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Abstract 

In this research work, we present the derivation and implementation of an order six block 

integrator for the solution of first-order ordinary differential equations using interpolation and 

collocation procedures. The approximate solution used in this work is a combination of power 

series and exponential function. We further investigate the properties of the block integrator and 

found it to be zero-stable, consistent and convergent. The block integrator is further tested on some 

real-life numerical problems and found to be computationally reliable. 
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1  Introduction 

In recent times, the integration of Ordinary Differential Equations (ODEs) is carried out using some 

kinds of block methods. In this paper, we propose an order six block integrator for the solution of first-

order ODEs of the form: 

    (   )  ( )                   (1) 

where   is continuous within the interval of integration ,   -. We assume that   satisfies Lipchitz 

condition which guarantees the existence and uniqueness of solution of (1). The problem (1) occurs 

mainly in the study of dynamical systems and electrical networks. According to [7] and [14], equation 

(1) is used in simulating the growth of population, trajectory of a particle, simple harmonic motion, 

deflection of a beam and the like. It is also important to note that mixture models, SIR model and other 

similar models can be written in the form of equation (1). 

Development of Linear Multistep Methods (LMMs) for solving ODEs can be generated using 

methods such as Taylor’s series, numerical integration and collocation methods, which are restricted 

by an assumed order of convergence [10]. In this work, we follow suite from [13] by deriving an order 

six block integrator in a multistep collocation technique introduced in [15].   
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Block integrators for solving ODEs have been proposed by W. E. Milne[18] who used them as 

starting values for predictor-corrector algorithm, [8] developed Milne’s method in the form of implicit 

integrators and [12] also contributed greatly to the development and application of block integrators. 

Various authors [1], [3], [4], [5], [9], [11], [17] and [19] proposed LMMs to generate numerical 

solution to (1).  

They proposed integrators in which the approximate solution ranges from power series, 

Chebychev’s, Lagrange’s and Laguerre’s polynomials. The advantages of LMMs over single step 

methods have been extensively discussed in [2]. 

In this paper, we propose an order six block integrator, in which the approximate solution is the 

combination of power series and exponential function. This work is an improvement on [13]. 

2  Main Results 

To derive this integrator, interpolation and collocation procedures are used by choosing 

interpolation point  at a grid point and collocation points   at all points giving rise to         

system of equations whose coefficients are determined by using appropriate procedures. 

The approximate solution to (1) is taken to be a combination of power series and exponential 

function given by: 

                       ( )  ∑    
    ∑

    

  

 
   

 
         (2) 

with the first derivative given by: 

         ( )  ∑     
      ∑

      

(   ) 

 
   

 
         (3) 

where     
            ( )   and  ( ) is continuously differentiable. 

Let the solution of (1) be sought on the partition                            

      of the integration interval ,   -with a constant step-size    given by, 

                    .     

Then, substituting (3) in (1) gives: 

                      (   )  ∑     
      ∑

      

(   ) 

 
   

 
         (4) 

Now, interpolating (2) at point          and collocating (4) at points         ( ) , leads to the 

following system of equations:  

                                    (5) 

where     ,                    -
  ;  

    ,                              -
   

and 
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Solving (5), for   
      ( )   and substituting back into (2) gives a continuous linear multistep 

method of the form:  

                  ( )    ( )    ∑   ( ) 
              (6) 

where the coefficients of            are given by: 

0
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where    (    )  ⁄ . Evaluating (6) at    ( )   gives a block scheme of the form: 

                  ( )          (  )     (  )      (8) 

where 

   ,                        -
     

   ,                      - . 

 (  )  ,                        -
   

 (  )  ,                      -  
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The algorithm for implementing the block integrator (8) using Matlab is given by, 

function output   (   ) 

output=?; 

functionexactsol   ( ) 

exact sol=? 

                             

disp(‘x-value     Exact Solution     Computed Solution     Error ’) 

             

      

    (     )  

                 ( )          

                 ( )     (   )     (((   ) )  ))    (     ) 

                             (((   ) )  )     (     )    

    ( )     
                          

                        (  ( ( ))     )  

                        (                                      ( )   ( ( ))            ) 

                    ( )      ( )  
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           ( )              ( )      ( )        ( ) . 

3  Analysis of the basic properties of the order six block integrator 

3.1  Order of the new block integrator 

Let the linear operator   * ( )  +  associated with the block (8) be defined as: 

                 * ( )  +   ( )          (  )     (  )     (9) 

Expanding (9) using Taylor series and comparing the coefficients of    gives:  

 * ( )  +     ( )       ( )     
    ( )       

   ( )       
       ( )    (10) 

Definition  3.1.1. The linear operator   and the associated continuous linear multistep method (6) are 

said to be of order   if                                      is called the error constant 

and the local truncation error is given by: 

                                            
(   ) (   )(  )   (    )     (11) 

For our integrator, 
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Expanding (12) in Taylor series we get, 
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Hence, 

  ̅    ̅    ̅    ̅    ̅    ̅    ̅       

  ̅  ,     (   )      (   )      (   )      (   )      (   )- .  

Therefore, the new block integrator is of order six. 

3.2 Zero Stability 

Definition 3.2.1.The block integrator (8) is said to be zero-stable, if the roots               of the 

first characteristic polynomial  ( ) defined by  ( )      (  ( )   ) satisfies |  |     and every 

root satisfying |  |      has multiplicity not exceeding the order of the differential equation. 

Moreover, as    ,  ( )      (   )   where    is the order of the differential equation,   is the 

order of the matrices  ( )        (refer [3]).  

For the integrator, 
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      (14) 

 ( )    (   )                         Hence, the new block integrator is zero-

stable. 

