International Journal of Mathematics and Soft Computing Vol.3, No.1 (2013), 53 - 59.

Certain conditions for norm-attainability of elementary operators and derivations

N. B. Okelo

School of Mathematics and Actuarial Science, Bondo University College, Box 210-40601, Bondo-KENYA. E-mail: bnyaare@yahoo.com

J. O. Agure, P. O. Oleche

Department of Mathematics, Applied Statistics and Actuarial Science, Maseno University, P.O Box 333, Maseno - KENYA. E-mail: johnagure@yahoo.com, poleche@yahoo.com

Abstract

Let H be an infinite dimensional complex Hilbert space and B(H) the algebra of all bounded linear operators on H. In this paper, we study norm-attainability for elementary operators and generalized derivations. We give results on necessary and sufficient conditions for norm-attainability.

Keywords: Elementary operators, denseness, norm-attainable operators **AMS Subject Classification(2010)**: Primary 47B47; Secondary 47A30.

1 Introduction

Let H be an infinite dimensional complex Hilbert space and B(H) the C^* -algebra of all bounded linear operators on H. $\mathcal{T} : B(H) \to B(H)$. \mathcal{T} is called an elementary operator if it is represented as $\mathcal{T}(X) = \sum_{i=1}^{n} S_i X T_i, \forall X \in B(H)$, where S_i, T_i are fixed in B(H) or $\mathcal{M}(B(H))$ where $\mathcal{M}(B(H))$ is the multiplier algebra of B(H). For $S, T \in B(H)$ we have the following elementary operators: (i) the left multiplication operator $L_S(X) = SX$, (ii) the right multiplication operator $R_T(X) = XT$, (iii) the inner derivation $\delta_S = SX - XS$, (iv) the generalized derivation $\delta_{S,T} = SX - XT$, (v) the basic elementary operator $M_{S,T}(X) = SXT$, (vi) the Jordan elementary operator and $\mathcal{U}_{S,T}(X) =$ $SXT + TXS, \forall X \in B(H)$. Stampfli [4] characterized the norm of the generalized derivation by obtaining $\|\delta_{S,T}\| = \inf_{\beta \in \mathbb{C}} \{\|S - \beta\| + \|T - \beta\|\}$, where \mathbb{C} is the complex plane. Further studies on derivations and elementary operators have been carried out in [2 and 3]. In this paper ,we prove that if δ_S^N is norm-attainable then the set $\{S : S \in B(H)\}$ is uniformly dense in B(H). Also we prove that if $\delta_{S,T}^N, M_{S,T}^N$ and $\mathcal{U}_{S,T}^N$ are norm-attainable then the set $\{S, T : S, T \in B(H)\}$ is uniformly dense in $B(H) \times B(H)$.

2 Notations and Preliminaries

We denote by S^N , δ^N_S , $\delta^N_{S,T}$, $M^N_{S,T}$ and $\mathcal{U}^N_{S,T}$ a linear bounded operator, inner derivation, generalized derivation, basic elementary operators and a Jordan elementary operator respectively that are norm-attainable. We note that for $S, V \in B(H), S$ is said to be positive if $\langle Sx, x \rangle \geq 0, \forall x \in H$ and V an isometry(Co-isometry) if $V^*V = VV^* = I$ where I is an identity operator in B(H). A subalgebra $\mathcal{M} \subset B(H)$ is a standard operator algebra on H if it contains F(H) where F(H) is the ideal of finite rank operators. Its clear that $F(H) \subset B(H)$. Moreover, \mathcal{M} is dense in B(H) if $\overline{\mathcal{M}} = B(H)$, where $\overline{\mathcal{M}}$ is the closure of \mathcal{M} . **Definition 2.1.** An operator $S \in B(H)$ is said to be norm-attainable if there exists a unit vector $x_0 \in H$ such that $||Sx_0|| = ||S||$.

