y_{i+1}, x_{i, 3, i} y_{i+1}, \ldots, x_{i, 2 m+1, i} y_{i+1}: 1 \leq i \leq r-1\right\}$ and $E_{4}=\left\{x_{i, m+1, \mathrm{i}} y_{i+1}, x_{i, 2 m+1, i} y_{i+1}, x_{i, m, i}\right.$ $\left.y_{i+1}, x_{i, 2 m, i} y_{i+1}, \ldots, x_{i, 2, i} y_{i+1}, x_{i, m+2, i} y_{i+1}, \quad x_{i, 1, i} y_{i+1}: 1 \leq i \leq r-1\right\}$.

The edge labels of $P_{r}^{2 m+1}$ are as follows:
For $1 \leq i \leq r-1$, the labels of the edges in E_{1} are $(i(i+1)-2)(2 m+1)+1,(i(i+1)-2)(2 m+1)+3$, $\ldots,(i(i+1)-2)(2 m+1)+2(2 m+1)-1$.

For $2 \leq i \leq r-1$ and $1 \leq k \leq i-1$, the labels of the edges in E_{2} are $(i(i+1)-2+2 k)(2 m+1)+1$, $(i(i+1)-2+2 k)(2 m+1)+3, \ldots,(i(i+1)+2 k-1)(2 m+1),(i(i+1)+2 k-1)(2 m+1)+2, \ldots$, $(i(i+1)+2 k)(2 m+1)-1$.

For $1 \leq i \leq r-1$ and $i \equiv 1(\bmod 2)$, the labels of the edges in E_{3} are $(i(i+3)-2)(2 m+1)+1,(i(i+3)$ $-2)(2 m+1)+3, \ldots,(i(i+3)-2)(2 m+1)+2(2 m+1)-1$.

For $1 \leq i \leq r-1$ and $i \equiv 0(\bmod 2)$, the labels of the edges in E_{4} are $(i(i+3)-2)(2 m+1)+1,(i(i+3)$ $-2)(2 m+1)+3, \ldots,(i(i+3)-2)(2 m+1)+2(2 m+1)-1$ respectively.

Now, $f(E(G))=f\left(E_{1}\right) \cup f\left(E_{2}\right) \cup f\left(E_{3}\right) \cup f\left(E_{4}\right)=\{1,3,5, \ldots, 2(2 m+1)-1, \quad 4(2 m+1)+1,4(2 m$ $+1)+3, \ldots, 4(2 m+1)+2(2 m+1)-1, \ldots,(r(r-1)-2)(2 m+1)+1,(r(r-1)-2)(2 m+1)+3, \ldots$, $(r(r-1)-2)(2 m+1)+2(2 m+1)-1\} \cup\{6(2 m+1)+1,6(2 m+1)+3, \ldots, 7(2 m+1), 7(2 m+1)+$ $2, \ldots,((r(r-1)-2)+2(r-2))(2 m+1)+1,((r(r-1)-2)+2(r-2))(2 m+1)+3, \ldots,(r(r-1)+$ $2(r-2))(2 m+1)-1\} \cup\{2(2 m+1)+1,2(2 m+1)+3, \ldots, 2(2 m+1)+2(2 m+1)-1, \ldots,((r-$ $1)(r+2)-2)(2 m+1)+1,((r-1)(r+2)-2)(2 m+1)+3, \ldots,((r-1)(r+2)-2)(2 m+1)+2(2 m+$ 1) -1$\}$.

That is, $f(E(G))=\{1,3,5, \ldots, 2(2 m+1)-1,2(2 m+1)+1,2(2 m+1)+3, \ldots, 4((2 m+1)-1$, $4(2 m+1)+1,4(2 m+1)+3, \ldots, 6(2 m+1)-1,6(2 m+1)+1,6(2 m+1)+3, \ldots, 7(2 m+1)$, $7(2 m+1)+2, \ldots, \quad((r(r-1)-2)+2(r-2))(2 m+1)+1,((r(r-1)-2)+2(r-2))(2 m+1)+3$, $\ldots,(r(r-1)+2(r-2))(2 m+1)-1, \ldots,((r-1)(r+2)-2)(2 m+1)+1,((r-1)(r+2)-2)(2 m+1)$ $+3, \ldots,(r-1)(r+2)(2 m+1)-1\}$ $=\{1,3,5, \ldots, 2 q-1\}$.

Clearly, the above edge labelings are distinct and odd and hence G admits odd edge labeling. Therefore, $P_{r}^{2 m+1}$ is a felicitous graph for all values of m and $r \equiv 0,3(\bmod 4)$.

