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Abstract

Let H be an infinite dimensional complex Hilbert space andB(H) the algebra of all bounded

linear operators onH. In this paper, we study norm-attainability for elementary operators and gen-

eralized derivations. We give results on necessary and sufficient conditions for norm-attainability.
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1 Introduction

Let H be an infinite dimensional complex Hilbert space andB(H) theC∗-algebra of all bounded

linear operators onH. T : B(H) → B(H). T is called an elementary operator if it is represented as

T (X) =
∑n

i=1 SiXTi, ∀ X ∈ B(H), whereSi, Ti are fixed inB(H) orM(B(H)) whereM(B(H))
is the multiplier algebra ofB(H). For S, T ∈ B(H) we have the following elementary operators: (i)

the left multiplication operatorLS(X) = SX, (ii) the right multiplication operatorRT (X) = XT,

(iii) the inner derivationδS = SX − XS, (iv) the generalized derivationδS,T = SX − XT, (v) the

basic elementary operatorMS, T (X) = SXT, (vi) the Jordan elementary operator andUS, T (X) =
SXT + TXS, ∀ X ∈ B(H). Stampfli [4] characterized the norm of the generalized derivation by

obtaining‖δS,T ‖ = infβ∈C{‖S − β‖ + ‖T − β‖}, whereC is the complex plane. Further studies on

derivations and elementary operators have been carried out in [2 and 3]. In this paper ,we prove that if

δN
S is norm-attainable then the set{S : S ∈ B(H)} is uniformly dense inB(H). Also we prove that

if δN
S,T , MN

S,T andUN
S, T are norm-attainable then the set{S, T : S, T ∈ B(H)} is uniformly dense in

B(H)×B(H).

2 Notations and Preliminaries

We denote bySN , δN
S , δN

S,T , MN
S,T andUN

S, T a linear bounded operator, inner derivation, gener-

alized derivation , basic elementary operators and a Jordan elementary operator respectively that are

norm-attainable. We note that forS, V ∈ B(H), S is said to be positive if〈Sx, x〉 ≥ 0, ∀ x ∈ H and

V an isometry(Co-isometry) ifV ∗V = V V ∗ = I whereI is an identity operator inB(H). A subalgebra

M ⊂ B(H) is a standard operator algebra onH if it containsF (H) whereF (H) is the ideal of finite

rank operators. Its clear thatF (H) ⊂ B(H). Moreover,M is dense inB(H) if M = B(H), where

M is the closure ofM.

53



54 N. B. Okelo, J. O. Agure and P. O. Oleche

Definition 2.1. An operatorS ∈ B(H) is said to be norm-attainable if there exists a unit vectorx0 ∈ H

such that‖Sx0‖ = ‖S‖.

Definition 2.2. For an operatorS ∈ B(H) we define:

(i) Numerical range byW (S) = {〈Sx, x〉 : x ∈ H, ‖x‖ = 1},

(ii) Maximal numerical range byW0(S) = {β ∈ C : 〈Sxn, xn〉 → β, where ‖xn‖ = 1, ‖Sxn‖ →
‖S‖}.

3 Main results

Lemma 3.1.Let S ∈ B(H). δS is norm-attainable if there exists a vector ζ ∈ H such that ‖ζ‖ =
1, ‖Sζ‖ = ‖S‖, 〈Sζ, ζ〉 = 0.

Proof. For anyx satisfyingx⊥{ζ, Sζ}, defineX as followsX : ζ → ζ, Sζ → −Sζ, x → 0,

becauseSζ⊥ζ. SinceX is a bounded operator onH and ‖Xζ‖ = ‖ζ‖ = 1, ‖SXζ − XSζ‖ =
‖Sζ − (−Sζ)‖ = 2‖Sζ‖ = 2‖S‖. Since〈Sζ, ζ〉 = 0 ∈ W0(S), it follows that‖δS‖ = 2‖S‖ by [4,

Theorem 1]. Hence,‖SX −XS‖ = 2‖S‖ = ‖δS‖. Therefore,δS is norm-attainable.

Theorem 3.2.Let S ∈ B(H), β ∈ W0(S) and α > 0. There exists an operator Z ∈ B(H) such

that ‖S‖ = ‖Z‖, with ‖S − Z‖ < α. Furthermore, there exists a vector η ∈ H, ‖η‖ = 1 such that

‖Zη‖ = ‖Z‖ with 〈Zη, η〉 = β.