Definition 2.2. For an operator $S \in B(H)$ we define:

- (i) Numerical range by $W(S) = \{ \langle Sx, x \rangle : x \in H, ||x|| = 1 \},\$
- (ii) Maximal numerical range by $W_0(S) = \{\beta \in \mathbb{C} : \langle Sx_n, x_n \rangle \to \beta, where ||x_n|| = 1, ||Sx_n|| \to ||S||\}.$

3 Main results

Lemma 3.1. Let $S \in B(H)$. δ_S is norm-attainable if there exists a vector $\zeta \in H$ such that $\|\zeta\| = 1$, $\|S\zeta\| = \|S\|$, $\langle S\zeta, \zeta \rangle = 0$.

Proof. For any x satisfying $x \perp \{\zeta, S\zeta\}$, define X as follows $X : \zeta \to \zeta$, $S\zeta \to -S\zeta$, $x \to 0$, because $S\zeta \perp \zeta$. Since X is a bounded operator on H and $||X\zeta|| = ||\zeta|| = 1$, $||SX\zeta - XS\zeta|| = ||S\zeta - (-S\zeta)|| = 2||S\zeta|| = 2||S||$. Since $\langle S\zeta, \zeta\rangle = 0 \in W_0(S)$, it follows that $||\delta_S|| = 2||S||$ by [4, Theorem 1]. Hence, $||SX - XS|| = 2||S|| = ||\delta_S||$. Therefore, δ_S is norm-attainable.

Theorem 3.2. Let $S \in B(H)$, $\beta \in W_0(S)$ and $\alpha > 0$. There exists an operator $Z \in B(H)$ such that ||S|| = ||Z||, with $||S - Z|| < \alpha$. Furthermore, there exists a vector $\eta \in H$, $||\eta|| = 1$ such that $||Z\eta|| = ||Z||$ with $\langle Z\eta, \eta \rangle = \beta$.

Proof. Without loss of generality, we may assume that ||S|| = 1. Let $x_n \in H$ (n = 1, 2, ...) be such that $||x_n|| = 1$, $||Sx_n|| \to 1$ and $\lim_{n \to \infty} \langle Sx_n, x_n \rangle = \beta$.

Consider a partial isometry G and $L = \int_0^1 \beta dE_\beta$, the spectral decomposition of L. Let S = GL, the polar decomposition of S. Since $\lim_{n \to \infty} ||Sx_n|| = ||S|| = ||L|| = 1$, we have that $||Lx_n|| \to 1$ as n tends to ∞ and $\lim_{n \to \infty} \langle Sx_n, x_n \rangle = \lim_{n \to \infty} \langle GLx_n, x_n \rangle = \lim_{n \to \infty} \langle Lx_n, G^*x_n \rangle$.

Now for $H = \overline{Ran(L)} \oplus KerL$, we can choose x_n such that $x_n \in \overline{Ran(L)}$ for large n. Indeed, let $x_n = x_n^{(1)} \oplus x_n^{(2)}$, n = 1, 2, ... Then we have that $Lx_n = Lx_n^{(1)} \oplus Lx_n^{(2)} = Lx_n^{(1)}$ and that $\lim_{n \to \infty} \|x_n^{(1)}\| = 1$, $\lim_{n \to \infty} \|x_n^{(2)}\| = 0$, since $\lim_{n \to \infty} \|Lx_n\| = 1$.

Replacing x_n with $\frac{x_n^{(1)}}{\|x_n^{(1)}\|}$, we obtain $\lim_{n \to \infty} \left\| L \frac{1}{\|x_n^{(1)}\|} x_n^{(1)} \right\| = \lim_{n \to \infty} \left\| S \frac{1}{\|x_n^{(1)}\|} x_n^{(1)} \right\| = 1$ and $\lim_{n \to \infty} \left(S \frac{1}{\|x_n^{(1)}\|} x_n^{(1)}, \frac{1}{\|x_n^{(1)}\|} x_n^{(1)} \right) = \beta.$

Now assume that $x_n \in \overline{RanL}$. Since G is a partial isometry from \overline{RanL} onto \overline{RanS} , we have $||Gx_n|| = 1$ and $\lim_{n \to \infty} \langle Lx_n, G^*x_n \rangle = \beta$. For L is a positive operator, ||L|| = 1 and for any $x \in H$, $\langle Lx, x \rangle \leq \langle x, x \rangle = ||x||^2$.