Example 3.5. A felicitous labeling of $P_{4}{ }^{5}$ is shown in Figure 2.

Figure 2: A felicitous labeling of P_{4}^{5}.
Corollary 3.6. $P_{a}{ }^{b}$ is not felicitous when $b \equiv 2(\bmod 4)$ and $(\mathrm{i}) a \equiv 0(\bmod 4)$ or $(\mathrm{ii}) a \equiv 3(\bmod 4)$.
Proof. (i) Let $a \equiv 0(\bmod 4)$ and $b \equiv 2(\bmod 4)$.
The number of edges of $P_{a}{ }^{b}=\frac{b(a-1)(a+2)}{2}=\frac{(4 k+2)(4 m-1)(4 m+2)}{2}$
$=\frac{2(2 k+1)(4 m-1)(4 m+2)}{2}$
$=2\left(8 m^{2}+2 m-1\right)(2 k+1)$
$=2\left(16 m^{2} k+8 m^{2}+4 m k+2 m-2 k-1\right)$
$=4\left(8 m^{2} k+4 m^{2}+2 m k+m-k-1\right)+2=4 l+2$ where $l=8 m^{2} k+4 m^{2}+2 m k+m-k-1$ and $l \in Z^{+}$.
(ii) Let $a \equiv 3(\bmod 4)$ and $b \equiv 2(\bmod 4)$.

The number of edges of $P_{a}{ }^{b}=\frac{b(a-1)(a+2)}{2}$
$=\frac{(4 k+2)(4 m+3-1)(4 m+3+2)}{2}$
$=\frac{2(2 k+1)(4 m+2)(4 m+5)}{2}$
$=2(2 k+1)(2 m+1)(4 m+5)$
$=2(2 k+1)\left(8 m^{2}+14 m+5\right)$
$=2\left(16 m^{2} k+28 k m+10 k+8 m^{2}+14 m+5\right)$
$=4\left(8 m^{2} k+4 m^{2}+14 m k+7 m+5 k+2\right)+2=4 l+2 \quad$ where $l=8 m^{2} k+4 m^{2}+14 m k+7 m+5 k+2$ and $l \in Z^{+}$.

Remark 3.7. Let G be a (p, q) graph. Let f be a felicitous labeling. Define $f_{l}(u v)=f(u)+f(v)$ for every $u v \in E(G)$. Then $f^{*}(u v)=f_{l}(u v)(\bmod q)$.

Theorem 3.8. $C_{n} \times P_{m}$ is felicitous for $m \geq 1$ and $n \equiv 1(\bmod 2)$.
Proof. Case (i): when $n=3$.
Let $V\left(C_{3} \times P_{m}\right)=\left\{u_{i j}: 1 \leq i \leq 3\right.$ and $\left.1 \leq j \leq m\right\}$.
Define $f: V\left(C_{3} \times P_{m}\right) \rightarrow\{0,1,2, \ldots, q=6 m-3\}$ by
$f\left(u_{i 1}\right)=i-1,1 \leq i \leq 3$;
$f\left(u_{2 i}\right)=3+i, 1 \leq i \leq 2 \quad$ and $\quad f\left(u_{23}\right)=3 ;$
$f\left(u_{3 i}\right)=5+i, 1 \leq i \leq 3$.
$f\left(u_{i j}\right)=\left\{\begin{array}{ll}f\left(u_{1(j-1)}\right)+i \quad, & 5 \leq j \leq m \text { and } j \equiv 1(\bmod 2) ; \\ f\left(u_{3(j-1)}\right)+\sigma_{1}(i), & 4 \leq j \leq m \text { and } j \equiv 0(\bmod 2) ;\end{array}\right.$ where $\sigma_{1}=\left(\begin{array}{ll}1 & 3\end{array} 2\right)$.
Let $E_{1}=\left\{\left(u_{2 j} u_{1 j}\right),\left(u_{1 j} u_{3 j}\right),\left(u_{3 j} u_{2 j}\right): 1 \leq j \leq m\right.$ and $\left.j \equiv 1(\bmod 2)\right\}$,
$E_{2}=\left\{\left(u_{12} u_{32}\right),\left(u_{32} u_{22}\right),\left(u_{22} u_{12}\right),\left(u_{3 \mathrm{j}} u_{2 \mathrm{j}}\right),\left(u_{2 \mathrm{j}} u_{1 \mathrm{j}}\right),\left(u_{1 \mathrm{j}} u_{3 \mathrm{j}}\right): 4 \leq j \leq m\right.$ and $\left.j \equiv 0(\bmod 2)\right\}$ and
$E_{3}=\left\{\left(u_{11} u_{12}\right),\left(u_{31} u_{32}\right),\left(u_{21} u_{22}\right),\left(u_{12} u_{13}\right),\left(u_{32} u_{33}\right),\left(u_{22} u_{23}\right),\left(u_{2 j} u_{2(j+1)}\right),\left(u_{1 j} u_{1(j+1)}\right),\left(u_{3 j} u_{3(j+1)}\right): 3 \leq j\right.$ $\leq m-1\}$.

