Certain conditions for norm-attainability of elementary operators and derivations

N. B. Okelo
School of Mathematics and Actuarial Science, Bondo University College, Box 210-40601, Bondo-KENYA. E-mail: bnyaare@yahoo.com
J. O. Agure, P. O. Oleche
Department of Mathematics, Applied Statistics and Actuarial Science, Maseno University, P.O Box 333, Maseno - KENYA.
E-mail: johnagure@yahoo.com, poleche@yahoo.com

Abstract

Let H be an infinite dimensional complex Hilbert space and $B(H)$ the algebra of all bounded linear operators on H. In this paper, we study norm-attainability for elementary operators and generalized derivations. We give results on necessary and sufficient conditions for norm-attainability.

Keywords: Elementary operators, denseness, norm-attainable operators
AMS Subject Classification(2010): Primary 47B47; Secondary 47A30.

1 Introduction

Let H be an infinite dimensional complex Hilbert space and $B(H)$ the C^{*}-algebra of all bounded linear operators on $H . \mathcal{T}: B(H) \rightarrow B(H) . \mathcal{T}$ is called an elementary operator if it is represented as $\mathcal{T}(X)=\sum_{i=1}^{n} S_{i} X T_{i}, \forall X \in B(H)$, where S_{i}, T_{i} are fixed in $B(H)$ or $\mathcal{M}(B(H))$ where $\mathcal{M}(B(H))$ is the multiplier algebra of $B(H)$. For $S, T \in B(H)$ we have the following elementary operators: (i) the left multiplication operator $L_{S}(X)=S X$, (ii) the right multiplication operator $R_{T}(X)=X T$, (iii) the inner derivation $\delta_{S}=S X-X S$, (iv) the generalized derivation $\delta_{S, T}=S X-X T$, (v) the basic elementary operator $M_{S, T}(X)=S X T$, (vi) the Jordan elementary operator and $\mathcal{U}_{S, T}(X)=$ $S X T+T X S, \forall X \in B(H)$. Stampfli [4] characterized the norm of the generalized derivation by obtaining $\left\|\delta_{S, T}\right\|=\inf _{\beta \in \mathbb{C}}\{\|S-\beta\|+\|T-\beta\|\}$, where \mathbb{C} is the complex plane. Further studies on derivations and elementary operators have been carried out in [2 and 3]. In this paper ,we prove that if δ_{S}^{N} is norm-attainable then the set $\{S: S \in B(H)\}$ is uniformly dense in $B(H)$. Also we prove that if $\delta_{S, T}^{N}, M_{S, T}^{N}$ and $\mathcal{U}_{S, T}^{N}$ are norm-attainable then the set $\{S, T: S, T \in B(H)\}$ is uniformly dense in $B(H) \times B(H)$.

2 Notations and Preliminaries

We denote by $S^{N}, \delta_{S}^{N}, \delta_{S, T}^{N}, M_{S, T}^{N}$ and $\mathcal{U}_{S, T}^{N}$ a linear bounded operator, inner derivation, generalized derivation, basic elementary operators and a Jordan elementary operator respectively that are norm-attainable. We note that for $S, V \in B(H), S$ is said to be positive if $\langle S x, x\rangle \geq 0, \forall x \in H$ and V an isometry(Co-isometry) if $V^{*} V=V V^{*}=I$ where I is an identity operator in $B(H)$. A subalgebra $\mathcal{M} \subset B(H)$ is a standard operator algebra on H if it contains $F(H)$ where $F(H)$ is the ideal of finite rank operators. Its clear that $F(H) \subset B(H)$. Moreover, \mathcal{M} is dense in $B(H)$ if $\overline{\mathcal{M}}=B(H)$, where $\overline{\mathcal{M}}$ is the closure of \mathcal{M}.

Definition 2.1. An operator $S \in B(H)$ is said to be norm-attainable if there exists a unit vector $x_{0} \in H$ such that $\left\|S x_{0}\right\|=\|S\|$.