Replacing x with $L^{\frac{1}{2}}x$, we get that $\langle L^2x, x \rangle \leq \langle Lx, x \rangle$, where $L^{\frac{1}{2}}$ is the positive square root of L. Therefore we have $||Lx||^2 = \langle Lx, Lx \rangle \leq \langle Lx, x \rangle$. It is obvious that $\lim_{n \to \infty} ||Lx_n|| = 1$ and that $||Lx_n||^2 \leq \langle Lx_n, x_n \rangle \leq ||Lx_n||^2 = 1$. Hence, $\lim_{n \to \infty} \langle Lx_n, x_n \rangle = 1 = ||L||$.

Moreover, since $I - L \ge 0$, we have $\lim_{n \to \infty} \langle (I - L)x_n, x_n \rangle = 0$. thus $\lim_{n \to \infty} ||(I - L)^{\frac{1}{2}}x_n|| = 0$.

Indeed, $\lim_{n\to\infty} \|(I-L)x_n\| \leq \lim_{n\to\infty} \|(I-L)^{\frac{1}{2}}\| \|(I-L)^{\frac{1}{2}}x_n\| = 0.$ For $\alpha > 0$, let $\gamma = [0, 1-\frac{\alpha}{2}]$ and let $\rho = [1-\frac{\alpha}{2}, 1]$. We have

$$L = \int_{\gamma} \mu dE_{\mu} + \int_{\rho} \mu dE_{\mu}$$
$$= \int_{0}^{1-\frac{\alpha}{2}} \mu dE_{\mu} + \int_{1-\frac{\alpha}{2}+0}^{1} \mu dE_{\mu}$$
$$= LE(\gamma) \oplus LE(\rho).$$

Next we show that $\lim_{n\to\infty} ||E(\gamma)x_n|| = 0$. If there exists a subsequence x_{n_i} , (i = 1, 2, ...,) such that $||E(\gamma)x_{n_i}|| \ge \epsilon > 0$, (i = 1, 2, ...,), then since $\lim_{i\to\infty} ||x_{n_i} - Lx_{n_i}|| = \lim_{i\to\infty} (I - L)x_{n_i} = 0$, it follows that,

$$\lim_{i \to \infty} \|x_{n_i} - Lx_{n_i}\| = \lim_{i \to \infty} (\|E(\gamma)x_{n_i} - LE(\gamma)x_{n_i}\|^2 + \|E(\rho)x_{n_i} - LE(\rho)x_{n_i}\|^2)$$

= 0.

Hence, we have $\lim_{i\to\infty}(\|E\gamma)x_{n_i}-LE(\gamma)x_{n_i}\|^2=0.$

Now it is clear that,

$$\begin{aligned} \|E\gamma)x_{n_{i}} - LE(\gamma)x_{n_{i}}\| &\geq \|E\gamma)x_{n_{i}}\| - \|LE(\gamma)\| \|E\gamma)x_{n_{i}}\| \\ &\geq (I - \|LE(\gamma)\|) \|E\gamma)x_{n_{i}}\| \\ &\geq \frac{\alpha}{2}\epsilon \\ &> 0. \end{aligned}$$

This is a contradiction. Therefore, $\lim_{n \to \infty} ||E(\gamma)x_n|| = 0.$ Since $\lim_{n \to \infty} \langle Lx_n, x_n \rangle = 1$, we have $\lim_{n \to \infty} \langle LE(\rho)x_n, E(\rho)x_n \rangle = \lim_{n \to \infty} \langle E(\rho)x_n, G^*E(\rho)x_n \rangle = \beta.$ 1 and

It can be easily verified that $\lim_{n \to \infty} \|E(\rho)x_n\| = 1, \quad \lim_{n \to \infty} \left(L\frac{E(\rho)x_n}{\|E(\rho)x_n\|}, \frac{E(\rho)x_n}{\|E(\rho)x_n\|}\right) = 1 \text{ and } \lim_{n \to \infty} \left(L\frac{E(\rho)x_n}{\|E(\rho)x_n\|}, G^*\frac{E(\rho)x_n}{\|E(\rho)x_n\|}\right) = \beta.$