Proof. Without loss of generality, we may assume that‖S‖ = 1. Let xn ∈ H (n = 1, 2, ...) be such

that‖xn‖ = 1, ‖Sxn‖ → 1 and lim
n→∞

〈Sxn, xn〉 = β.

Consider a partial isometryG andL =
∫ 1
0 βdEβ , the spectral decomposition ofL. Let S = GL, the

polar decomposition ofS. Since lim
n→∞

‖Sxn‖ = ‖S‖ = ‖L‖ = 1, we have that‖Lxn‖ → 1 asn tends

to∞ and lim
n→∞

〈Sxn, xn〉 = lim
n→∞

〈GLxn, xn〉 = lim
n→∞

〈Lxn, G∗xn〉.

Now for H = Ran(L) ⊕ KerL, we can choosexn such thatxn ∈ Ran(L) for largen. Indeed,

let xn = x
(1)
n ⊕ x

(2)
n , n = 1, 2, ... Then we have thatLxn = Lx

(1)
n ⊕ Lx

(2)
n = Lx

(1)
n and that

lim
n→∞

‖x(1)
n ‖ = 1, lim

n→∞
‖x(2)

n ‖ = 0, since lim
n→∞

‖Lxn‖ = 1.

Replacingxn with x
(1)
n

‖x(1)
n ‖

, we obtain lim
n→∞

∥∥∥∥L 1

‖x(1)
n ‖

x
(1)
n

∥∥∥∥ = lim
n→∞

∥∥∥∥S 1

‖x(1)
n ‖

x
(1)
n

∥∥∥∥ = 1 and

lim
n→∞

(
S 1

‖x(1)
n ‖

x
(1)
n , 1

‖x(1)
n ‖

x
(1)
n

)
= β.

Now assume thatxn ∈ RanL. SinceG is a partial isometry fromRanL onto RanS, we have

‖Gxn‖ = 1 and lim
n→∞

〈Lxn, G∗xn〉 = β. For L is a positive operator,‖L‖ = 1 and for anyx ∈ H,

〈Lx, x〉 ≤ 〈x, x〉 = ‖x‖2.

Replacingx with L
1
2 x, we get that〈L2x, x〉 ≤ 〈Lx, x〉, whereL

1
2 is the positive square root of

L. Therefore we have‖Lx‖2 = 〈Lx, Lx〉 ≤ 〈Lx, x〉. It is obvious that lim
n→∞

‖Lxn‖ = 1 and that

‖Lxn‖2 ≤ 〈Lxn, xn〉 ≤ ‖Lxn‖2 = 1. Hence, lim
n→∞

〈Lxn, xn〉 = 1 = ‖L‖.

Moreover, sinceI − L ≥ 0, we have lim
n→∞

〈(I − L)xn, xn〉 = 0. thus lim
n→∞

‖(I − L)
1
2 xn‖ = 0.
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Indeed, lim
n→∞

‖(I − L)xn‖ ≤ lim
n→∞

‖(I − L)
1
2 ‖.‖(I − L)

1
2 xn‖ = 0.

Forα > 0, let γ = [0, 1− α
2 ] and letρ = [1− α

2 , 1]. We have

L =
∫

γ
µdEµ +

∫
ρ
µdEµ

=
∫ 1−α

2

0
µdEµ +

∫ 1

1−α
2
+0

µdEµ

= LE(γ)⊕ LE(ρ).

Next we show thatlim
n→∞

‖E(γ)xn‖ = 0. If there exists a subsequencexni , (i = 1, 2, ..., ) such that

‖E(γ)xni‖ ≥ ε > 0, (i = 1, 2, ..., ), then sincelim
i→∞

‖xni − Lxni‖ = lim
i→∞

(I − L)xni = 0, it follows

that,

lim
i→∞

‖xni − Lxni‖ = lim
i→∞

(‖E(γ)xni − LE(γ)xni‖2 + ‖E(ρ)xni − LE(ρ)xni‖2)

= 0.

Hence, we havelim
i→∞

(‖Eγ)xni − LE(γ)xni‖2 = 0.

Now it is clear that,

‖Eγ)xni − LE(γ)xni‖ ≥ ‖Eγ)xni‖ − ‖LE(γ)‖.‖Eγ)xni‖

≥ (I − ‖LE(γ)‖).‖Eγ)xni‖

≥ α

2
ε

> 0.

This is a contradiction. Therefore,lim
n→∞

‖E(γ)xn‖ = 0.

Since lim
n→∞

〈Lxn, xn〉 = 1, we have lim
n→∞

〈LE(ρ)xn, E(ρ)xn〉 = 1 and

lim
n→∞

〈E(ρ)xn, G∗E(ρ)xn〉 = β.