Definition 2.2. For an operator $S \in B(H)$ we define:
(i) Numerical range by $W(S)=\{\langle S x, x\rangle: x \in H,\|x\|=1\}$,
(ii) Maximal numerical range by $W_{0}(S)=\left\{\beta \in \mathbb{C}:\left\langle S x_{n}, x_{n}\right\rangle \rightarrow \beta\right.$, where $\left\|x_{n}\right\|=1,\left\|S x_{n}\right\| \rightarrow$ $\|S\|\}$.

3 Main results

Lemma 3.1. Let $S \in B(H)$. δ_{S} is norm-attainable if there exists a vector $\zeta \in H$ such that $\|\zeta\|=$ $1, \quad\|S \zeta\|=\|S\|, \quad\langle S \zeta, \zeta\rangle=0$.

Proof. For any x satisfying $x \perp\{\zeta, S \zeta\}$, define X as follows $X: \zeta \rightarrow \zeta, \quad S \zeta \rightarrow-S \zeta, \quad x \rightarrow 0$, because $S \zeta \perp \zeta$. Since X is a bounded operator on H and $\|X \zeta\|=\|\zeta\|=1,\|S X \zeta-X S \zeta\|=$ $\|S \zeta-(-S \zeta)\|=2\|S \zeta\|=2\|S\|$. Since $\langle S \zeta, \zeta\rangle=0 \in W_{0}(S)$, it follows that $\left\|\delta_{S}\right\|=2\|S\|$ by $[4$, Theorem 1]. Hence, $\|S X-X S\|=2\|S\|=\left\|\delta_{S}\right\|$. Therefore, δ_{S} is norm-attainable.

Theorem 3.2. Let $S \in B(H), \beta \in W_{0}(S)$ and $\alpha>0$. There exists an operator $Z \in B(H)$ such that $\|S\|=\|Z\|$, with $\|S-Z\|<\alpha$. Furthermore, there exists a vector $\eta \in H,\|\eta\|=1$ such that $\|Z \eta\|=\|Z\|$ with $\langle Z \eta, \eta\rangle=\beta$.

Proof. Without loss of generality, we may assume that $\|S\|=1$. Let $x_{n} \in H(n=1,2, \ldots)$ be such that $\left\|x_{n}\right\|=1,\left\|S x_{n}\right\| \rightarrow 1$ and $\lim _{n \rightarrow \infty}\left\langle S x_{n}, x_{n}\right\rangle=\beta$.

Consider a partial isometry G and $L=\int_{0}^{1} \beta d E_{\beta}$, the spectral decomposition of L. Let $S=G L$, the polar decomposition of S. Since $\lim _{n \rightarrow \infty}\left\|S x_{n}\right\|=\|S\|=\|L\|=1$, we have that $\left\|L x_{n}\right\| \rightarrow 1$ as n tends to ∞ and $\lim _{n \rightarrow \infty}\left\langle S x_{n}, x_{n}\right\rangle=\lim _{n \rightarrow \infty}\left\langle G L x_{n}, x_{n}\right\rangle=\lim _{n \rightarrow \infty}\left\langle L x_{n}, G^{*} x_{n}\right\rangle$.

Now for $H=\overline{\operatorname{Ran}(L)} \oplus \operatorname{Ker} L$, we can choose x_{n} such that $x_{n} \in \overline{\operatorname{Ran}(L)}$ for large n. Indeed, let $x_{n}=x_{n}^{(1)} \oplus x_{n}^{(2)}, n=1,2, \ldots$ Then we have that $L x_{n}=L x_{n}^{(1)} \oplus L x_{n}^{(2)}=L x_{n}^{(1)}$ and that $\lim _{n \rightarrow \infty}\left\|x_{n}^{(1)}\right\|=1, \lim _{n \rightarrow \infty}\left\|x_{n}^{(2)}\right\|=0$, since $\lim _{n \rightarrow \infty}\left\|L x_{n}\right\|=1$.

Replacing x_{n} with $\frac{x_{n}^{(1)}}{\left\|x_{n}^{(1)}\right\|}$, we obtain $\lim _{n \rightarrow \infty}\left\|L \frac{1}{\left\|x_{n}^{(1)}\right\|} x_{n}^{(1)}\right\|=\lim _{n \rightarrow \infty}\left\|S \frac{1}{\left\|x_{n}^{(1)}\right\|} x_{n}^{(1)}\right\|=1$ and $\lim _{n \rightarrow \infty}\left(S \frac{1}{\left\|x_{n}^{(1)}\right\|} x_{n}^{(1)}, \frac{1}{\left\|x_{n}^{(1)}\right\|} x_{n}^{(1)}\right)=\beta$.