Replacing x with $\frac{E(\rho)x_n}{\|E(\rho)x_n\|}$, we assume that $x_n \in E(\rho)H$ for each n and $\|x_n\| = 1$. Let

$$J = \int_{\gamma} \mu dE_{\mu} + \int_{\rho} \mu dE_{\mu}$$
$$= \int_{0}^{1-\frac{\alpha}{2}} \mu dE_{\mu} + \int_{1-\frac{\alpha}{2}+0}^{1} \mu dE_{\mu}$$
$$= J_{1} \oplus E(\rho).$$

Then it is evident that, ||J|| = ||S|| = ||L|| = 1, $Jx_n = x_n$, and $||J - L|| < \frac{\alpha}{2}$.

If we can find a contraction V such that $V - G < \frac{\alpha}{2}$ and $||Vx_n|| = 1$ for a large $n, \langle Vx_n, x_n \rangle = \beta$,

Z = VJ, we have $||Zx_n|| = ||VJx_n|| = 1$, $\langle Zx_n, x_n \rangle = \langle VJx_n, x_n \rangle = \langle Vx_n, x_n \rangle = \beta$ and

$$\begin{aligned} |S - Z|| &= ||GL - VJ|| \\ &\leq ||GL - GJ|| + ||GJ - VJ|| \\ &\leq ||G|| \cdot ||L - J|| + ||G - V|| \cdot ||J|| \\ &\leq \frac{\alpha}{2} + \frac{\alpha}{2} \\ &= \alpha. \end{aligned}$$

To complete the proof, we construct the desired contraction V. Clearly, $\lim_{n \to \infty} \langle x_n, G^* x_n \rangle = \beta$, as $\lim_{n \to \infty} \langle Lx_n, G^* x_n \rangle = \beta$ and $\lim_{n \to \infty} ||x_n - Lx_n|| = 0$. Let $Gx_n = \phi_n x_n + \varphi_n y_n$, $(y_n \perp x_n, ||y_n|| = 1)$ then $\lim_{n \to \infty} \phi_n = \beta$, since $\lim_{n \to \infty} \langle Gx_n, x_n \rangle = \lim_{n \to \infty} \langle x_n, G^* x_n \rangle = \beta$. Also $||Gx_n||^2 = |\phi_n|^2 + |\varphi_n|^2 = 1$, implies that $\lim_{n \to \infty} |\varphi_n| = \sqrt{1 - |\beta|^2}$. Now for $\alpha > 0$, there exists an integer M such that $|\phi_M - \beta| < \frac{\alpha}{8}$. Choose φ_M^0 such that $|\varphi_M^0| = \sqrt{1 - |\beta|^2}$, $|\varphi_M - \varphi_M^0| < \frac{\alpha}{8}$.

Now we have,

$$Gx_M = \phi_M x_M + \varphi_M y_M - \beta x_M + \beta x_M - \varphi_M^0 y_M + \varphi_M^0 y_M$$
$$= (\phi - \beta) x_M + (\varphi_M - \varphi_M^0) y_M + \beta x_M + \varphi_M^0 y_M.$$

Let $q_M = \beta x_M + \varphi_M^0 y_M$. Then, $Gx_M = (\phi - \beta) x_M + (\varphi_M - \varphi_M^0) y_M + q_M$. Suppose that $y \perp x_M$, then

$$\langle Gx_M, Gy \rangle = (\phi - \beta) \langle x_M, Gy \rangle + (\varphi_M - \varphi_M^0) \langle y_M, Gy \rangle + \langle q_M, Gy \rangle$$

= 0

since G^*G is a projection from H to RanL.