Now, $E=E 1 \cup E_{2} \cup E_{3}$.
The labels of the edges in E_{1} and E_{2} are $f_{1}\left(E_{1}\right) \cup f_{1}\left(E_{2}\right)=\{6 j-5,6 j-4,6 j-3: 1 \leq j \leq m\}$.
The labels of the edges in E_{3} are $f_{1}\left(E_{3}\right)=\{6 j-2,6 j-1,6 j: 1 \leq j \leq m-1\}$.
Clearly, $f^{*}(E(G))=f_{1}\left(E_{1}\right) \cup f_{1}\left(E_{2}\right) \cup f_{1}\left(E_{3}\right)=\{1,2,3, \ldots, 6 m-6,6 m-5,6 m-4,6 m-3\}$.
After taking $(\bmod q), f^{*}(E(G))=f_{1}(E(G))(\bmod q)=\{0,1,2,3, \ldots, 6 m-5,6 m-4\}$.
Case (ii): when $n \geq 5$.

Let $V\left(C_{n} \times P_{m}\right)=\left\{u_{i j}: 1 \leq i \leq n\right.$ and $\left.1 \leq j \leq m\right\}$.
Define $f: V\left(C_{n} \times P_{m}\right) \rightarrow\{0,1,2, \ldots, q=(2 m-1) n\}$ by
$f\left(u_{i 1}\right)=i-1,1 \leq i \leq n$.
Throughout this proof, addition being taken modulo n with residues $1,2,3, \ldots, n$.
Let $\quad \sigma_{j}=\left(\begin{array}{ccccccc}1 & 2 & 3 & . & . & n \\ n-j+2 & n-j+3 & n-j+4 & . & . & . & n-j+1\end{array}\right)$
$f\left(u_{\sigma_{j}(i), j}\right)=n(j-2)+(n-1)+i, 1 \leq i \leq n$ and $2 \leq j \leq m$.
The labels of the edges are,
For $1 \leq j \leq m$,
$f_{1}\left(u_{\sigma_{j}(i), j} u_{\sigma_{j}(i+1), j}\right)= \begin{cases}n(2 j-2)+(2 i-1), & 1 \leq i \leq n-1 \\ n(2 j-2)+(n-1), & i=n\end{cases}$
For $2 \leq j \leq m-1$,
$f_{1}\left(u_{\sigma_{j}(i), j} u_{\sigma_{j}(i), j+1}\right)=f\left(u_{\sigma_{j}(i), j}\right) f\left(u_{\sigma_{j}(i), j+1}\right)=f\left(u_{\sigma_{j}(i), j}\right) f\left(u_{\sigma_{j+1}(i+1), j+1}\right)$ by the definition of σ_{j}.
Therefore, $f_{1}\left(u_{\sigma_{j}(i), j} u_{\sigma_{j}(i), j+1}\right)= \begin{cases}n(2 j-1)+(2 i-1), & 1 \leq i \leq n-1 \\ n(2 j-1)+(n-1), & i=n\end{cases}$
Let $E_{1}=\left\{f_{1}\left(u_{\sigma_{j}(i), j} u_{\sigma_{j}(i+1), j}\right): 1 \leq i \leq n-1\right.$ and $\left.1 \leq j \leq m\right\} \cup\left\{f_{1}\left(u_{\sigma_{j}(n), j} u_{\sigma_{j}(1), j}\right): 1 \leq j \leq m\right\}$ and $E_{2}=\left\{f_{1}\left(u_{i, 1} u_{i, 2}\right): 1 \leq i \leq n\right\} \cup\left\{f_{1}\left(u_{\sigma_{j}(i), j} u_{\sigma_{j}(i), j+1}\right): 1 \leq i \leq n-1\right.$ and $\left.2 \leq j \leq m-1\right\}$.

The labels of the edges in E_{1} are,
$f_{1}\left(E_{1}\right)=\{1,3,5,7,9, \ldots, 2(n-1)-1, n-1,2 n+1,2 n+3, \ldots, 2 n+2(n-1)-1,2 n+n-1, \ldots$, $2 n(m-1)+1,2 n(m-1)+3, \ldots, 2 n(m-1)+2(n-2)-1,2 n(m-1)+2(n-1)-1,2 n(m-1)+(n-$ 1) $\}$.