Now assume that $x_{n} \in \overline{\operatorname{RanL}}$. Since G is a partial isometry from $\overline{\operatorname{RanL}}$ onto $\overline{\operatorname{RanS}}$, we have $\left\|G x_{n}\right\|=1$ and $\lim _{n \rightarrow \infty}\left\langle L x_{n}, G^{*} x_{n}\right\rangle=\beta$. For L is a positive operator, $\|L\|=1$ and for any $x \in H$, $\langle L x, x\rangle \leq\langle x, x\rangle=\|x\|^{2}$.

Replacing x with $L^{\frac{1}{2}} x$, we get that $\left\langle L^{2} x, x\right\rangle \leq\langle L x, x\rangle$, where $L^{\frac{1}{2}}$ is the positive square root of L. Therefore we have $\|L x\|^{2}=\langle L x, L x\rangle \leq\langle L x, x\rangle$. It is obvious that $\lim _{n \rightarrow \infty}\left\|L x_{n}\right\|=1$ and that $\left\|L x_{n}\right\|^{2} \leq\left\langle L x_{n}, x_{n}\right\rangle \leq\left\|L x_{n}\right\|^{2}=1$. Hence, $\lim _{n \rightarrow \infty}\left\langle L x_{n}, x_{n}\right\rangle=1=\|L\|$.

Moreover, since $I-L \geq 0$, we have $\lim _{n \rightarrow \infty}\left\langle(I-L) x_{n}, x_{n}\right\rangle=0$. thus $\lim _{n \rightarrow \infty}\left\|(I-L)^{\frac{1}{2}} x_{n}\right\|=0$.

Indeed, $\lim _{n \rightarrow \infty}\left\|(I-L) x_{n}\right\| \leq \lim _{n \rightarrow \infty}\left\|(I-L)^{\frac{1}{2}}\right\| \cdot\left\|(I-L)^{\frac{1}{2}} x_{n}\right\|=0$.
For $\alpha>0$, let $\gamma=\left[0,1-\frac{\alpha}{2}\right]$ and let $\rho=\left[1-\frac{\alpha}{2}, 1\right]$. We have

$$
\begin{aligned}
L & =\int_{\gamma} \mu d E_{\mu}+\int_{\rho} \mu d E_{\mu} \\
& =\int_{0}^{1-\frac{\alpha}{2}} \mu d E_{\mu}+\int_{1-\frac{\alpha}{2}+0}^{1} \mu d E_{\mu} \\
& =L E(\gamma) \oplus L E(\rho)
\end{aligned}
$$

Next we show that $\lim _{n \rightarrow \infty}\left\|E(\gamma) x_{n}\right\|=0$. If there exists a subsequence $x_{n_{i}},(i=1,2, \ldots$,$) such that$
 that,

$$
\begin{aligned}
\lim _{i \rightarrow \infty}\left\|x_{n_{i}}-L x_{n_{i}}\right\| & =\lim _{i \rightarrow \infty}\left(\left\|E(\gamma) x_{n_{i}}-L E(\gamma) x_{n_{i}}\right\|^{2}+\left\|E(\rho) x_{n_{i}}-L E(\rho) x_{n_{i}}\right\|^{2}\right) \\
& =0
\end{aligned}
$$

Hence, we have $\lim _{i \rightarrow \infty}(\| E \gamma) x_{n_{i}}-L E(\gamma) x_{n_{i}} \|^{2}=0$.
Now it is clear that,

$$
\begin{aligned}
\| E \gamma) x_{n_{i}}-L E(\gamma) x_{n_{i}} \| & \left.\geq \| E \gamma) x_{n_{i}}\|-\| L E(\gamma)\|\cdot\| E \gamma\right) x_{n_{i}} \| \\
& \geq(I-\|L E(\gamma)\|) \cdot \| E \gamma) x_{n_{i}} \| \\
& \geq \frac{\alpha}{2} \epsilon \\
& >0
\end{aligned}
$$