It can be easily verified thatlim
n→∞

‖E(ρ)xn‖ = 1, lim
n→∞

(
L E(ρ)xn

‖E(ρ)xn‖ ,
E(ρ)xn

‖E(ρ)xn‖

)
= 1 and

lim
n→∞

(
L E(ρ)xn

‖E(ρ)xn‖ , G
∗ E(ρ)xn

‖E(ρ)xn‖

)
= β.

Replacingx with E(ρ)xn

‖E(ρ)xn‖ , we assume thatxn ∈ E(ρ)H for eachn and‖xn‖ = 1.

Let

J =
∫

γ
µdEµ +

∫
ρ
µdEµ

=
∫ 1−α

2

0
µdEµ +

∫ 1

1−α
2
+0

µdEµ

= J1 ⊕ E(ρ).

Then it is evident that,‖J‖ = ‖S‖ = ‖L‖ = 1, Jxn = xn, and‖J − L‖ < α
2 .

If we can find a contractionV such thatV −G < α
2 and‖V xn‖ = 1 for a largen, 〈V xn, xn〉 = β,
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Z = V J , we have‖Zxn‖ = ‖V Jxn‖ = 1, 〈Zxn, xn〉 = 〈V Jxn, xn〉 = 〈V xn, xn〉 = β and

‖S − Z‖ = ‖GL− V J‖

≤ ‖GL−GJ‖+ ‖GJ − V J‖

≤ ‖G‖.‖L− J‖+ ‖G− V ‖.‖J‖

≤ α

2
+

α

2
= α.

To complete the proof, we construct the desired contractionV . Clearly, lim
n→∞

〈xn, G∗xn〉 = β, as

lim
n→∞

〈Lxn, G∗xn〉 = β and lim
n→∞

‖xn − Lxn‖ = 0. Let Gxn = φnxn + ϕnyn, (yn⊥xn, ‖yn‖ = 1)

then lim
n→∞

φn = β, since lim
n→∞

〈Gxn, xn〉 = lim
n→∞

〈xn, G∗xn〉 = β. Also ‖Gxn‖2 = |φn|2 + |ϕn|2 = 1,

implies that lim
n→∞

|ϕn| =
√

1− |β|2. Now for α > 0, there exists an integerM such that|φM−β| < α
8 .

Chooseϕ0
M such that|ϕ0

M | =
√

1− |β|2, |ϕM − ϕ0
M | <

α
8 .

Now we have,

GxM = φMxM + ϕMyM − βxM + βxM − ϕ0
MyM + ϕ0

MyM

= (φ− β)xM + (ϕM − ϕ0
M )yM + βxM + ϕ0

MyM .

Let qM = βxM + ϕ0
MyM ,. Then,GxM = (φ− β)xM + (ϕM − ϕ0

M )yM + qM . Suppose thaty⊥xM ,

then

〈GxM , Gy〉 = (φ− β)〈xM , Gy〉+ (ϕM − ϕ0
M )〈yM , Gy〉+ 〈qM , Gy〉

= 0,

sinceG∗G is a projection fromH to RanL.

It follows that, |〈qM , Gy〉| ≤ |φM − β|.‖y‖ + |ϕM − ϕ0
M |.‖y‖ ≤ α

4 ‖y‖. If we suppose that

Gy = φqM + y0, (y0⊥qM , ) theny0 is uniquely determined byy. Hence we defineV as follows:

V : xM → qM , y → y0, φxM + ϕMy → φqM + ϕMy0,

with bothφ, ϕ being complex numbers.V is a linear operator. We prove thatV is a contraction. Now,

‖V xM‖2 = ‖qM‖2 = |β|2 = |ϕ0
M |2 = 1,

‖V y‖2 = ‖Gy‖2 − |φy|2 ≤ ‖Gy‖2 ≤ ‖y‖2.