It follows that, $|\langle q_M, Gy \rangle| \leq |\phi_M - \beta| \|y\| + |\varphi_M - \varphi_M^0| \|y\| \leq \frac{\alpha}{4} \|y\|$. If we suppose that $Gy = \phi q_M + y^0$, $(y^0 \perp q_M)$ then y^0 is uniquely determined by y. Hence we define V as follows:

$$V: x_M \to q_M, \ y \to y^0, \ \phi x_M + \varphi_M y \to \phi q_M + \varphi_M y^0,$$

with both ϕ, φ being complex numbers. V is a linear operator. We prove that V is a contraction. Now,

$$\|Vx_M\|^2 = \|q_M\|^2 = |\beta|^2 = |\varphi_M^0|^2 = 1,$$
$$\|Vy\|^2 = \|Gy\|^2 - |\phi y|^2 \le \|Gy\|^2 \le \|y\|^2.$$

It follows that, $\|V\phi\|^2 = \|\phi\|^2 \|Vx_M\|^2 + |\varphi|^2 \|Vy\|^2 \le |\phi|^2 + |\varphi|^2 = 1$, for each $x \in H$ satisfying $x = \phi x_M + \varphi_M y$, $\|x\| = 1$, $x_M \perp y$, which is equivalent to that V is a contraction. From the definition of V, we show that $\|Gx_M - Vx_M\|^2 = |\phi - \beta|^2 + |\varphi_M - \varphi_M^0|^2 \le \frac{2\alpha^2}{16} = \frac{1}{8}\alpha^2$. If $y \perp x_M$, $\|y\| \le 1$ then we have, $\|Gy - Vy\| = |\phi| \|Vx_M\| = |\langle Gy, Vx_M \rangle| = |\langle q_M, Gy \rangle| < \frac{\alpha}{4}$.

Hence for any $x \in H$, $x = \phi x_M + \varphi_M y$, ||x|| = 1,

$$\begin{split} \|Gx - Vx\|^2 &= \|\phi(G - V)x_M + \varphi(G - V)y\|^2 \\ &= |\phi|^2 \|(G - V)x_M\|^2 + |\varphi|^2 \|(G - V)y\|^2 \\ &< |\phi|^2 \cdot \frac{\alpha^2}{16} + |\varphi|^2 \cdot \frac{\alpha^2}{16} \\ &< \frac{\alpha^2}{8}, \end{split}$$

which implies that $||(G - V)x|| < \frac{\alpha}{2}$, ||x|| = 1, and hence $||(G - V)|| < \frac{\alpha}{2}$. Let Z = VJ. Then Z is the required operator and this completes the proof.

Theorem 3.3. The set of operators $S \in B(H)$ implementing a norm-attainable inner derivation, δ_S^N , is uniformly dense in B(H).

Proof. Let $\alpha > 0$ and $S \in B(H)$. It is clear that $\delta_S^N = \delta_{S-\beta}^N$ for any $\beta \in \mathbb{C}$. From [4], there is a $\beta \in \mathbb{C}$ such that $0 \in W_0(S-\beta)$ and $\|\delta_S^N\| = \|\delta_{S-\beta}^N\| = 2\|S-\beta\|$. From Theorem 3.2, there exists an operator $Z \in B(H)$ such that $\|S-\beta\| = \|Z\|$, $\|S-\beta-Z\| < \alpha$ and there exists a vector $\eta \in H$ such that $\|Z\eta\| = \|Z\|$, $\langle Z\eta, \eta \rangle = 0$. By Lemma 3.1, δ_Z^N is norm-attainable which is equivalent to that $\delta_{Z+\beta}^N$ is norm-attainable and implies that $\|S-(Z+\beta)\| = \|S-\beta-Z\| = 2\|S-\beta\| < \alpha$.

Theorem 3.4. Let $S, T \in B(H)$ If there exists vectors $\zeta, \eta \in H$ such that $\|\zeta\| = \|\eta\| = 1$, $\|S\zeta\| = \|S\|$, $\|T\eta\| = \|T\|$ and $\frac{1}{\|S\|} \langle S\zeta, \zeta \rangle = -\frac{1}{\|T\|} \langle T\eta, \eta \rangle$, then $\delta_{S,T}^N$ is norm-attainable.