This is a contradiction. Therefore, $\lim _{n \rightarrow \infty}\left\|E(\gamma) x_{n}\right\|=0$.
Since $\lim _{n \rightarrow \infty}\left\langle L x_{n}, x_{n}\right\rangle=1$, we have $\lim _{n \rightarrow \infty}\left\langle L E(\rho) x_{n}, E(\rho) x_{n}\right\rangle=1$ and $\lim _{n \rightarrow \infty}\left\langle E(\rho) x_{n}, G^{*} E(\rho) x_{n}\right\rangle=\beta$.

It can be easily verified that $\lim _{n \rightarrow \infty}\left\|E(\rho) x_{n}\right\|=1, \lim _{n \rightarrow \infty}\left(L \frac{E(\rho) x_{n}}{\left\|E(\rho) x_{n}\right\|}, \frac{E(\rho) x_{n}}{\left\|E(\rho) x_{n}\right\|}\right)=1$ and $\lim _{n \rightarrow \infty}\left(L \frac{E(\rho) x_{n}}{\left\|E(\rho) x_{n}\right\|}, G^{*} \frac{E(\rho) x_{n}}{\left\|E(\rho) x_{n}\right\|}\right)=\beta$.

Replacing x with $\frac{E(\rho) x_{n}}{\left\|E(\rho) x_{n}\right\|}$, we assume that $x_{n} \in E(\rho) H$ for each n and $\left\|x_{n}\right\|=1$.
Let

$$
\begin{aligned}
J & =\int_{\gamma} \mu d E_{\mu}+\int_{\rho} \mu d E_{\mu} \\
& =\int_{0}^{1-\frac{\alpha}{2}} \mu d E_{\mu}+\int_{1-\frac{\alpha}{2}+0}^{1} \mu d E_{\mu} \\
& =J_{1} \oplus E(\rho)
\end{aligned}
$$

Then it is evident that, $\|J\|=\|S\|=\|L\|=1, J x_{n}=x_{n}$, and $\|J-L\|<\frac{\alpha}{2}$.
If we can find a contraction V such that $V-G<\frac{\alpha}{2}$ and $\left\|V x_{n}\right\|=1$ for a large $n,\left\langle V x_{n}, x_{n}\right\rangle=\beta$,
$Z=V J$, we have $\left\|Z x_{n}\right\|=\left\|V J x_{n}\right\|=1,\left\langle Z x_{n}, x_{n}\right\rangle=\left\langle V J x_{n}, x_{n}\right\rangle=\left\langle V x_{n}, x_{n}\right\rangle=\beta$ and

$$
\begin{aligned}
\|S-Z\| & =\|G L-V J\| \\
& \leq\|G L-G J\|+\|G J-V J\| \\
& \leq\|G\| \cdot\|L-J\|+\|G-V\| \cdot\|J\| \\
& \leq \frac{\alpha}{2}+\frac{\alpha}{2} \\
& =\alpha .
\end{aligned}
$$

To complete the proof, we construct the desired contraction V. Clearly, $\lim _{n \rightarrow \infty}\left\langle x_{n}, G^{*} x_{n}\right\rangle=\beta$, as $\lim _{n \rightarrow \infty}\left\langle L x_{n}, G^{*} x_{n}\right\rangle=\beta$ and $\lim _{n \rightarrow \infty}\left\|x_{n}-L x_{n}\right\|=0$. Let $G x_{n}=\phi_{n} x_{n}+\varphi_{n} y_{n}, \quad\left(y_{n} \perp x_{n},\left\|y_{n}\right\|=1\right)$ then $\lim _{n \rightarrow \infty} \phi_{n}=\beta$, since $\lim _{n \rightarrow \infty}\left\langle G x_{n}, x_{n}\right\rangle=\lim _{n \rightarrow \infty}\left\langle x_{n}, G^{*} x_{n}\right\rangle=\beta$. Also $\left\|G x_{n}\right\|^{2}=\left|\phi_{n}\right|^{2}+\left|\varphi_{n}\right|^{2}=1$, implies that $\lim _{n \rightarrow \infty}\left|\varphi_{n}\right|=\sqrt{1-|\beta|^{2}}$. Now for $\alpha>0$, there exists an integer M such that $\left|\phi_{M}-\beta\right|<\frac{\alpha}{8}$. Choose φ_{M}^{0} such that $\left|\varphi_{M}^{0}\right|=\left.\sqrt{1-\mid \beta}\right|^{2},\left|\varphi_{M}-\varphi_{M}^{0}\right|<\frac{\alpha}{8}$.