3.3  Consistency 

The block integrator (8) is consistent since it has order         

3.4 Convergence 

The new block integrator is convergent by the consequence of Dahlquist theorem given below. 

Theorem 3.4.1. [6] 

The necessary and sufficient conditions that a continuous LMM be convergent are that it be consistent 

and zero-stable.  

3.5 Region of Absolute Stability 

Definition 3.5.1. The block integrator (8) is said to be absolutely stable if for a given   , all the roots 

    of the characteristic polynomial  (   ̅)   ( )   ̅ ( )    satisfies          s=1,2,…, 

n.where  ̅            
  

  
. 

We adopt the boundary locus method for the region of absolute stability of the block integrator. 

Substituting the test equation         into the block formula gives, 

 ( )  ( )     ( )       ( )       ( )      (15) 
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Thus, 

 ̅( )   (
 ( )  ( )    ( )

   ( )    ( )
)         (16) 

We write (16) in trigonometric ratios, 

 ̅( )   (
 ( )  ( )    ( )

   ( )    ( )
)         (17) 

where      . Equation (17) is our characteristic/stability polynomial. Applying (17) to our integrator 

gives, 
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which gives the stability region shown in Figure 1 below. 

 

 

 

 

 

 

 

 
 
 

 

 

Figure 1: Region of absolute stability of the order six block integrator. 

4  Numerical implementations 

We use the following notation in tables 1 and 2. 

ERR- |Exact Solution-Computed Result| 

We consider a very important model in the refinery. This model examines the effect of additive on 

gasoline. The problem is stated thus;  

Problem 4.1. (Mixture Model) In an oil refinery, a storage tank contains 2000 gal of gasoline that 

initially has 100lb of an additive dissolved in it. In the preparation for winter weather, gasoline 

containing 2lb of additive per gallon is pumped into the tank at a rate of 40 gal/min. The well-mixed 

solution is pumped out at a rate of 45 gal/min. Using a numerical integrator, how much of the additive 

is in the tank 0.1 min, 0.5 min and 1min after the pumping process begins?  

Let   be the amount (in pounds) of additive in the tank at time . We know that              . 

Thus, the IVP modeling the mixture process is, 

                                    
   

(       )
  ( )           (19) 

with the theoretical solution, 
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                                  ( )   (       )  
    

(    ) (       )      (20) 

Applying the block integrator (8) to Problem 4.1, we obtain the results in Table 1 at different values of 

time  . 

Problem 4.2. (SIR Model) The SIR model is an epidemiological model that computes the theoretical 

number of people infected with a contagious illness in a closed population over time. The name of this 

class of models derives from the fact that they involve coupled equations relating the number of 

susceptible people    ( ), number of people infected  ( ) and the number of people who have 

recovered  ( ). This is a good and simple model for many infectious diseases including measles, 

mumps and rubella [16]. It is given by the following three coupled equations, 

  

  
  (   )               (21) 

  

  
                     (22) 

  

  
                  (23) 

where             are positive parameters. Define    to be, 

                                  (24) 

and adding equations (21), (22) and (23), we obtain the following evolution equation for  , 

                      (   )         (25) 

Taking       and attaching an initial condition  ( )      (for a particular closed population), we 

obtain, 

                   ( )     (   )  ( )            (26) 

whose exact solution is, 

                 ( )                                                                                                                           (27) 

Applying the block integrator (8) to Problem 4.2, we obtain the results in Table 2 at different values of 

time    

Table 1: Performance of the Block Integrator (8) on Problem 4.1.
 

_________________________________________________________________________ 

                         Exact solution                          Computed solution                  ERR                 

---------------------------------------------------------------------------------------------------------------- 

0.1000         107.7662301168306800         107.7662301168309500        2.700062e-013        

0.2000         115.5149409193027200         115.5149409193028400        1.278977e-013        

0.3000         123.2461630508846600         123.2461630508845200        1.421085e-013        

0.4000         130.9599271090915000         130.9599271090910700        4.263256e-013        

0.5000         138.6562636455414600         138.6562636455413400        1.136868e-013        

0.6000         146.3352031660151600         146.3352031660153300        1.705303e-013        

0.7000         153.9967761305115300         153.9967761305114500        8.526513e-014        

0.8000         161.6410129533037400         161.6410129533038300        8.526513e-014        

0.9000         169.2679440029996800         169.2679440029996000        8.526513e-014        

1.0000         176.8775996025960900         176.8775996025958600        2.273737e-013       

------------------------------------------------------------------------------------------------------------------ 
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Table 2: Performance of the Block Integrator (8) on Problem 4.2. 

_________________________________________________________________________ 

                         Exact solution                      Computed solution                    ERR                 

---------------------------------------------------------------------------------------------------------------- 

0.1000         0.5243852877496430            0.5243852877552174             5.574430e-012 

0.2000         0.5475812909820202           0.5475812909859664            3.946177e-012 

0.3000         0.5696460117874711           0.5696460117956543            8.183232e-012 

0.4000         0.5906346234610092           0.5906346234953703            3.436118e-011 

0.5000         0.6105996084642975           0.6105996086572718            1.929743e-010 

0.6000         0.6295908896591411           0.6295908898470451            1.879040e-010 

0.7000         0.6476559551406433           0.6476559553183269            1.776835e-010 

0.8000         0.6648399769821803           0.6648399771546479            1.724676e-010 

0.9000         0.6811859241891134           0.6811859243738679            1.847545e-010 

1.0000         0.6967346701436833           0.6967346704442603            3.005770e-010 

---------------------------------------------------------------------------------------------------------------------- 
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