That is, $f_{1}\left(E_{1}\right)=\{1,3,5,7,9, \ldots, 2 n-3, n-1,2 n+1,2 n+3, \ldots, 3 n-1, \ldots, 4 n-3, \ldots, 2 m n-$ $2 n+1,2 m n-2 n+3, \ldots, 2 m n-5,2 m n-3,2 m n-n-1\}$.

The labels of the edges in E_{2} are,
$f_{1}\left(E_{2}\right)=\{8,10,12,14,16, \ldots, 2(n-1)+6,2 n-1,3 n+1,3 n+3, \ldots, 3 n+2(n-1)-1,3 n+n-$ $1, \ldots, n(2(m-1)-1)+1, n(2(m-1)-1)+2(n-2)-1, n(2(m-1)-1)+2(n-1)-1, n(2(m-1)-$ $1)+(n-1)\}=\{8,10,12,14,16, \ldots, 2 n-1,2 n+4,3 n+1,3 n+3, \ldots, 4 n-1, \ldots, 5 n-3,2 m n$ $-3 n+1,2 m n-3 n+3, \ldots, 2 m n-n-5,2 m n-n-3,2 m n-2 n-1\}$.
$f_{l}\left(E_{1}\right) \cup f_{1}\left(E_{2}\right)=\{1,3,7,8,9,10, \ldots, 2 n-3,2 n-2,2 n-1,2 n, 2 n+1,2 n+2,2 n+3,2 n+4, \ldots$, $3 n-1,3 n, 3 n+1,3 n+2, \ldots, 4 n-3,4 n-2,4 n-1, \ldots, 2 m n-3 n+1,2 m n-3 n+2,2 m n-3 n+3$,
$\ldots, 2 m n-2 n-1,2 m n-2 n, 2 m n-2 n+1 \ldots, 2 m n-n-3,2 m n-n-2,2 m n-n-1,2 m n-n, 2 m n-$ $5,2 m n-3\}$.

After taking $(\bmod q), f^{*}(E(G))=f_{1}(E(G))(\bmod q)=\{1,2,3, \ldots, n-3, n-2, n-1, n, n+1, n+2$, $\ldots, 2 n-1,2 n, 2 n+1,2 n+3, \ldots, 3 n-1,3 n, 3 n+1, \ldots, 4 n-2,4 n-1, n(2 m-3)+1, n(2 m-3)$ $+2, \ldots, 2 n(m-1), 2 n(m-1)+1, \ldots, n(2 m-1)-1, n(2 m-1)\}$.

Hence, $C_{n} \times P_{m}$ is a felicitous graph for $m \geq 1 n \geq 5$ and $n \equiv 1(\bmod 2)$.
Example 3.9. A felicitous labeling of $C_{3} \times P_{4}$ is shown in Figure 3.

Figure 3: A felicitous labeling of $C_{3} \times P_{4}$.

Example 3.10. A felicitous labeling of $C_{7} \times P_{4}$ is shown in Figure 4.

Figure 4: A felicitous labeling of $C_{7} \times P_{4}$.

References

[1] R. Balakrishnan, A. Selvam and V. Yegnanarayanan, On felicitous labelings of graphs, Proceedings of the National Workshop on Graph Theory and its Applications, Manonmaniam

Sundaranar University, Tirunelveli, (1996), 47-61.
[2] J.A. Bondy and U.S.R. Murty, Graph theory with applications, Macmillan Co., New York(1976).
[3] J.A. Gallian, A Dynamic Survey of Graph Labeling, The Electronic Journal of Combinatorics, 6 (2001), \# DS 6.
[4] K.M. Kathiresan, Two classes of Graceful Graphs, Ars Combin. 55 (2000), 129-132.
[5] K.M. Kathiresan and R.Ganesan, Alabeling problem on the plane graph $P_{\text {a.b }}$, Ars. Combin. 73 (2004), 143-151.
[6] K.M. Kathiresan and R. Ganesan, d-antimagic labeling of the plane graphs $P_{a}{ }^{b}$, J. Combin, Comput., 52(2005), 89 - 96.
[7] S.M. Lee, E. Schmeichel and S.C. Shee, On felicitous graphs, Discrete Math., 93(1991), 201-209.
[8] C. Sekar, Gracefulness of $P_{a, b}$, Ars. Combin., 72 (2004), 181-190.