Now we have,

$$
\begin{aligned}
G x_{M} & =\phi_{M} x_{M}+\varphi_{M} y_{M}-\beta x_{M}+\beta x_{M}-\varphi_{M}^{0} y_{M}+\varphi_{M}^{0} y_{M} \\
& =(\phi-\beta) x_{M}+\left(\varphi_{M}-\varphi_{M}^{0}\right) y_{M}+\beta x_{M}+\varphi_{M}^{0} y_{M} .
\end{aligned}
$$

Let $q_{M}=\beta x_{M}+\varphi_{M}^{0} y_{M}$. Then, $G x_{M}=(\phi-\beta) x_{M}+\left(\varphi_{M}-\varphi_{M}^{0}\right) y_{M}+q_{M}$. Suppose that $y \perp x_{M}$, then

$$
\begin{aligned}
\left\langle G x_{M}, G y\right\rangle & =(\phi-\beta)\left\langle x_{M}, G y\right\rangle+\left(\varphi_{M}-\varphi_{M}^{0}\right)\left\langle y_{M}, G y\right\rangle+\left\langle q_{M}, G y\right\rangle \\
& =0,
\end{aligned}
$$

since $G^{*} G$ is a projection from H to RanL.
It follows that, $\left|\left\langle q_{M}, G y\right\rangle\right| \leq\left|\phi_{M}-\beta\right| \cdot\|y\|+\left|\varphi_{M}-\varphi_{M}^{0}\right| \cdot\|y\| \leq \frac{\alpha}{4}\|y\|$. If we suppose that $G y=\phi q_{M}+y^{0},\left(y^{0} \perp q_{M},\right)$ then y^{0} is uniquely determined by y. Hence we define V as follows:

$$
V: x_{M} \rightarrow q_{M}, y \rightarrow y^{0}, \phi x_{M}+\varphi_{M} y \rightarrow \phi q_{M}+\varphi_{M} y^{0},
$$

with both ϕ, φ being complex numbers. V is a linear operator. We prove that V is a contraction. Now,

$$
\begin{gathered}
\left\|V x_{M}\right\|^{2}=\left\|q_{M}\right\|^{2}=|\beta|^{2}=\left|\varphi_{M}^{0}\right|^{2}=1, \\
\|V y\|^{2}=\|G y\|^{2}-|\phi y|^{2} \leq\|G y\|^{2} \leq\|y\|^{2} .
\end{gathered}
$$

It follows that, $\|V \phi\|^{2}=\|\phi\|^{2}\left\|V x_{M}\right\|^{2}+|\varphi|^{2}\|V y\|^{2} \leq|\phi|^{2}+|\varphi|^{2}=1$, for each $x \in H$ satisfying $x=\phi x_{M}+\varphi_{M} y, \quad\|x\|=1, x_{M} \perp y$, which is equivalent to that V is a contraction. From the definition of V, we show that $\left\|G x_{M}-V x_{M}\right\|^{2}=|\phi-\beta|^{2}+\left|\varphi_{M}-\varphi_{M}^{0}\right|^{2} \leq \frac{2 \alpha^{2}}{16}=\frac{1}{8} \alpha^{2}$. If $y \perp x_{M},\|y\| \leq 1$ then we have, $\|G y-V y\|=|\phi|\left\|V x_{M}\right\|=\left|\left\langle G y, V x_{M}\right\rangle\right|=\left|\left\langle q_{M}, G y\right\rangle\right|<\frac{\alpha}{4}$.