It follows that,‖V φ‖2 = ‖φ‖2‖V xM‖2 + |ϕ|2‖V y‖2 ≤ |φ|2 + |ϕ|2 = 1, for eachx ∈ H satisfying

x = φxM +ϕMy, ‖x‖ = 1, xM⊥y, which is equivalent to thatV is a contraction. From the definition

of V , we show that‖GxM − V xM‖2 = |φ − β|2 + |ϕM − ϕ0
M |2 ≤

2α2

16 = 1
8α2. If y⊥xM , ‖y‖ ≤ 1

then we have,‖Gy − V y‖ = |φ|‖V xM‖ = |〈Gy, V xM 〉| = |〈qM , Gy〉| < α
4 .
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Hence for anyx ∈ H, x = φxM + ϕMy, ‖x‖ = 1,

‖Gx− V x‖2 = ‖φ(G− V )xM + ϕ(G− V )y‖2

= |φ|2‖(G− V )xM‖2 + |ϕ|2‖(G− V )y‖2

< |φ|2.α
2

16
+ |ϕ|2.α

2

16

<
α2

8
,

which implies that‖(G− V )x‖ < α
2 , ‖x‖ = 1, and hence‖(G− V )‖ < α

2 . Let Z = V J . ThenZ is

the required operator and this completes the proof.

Theorem 3.3.The set of operators S ∈ B(H) implementing a norm-attainable inner derivation, δN
S , is

uniformly dense in B(H).

Proof. Let α > 0 andS ∈ B(H). It is clear thatδN
S = δN

S−β for anyβ ∈ C. From [4], there is aβ ∈ C
such that0 ∈ W0(S−β) and‖δN

S ‖ = ‖δN
S−β‖ = 2‖S−β‖. From Theorem 3.2, there exists an operator

Z ∈ B(H) such that‖S − β‖ = ‖Z‖, ‖S − β − Z‖ < α and there exists a vectorη ∈ H such that

‖Zη‖ = ‖Z‖, 〈Zη, η〉 = 0. By Lemma 3.1,δN
Z is norm-attainable which is equivalent to thatδN

Z+β is

norm-attainable and implies that‖S − (Z + β)‖ = ‖S − β − Z‖ = 2‖S − β‖ < α.

Theorem 3.4.Let S, T ∈ B(H) If there exists vectors ζ, η ∈ H such that ‖ζ‖ = ‖η‖ = 1, ‖Sζ‖ =
‖S‖, ‖Tη‖ = ‖T‖ and 1

‖S‖〈Sζ, ζ〉 = − 1
‖T‖〈Tη, η〉, then δN

S,T is norm-attainable.

Proof. By linear dependence of vectors, ifη andTη are linearly dependent, that is,Tη = φ‖T‖η, then

it is true that|φ| = 1 and|〈Tη, η〉| = ‖T‖. It follows that|〈Sζ, ζ〉| = ‖S‖ which impliesSζ = ϕ‖S‖ζ
and|ϕ| = 1. Hence

〈
Sζ
‖S‖ , ζ

〉
= ϕ = −

〈
Tη
‖T‖ , η

〉
= −φ. DefiningX asX : η → ζ, {ζ}⊥ → 0, we

have‖X‖ = 1 and(SX −XT )η = ϕ(‖S‖+ ‖T‖)ζ, which implies

‖SX −XT‖ = ‖(SX −XT )η‖ = ‖S‖+ ‖T‖.

By [4], it follows that‖SX −XT‖ = ‖S‖+ ‖T‖ = ‖δN
S,T ‖.

That is,δN
S,T is norm-attainable. Ifη andTη are linearly independent, then

∣∣∣〈 Tη
‖T‖ , η

〉∣∣∣ < 1, which

implies
∣∣∣〈 Sζ

‖S‖ , ζ
〉∣∣∣ < 1. Henceζ andSζ are also linearly independent. Let us redefineX as follows:

X : η → ζ, Tη
‖T‖ → − Sζ

‖S‖ , x → 0, wherex ∈ {η, Tη}⊥. We show thatX is a partial isometry.

Let Tη
‖T‖ =

〈
Tη
‖T‖ , η

〉
η + τh, ‖h‖ = 1, h⊥η. Sinceη andTη are linearly independent,τ 6= 0.

So we have,X Tη
‖T‖ =

〈
Tη
‖T‖ , η

〉
Xη + τXh = −

〈
Sζ
‖S‖ , ζ

〉
ζ + τXh, which implies

〈
X Tη
‖T‖ , ζ

〉
=

−
〈

Sζ
‖S‖ , ζ

〉
+ τ〈Xh, ζ〉 = −

〈
Sζ
‖S‖ , ζ

〉
.

Thn it follows that〈Xh, ζ〉 = 0. That is,Xh⊥ζ(ζ = Xη). Hence we have∥∥∥∥〈
Sζ

‖S‖
, ζ

〉
ζ

∥∥∥∥2

+ ‖τXh‖2 =
∥∥∥∥X

Tη

‖T‖

∥∥∥∥2

=
∣∣∣∣〈 Tη

‖T‖
, η

〉∣∣∣∣2 + |τ |2 = 1,
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which implies‖Xh‖ = 1. Now it is evident thatX a partial isometry and‖(SX −XT )ζ‖ = ‖SX −
XT‖ = ‖S‖ + ‖T‖, which is equivalent to‖δN

S,T (X)‖ = ‖S‖ + ‖T‖. By [4], ‖δN
S,T ‖ = ‖S‖ + ‖T‖.