Hence for any $x \in H, x=\phi x_{M}+\varphi_{M} y, \quad\|x\|=1$,

$$
\begin{aligned}
\|G x-V x\|^{2} & =\left\|\phi(G-V) x_{M}+\varphi(G-V) y\right\|^{2} \\
& =|\phi|^{2}\left\|(G-V) x_{M}\right\|^{2}+|\varphi|^{2}\|(G-V) y\|^{2} \\
& <|\phi|^{2} \cdot \frac{\alpha^{2}}{16}+|\varphi|^{2} \cdot \frac{\alpha^{2}}{16} \\
& <\frac{\alpha^{2}}{8}
\end{aligned}
$$

which implies that $\|(G-V) x\|<\frac{\alpha}{2}, \quad\|x\|=1$, and hence $\|(G-V)\|<\frac{\alpha}{2}$. Let $Z=V J$. Then Z is the required operator and this completes the proof.

Theorem 3.3. The set of operators $S \in B(H)$ implementing a norm-attainable inner derivation, δ_{S}^{N}, is uniformly dense in $B(H)$.

Proof. Let $\alpha>0$ and $S \in B(H)$. It is clear that $\delta_{S}^{N}=\delta_{S-\beta}^{N}$ for any $\beta \in \mathbb{C}$. From [4], there is a $\beta \in \mathbb{C}$ such that $0 \in W_{0}(S-\beta)$ and $\left\|\delta_{S}^{N}\right\|=\left\|\delta_{S-\beta}^{N}\right\|=2\|S-\beta\|$. From Theorem 3.2, there exists an operator $Z \in B(H)$ such that $\|S-\beta\|=\|Z\|, \quad\|S-\beta-Z\|<\alpha$ and there exists a vector $\eta \in H$ such that $\|Z \eta\|=\|Z\|, \quad\langle Z \eta, \eta\rangle=0$. By Lemma 3.1, δ_{Z}^{N} is norm-attainable which is equivalent to that $\delta_{Z+\beta}^{N}$ is norm-attainable and implies that $\|S-(Z+\beta)\|=\|S-\beta-Z\|=2\|S-\beta\|<\alpha$.

Theorem 3.4. Let $S, T \in B(H)$ If there exists vectors $\zeta, \eta \in H$ such that $\|\zeta\|=\|\eta\|=1, \quad\|S \zeta\|=$ $\|S\|,\|T \eta\|=\|T\|$ and $\frac{1}{\|S\|}\langle S \zeta, \zeta\rangle=-\frac{1}{\|T\|}\langle T \eta, \eta\rangle$, then $\delta_{S, T}^{N}$ is norm-attainable.

Proof. By linear dependence of vectors, if η and $T \eta$ are linearly dependent, that is, $T \eta=\phi\|T\| \eta$, then it is true that $|\phi|=1$ and $|\langle T \eta, \eta\rangle|=\|T\|$. It follows that $|\langle S \zeta, \zeta\rangle|=\|S\|$ which implies $S \zeta=\varphi\|S\| \zeta$ and $|\varphi|=1$. Hence $\left\langle\frac{S \zeta}{\|S\|}, \zeta\right\rangle=\varphi=-\left\langle\frac{T \eta}{\|T\|}, \eta\right\rangle=-\phi$. Defining X as $X: \eta \rightarrow \zeta, \quad\{\zeta\}^{\perp} \rightarrow 0$, we have $\|X\|=1$ and $(S X-X T) \eta=\varphi(\|S\|+\|T\|) \zeta$, which implies

$$
\|S X-X T\|=\|(S X-X T) \eta\|=\|S\|+\|T\|
$$

By [4], it follows that $\|S X-X T\|=\|S\|+\|T\|=\left\|\delta_{S, T}^{N}\right\|$.
That is, $\delta_{S, T}^{N}$ is norm-attainable. If η and $T \eta$ are linearly independent, then $\left|\left\langle\frac{T \eta}{\|T\|}, \eta\right\rangle\right|<1$, which implies $\left|\left\langle\frac{S \zeta}{\|S\|}, \zeta\right\rangle\right|<1$. Hence ζ and $S \zeta$ are also linearly independent. Let us redefine X as follows: $X: \eta \rightarrow \zeta, \quad \frac{T \eta}{\|T\|} \rightarrow-\frac{S \zeta}{\|S\|}, \quad x \rightarrow 0$, where $x \in\{\eta, T \eta\}^{\perp}$. We show that X is a partial isometry. Let $\frac{T \eta}{\|T\|}=\left\langle\frac{T \eta}{\|T\|}, \eta\right\rangle \eta+\tau h, \quad\|h\|=1, \quad h \perp \eta$. Since η and $T \eta$ are linearly independent, $\tau \neq 0$. So we have, $X \frac{T \eta}{\|T\|}=\left\langle\frac{T \eta}{\|T\|}, \eta\right\rangle X \eta+\tau X h=-\left\langle\frac{S \zeta}{\|S\|}, \zeta\right\rangle \zeta+\tau X h$, which implies $\left\langle X \frac{T \eta}{\|T\|}, \zeta\right\rangle=$ $-\left\langle\frac{S \zeta}{\|S\|}, \zeta\right\rangle+\tau\langle X h, \zeta\rangle=-\left\langle\frac{S \zeta}{\|S\|}, \zeta\right\rangle$.
Thn it follows that $\langle X h, \zeta\rangle=0$. That is, $X h \perp \zeta(\zeta=X \eta)$. Hence we have

$$
\left\|\left\langle\frac{S \zeta}{\|S\|}, \zeta\right\rangle \zeta\right\|^{2}+\|\tau X h\|^{2}=\left\|X \frac{T \eta}{\|T\|}\right\|^{2}=\left|\left\langle\frac{T \eta}{\|T\|}, \eta\right\rangle\right|^{2}+|\tau|^{2}=1
$$

which implies $\|X h\|=1$. Now it is evident that X a partial isometry and $\|(S X-X T) \zeta\|=\| S X-$ $X T\|=\| S\|+\| T \|$, which is equivalent to $\left\|\delta_{S, T}^{N}(X)\right\|=\|S\|+\|T\|$. By $[4],\left\|\delta_{S, T}^{N}\right\|=\|S\|+\|T\|$. Hence, $\delta_{S, T}^{N}$ is norm-attainable.

Lemma 3.5. The set of operators $S, T \in B(H)$ which are implementing a norm-attainable generalized derivation, $\delta_{S, T}^{N}$, is uniformly dense in $B(H) \times B(H)$.

Proof. Suppose either S or T is a scalar operator, say $T=\kappa I$, for some scalar κ, then $\delta_{S, T}^{N}(X)=S X-$ $X \kappa I$. Clearly, $\left\|\delta_{S, T}^{N}\right\|=\|S-\kappa\|$. From Theorem 3.2, for $\alpha>0$, there exists an operator $C \in B(H)$ and a vector $\zeta \in H$ such that $\|C \zeta\|=\|C\|$ and $\|S-\kappa-C\|<\alpha$. Let $Z=C+\kappa I, T_{0}=\kappa I$. Therefore, we have that $\delta_{Z, T_{0}}^{N}(X)=C X, \forall X \in B(H)$. Let P be the projection on $\{\zeta\}$. Then $\left\|\delta_{Z, T_{0}}^{N}(P)\right\|=\|P\|$, which implies that $\delta_{Z, T_{0}}^{N}$ is norm-attainable and $\left\|\langle S, T\rangle-\left\langle Z-T_{0}\right\rangle\right\|<\alpha$. Suppose neither S nor T is a scalar operator, then there is a complex number β such that $\left\|\delta_{S, T}^{N}\right\|=\|S-\beta\|+\|T-\beta\|$ and $W_{0}\left(\frac{S-\beta}{\|S-\beta\|}\right) \cap W_{0}\left(\frac{T-\beta}{\|T-\beta\|}\right)$ is nonempty. Let $\nu \in W_{0}\left(\frac{S-\beta}{\|S-\beta\|}\right) \cap W_{0}\left(\frac{T-\beta}{\|T-\beta\|}\right)$. Then for $\alpha>0$, from Theorem 3.2, there exists Z and T_{0} and $\zeta, \eta \in H$ such that $\|Z\|=\left\|T_{0}\right\|=1, \quad\|\zeta\|=\|\eta\|=$ 1, $\left\|\frac{S-\beta}{\|S-\beta\|}-Z\right\|<\frac{\alpha}{2}\left(\left\|\delta_{S, T}^{N}\right\|+1\right)$ and $\left\|\frac{T-\beta}{\|T-\beta\|}-T_{0}\right\|<\frac{\alpha}{2}\left(\left\|\delta_{S, T}^{N}\right\|+1\right)$, with

$$
\|Z \zeta\|=\|Z\|, \quad\left\|T_{0} \eta\right\|=\left\|T_{0}\right\|, \quad\langle Z \zeta, \zeta\rangle=\nu, \quad\left\langle T_{0} \eta, \eta\right\rangle=-\nu
$$