Hence,δN
S,T is norm-attainable.

Lemma 3.5.The set of operators S, T ∈ B(H) which are implementing a norm-attainable generalized

derivation, δN
S,T , is uniformly dense in B(H)×B(H).

Proof. Suppose eitherS orT is a scalar operator, sayT = κI, for some scalarκ, thenδN
S,T (X) = SX−

XκI. Clearly,‖δN
S,T ‖ = ‖S−κ‖. From Theorem 3.2, forα > 0, there exists an operatorC ∈ B(H) and

a vectorζ ∈ H such that‖Cζ‖ = ‖C‖ and‖S−κ−C‖ < α. LetZ = C+κI, T0 = κI. Therefore, we

have thatδN
Z,T0

(X) = CX, ∀ X ∈ B(H). Let P be the projection on{ζ}. Then‖δN
Z,T0

(P )‖ = ‖P‖,
which implies thatδN

Z,T0
is norm-attainable and‖〈S, T 〉 − 〈Z − T0〉‖ < α. Suppose neitherS nor T

is a scalar operator, then there is a complex numberβ such that‖δN
S,T ‖ = ‖S − β‖ + ‖T − β‖ and

W0

(
S−β
‖S−β‖

)
∩ W0

(
T−β
‖T−β‖

)
is nonempty. Letν ∈ W0

(
S−β
‖S−β‖

)
∩ W0

(
T−β
‖T−β‖

)
. Then forα > 0,

from Theorem 3.2, there existsZ andT0 andζ, η ∈ H such that‖Z‖ = ‖T0‖ = 1, ‖ζ‖ = ‖η‖ =
1,

∥∥∥ S−β
‖S−β‖ − Z

∥∥∥ < α
2 (‖δN

S,T ‖+ 1) and
∥∥∥ T−β
‖T−β‖ − T0

∥∥∥ < α
2 (‖δN

S,T ‖+ 1), with

‖Zζ‖ = ‖Z‖, ‖T0η‖ = ‖T0‖, 〈Zζ, ζ〉 = ν, 〈T0η, η〉 = −ν.

Let Z0 = ‖S − β‖Z, T00 = ‖T − β‖T0. Then
〈

Z0ζ
‖Z0‖ , ζ

〉
= ν = −

〈
T00η
‖T00‖ , η

〉
. By Theorem

3.4, δN
Z0,T00

is norm-attainable. But we have‖S − β − Z0‖ < α
2 and‖T − β − T00‖ < α

2 . Hence,

‖〈S, T 〉 − 〈Z0 + β, T00 + β〉‖ < α, andδN
〈Z0+β,T00+β〉 is norm-attainable.

Theorem 3.6.Let S, T ∈ B(H). If both S and T are norm-attainable then the basic elementary operator

MN
S, T is also norm-attainable.

Proof. For any pS, T ∈ B(H), ‖MN
S, T ‖ = ‖S‖‖T‖. We assume that‖S‖ = ‖T‖ = 1. If both S

andT are norm-attainable, then there exists unit vectorsζ andη with ‖Sζ‖ = ‖Tη‖ = 1. Therefore,

define an operatorX by X = 〈·, T η〉ζ. Clearly,‖X‖ = 1. Therefore, we have‖SXT‖ ≥ ‖SXTη‖ =
‖‖Tη‖2Sζ‖ = 1. Hence,‖MN

S, T (X)‖ = ‖SXT‖ = 1, that isMN
S, T is also norm-attainable.

Theorem 3.7.Let S, T ∈ B(H) If both S and T are norm-attainable then the Jordan elementary oper-

ator UN
S, T is also norm-attainable.

Proof. The proof is analogous to that of the previous Lemma.

As a remark, we give the following generalization on norm-attainable general elementary operator. An

operatorTS̃,T̃ (X) =
∑n

i=1 SiXTi, is said to be norm-attainable if there is a contractionX in the unit

ball, (B(H))1, such that‖TS̃,T̃ (X)‖ = ‖TS̃,T̃ ‖, whereS̃ = (S1, ..., Sn) and T̃ = (T1, ..., Tn) are

n-tuples inB(H).
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