Let $Z_{0}=\|S-\beta\| Z, \quad T_{00}=\|T-\beta\| T_{0}$. Then $\left\langle\frac{Z_{0} \zeta}{\left\|Z_{0}\right\|}, \zeta\right\rangle=\nu=-\left\langle\frac{T_{00} \eta}{\left\|T_{00}\right\|}, \eta\right\rangle$. By Theorem 3.4, $\delta_{Z_{0}, T_{00}}^{N}$ is norm-attainable. But we have $\left\|S-\beta-Z_{0}\right\|<\frac{\alpha}{2}$ and $\left\|T-\beta-T_{00}\right\|<\frac{\alpha}{2}$. Hence, $\left\|\langle S, T\rangle-\left\langle Z_{0}+\beta, T_{00}+\beta\right\rangle\right\|<\alpha$, and $\delta_{\left\langle Z_{0}+\beta, T_{00}+\beta\right\rangle}^{N}$ is norm-attainable.

Theorem 3.6. Let $S, T \in B(H)$. If both S and T are norm-attainable then the basic elementary operator $M_{S, T}^{N}$ is also norm-attainable.

Proof. For any $\mathrm{p} S, T \in B(H),\left\|M_{S, T}^{N}\right\|=\|S\|\|T\|$. We assume that $\|S\|=\|T\|=1$. If both S and T are norm-attainable, then there exists unit vectors ζ and η with $\|S \zeta\|=\|T \eta\|=1$. Therefore, define an operator X by $X=\langle\cdot, T \eta\rangle \zeta$. Clearly, $\|X\|=1$. Therefore, we have $\|S X T\| \geq\|S X T \eta\|=$ $\left\|\|T \eta\|^{2} S \zeta\right\|=1$. Hence, $\left\|M_{S, T}^{N}(X)\right\|=\|S X T\|=1$, that is $M_{S, T}^{N}$ is also norm-attainable.

Theorem 3.7. Let $S, T \in B(H)$ If both S and T are norm-attainable then the Jordan elementary operator $\mathcal{U}_{S, T}^{N}$ is also norm-attainable.

Proof. The proof is analogous to that of the previous Lemma.

As a remark, we give the following generalization on norm-attainable general elementary operator. An operator $\mathcal{T}_{\tilde{S}, \tilde{T}}(X)=\sum_{i=1}^{n} S_{i} X T_{i}$, is said to be norm-attainable if there is a contraction X in the unit ball, $(B(H))_{1}$, such that $\left\|\mathcal{T}_{\tilde{S}, \tilde{T}}(X)\right\|=\left\|\mathcal{T}_{\tilde{S}, \tilde{T}}\right\|$, where $\tilde{S}=\left(S_{1}, \ldots, S_{n}\right)$ and $\tilde{T}=\left(T_{1}, \ldots, T_{n}\right)$ are n-tuples in $B(H)$.

Acknowledgement

The first author is grateful to National Council for Science and Technology (NCST) of Kenya for funding this research and DAAD- Germany.

References

[1] P. R. Halmos, A Hilbert space problem book, second ed., Springer-Verlag, Berlin, 1982.
[2] N. B. Okelo, J.O. Agure and D. O. Ambogo, Norms of elementary operators and characterization of norm - attainable operators, Int. Journal of Math. Analysis, 24(2010), 687-693.
[3] A. Seddik, On the numerical range and norm of elementary operators, Linear Multilinear Algebra 52 (2004), 293-302.
[4] J. G Stampfli, The norm of a derivation, Pacific journal of mathematics, Vol. 33, 3 (1970), 737-747.