Proof. By linear dependence of vectors, if η and $T\eta$ are linearly dependent, that is, $T\eta = \phi ||T||\eta$, then it is true that $|\phi| = 1$ and $|\langle T\eta, \eta \rangle| = ||T||$. It follows that $|\langle S\zeta, \zeta \rangle| = ||S||$ which implies $S\zeta = \varphi ||S||\zeta$ and $|\varphi| = 1$. Hence $\left\langle \frac{S\zeta}{||S||}, \zeta \right\rangle = \varphi = -\left\langle \frac{T\eta}{||T||}, \eta \right\rangle = -\phi$. Defining X as $X : \eta \to \zeta$, $\{\zeta\}^{\perp} \to 0$, we have ||X|| = 1 and $(SX - XT)\eta = \varphi(||S|| + ||T||)\zeta$, which implies

$$||SX - XT|| = ||(SX - XT)\eta|| = ||S|| + ||T||.$$

By [4], it follows that $||SX - XT|| = ||S|| + ||T|| = ||\delta_{S,T}^N||$.

That is, $\delta_{S,T}^N$ is norm-attainable. If η and $T\eta$ are linearly independent, then $\left|\left\langle \frac{T\eta}{\|T\|}, \eta \right\rangle\right| < 1$, which implies $\left|\left\langle \frac{S\zeta}{\|S\|}, \zeta \right\rangle\right| < 1$. Hence ζ and $S\zeta$ are also linearly independent. Let us redefine X as follows: $X: \eta \to \zeta, \quad \frac{T\eta}{\|T\|} \to -\frac{S\zeta}{\|S\|}, \quad x \to 0$, where $x \in \{\eta, T\eta\}^{\perp}$. We show that X is a partial isometry. Let $\frac{T\eta}{\|T\|} = \left\langle \frac{T\eta}{\|T\|}, \eta \right\rangle \eta + \tau h, \quad \|h\| = 1, \quad h \perp \eta$. Since η and $T\eta$ are linearly independent, $\tau \neq 0$. So we have, $X \frac{T\eta}{\|T\|} = \left\langle \frac{T\eta}{\|T\|}, \eta \right\rangle X\eta + \tau Xh = -\left\langle \frac{S\zeta}{\|S\|}, \zeta \right\rangle \zeta + \tau Xh$, which implies $\left\langle X \frac{T\eta}{\|T\|}, \zeta \right\rangle = -\left\langle \frac{S\zeta}{\|S\|}, \zeta \right\rangle + \tau \langle Xh, \zeta \rangle = -\left\langle \frac{S\zeta}{\|S\|}, \zeta \right\rangle$. Thus it follows that $\langle Xh, \zeta \rangle = 0$. That is, $Xh \perp \zeta(\zeta = X\eta)$. Hence we have

 $\left\|\left\langle \frac{S\zeta}{\|S\|},\zeta\right\rangle \zeta\right\|^2 + \|\tau Xh\|^2 = \left\|X\frac{T\eta}{\|T\|}\right\|^2 = \left|\left\langle \frac{T\eta}{\|T\|},\eta\right\rangle\right|^2 + |\tau|^2 = 1,$

which implies ||Xh|| = 1. Now it is evident that X a partial isometry and $||(SX - XT)\zeta|| = ||SX - XT|| = ||S|| + ||T||$, which is equivalent to $||\delta_{S,T}^N(X)|| = ||S|| + ||T||$. By [4], $||\delta_{S,T}^N|| = ||S|| + ||T||$. Hence, $\delta_{S,T}^N$ is norm-attainable.

Lemma 3.5. The set of operators $S, T \in B(H)$ which are implementing a norm-attainable generalized derivation, $\delta_{S,T}^N$, is uniformly dense in $B(H) \times B(H)$.

Proof. Suppose either *S* or *T* is a scalar operator, say $T = \kappa I$, for some scalar κ , then $\delta_{S,T}^N(X) = SX - X\kappa I$. Clearly, $\|\delta_{S,T}^N\| = \|S - \kappa\|$. From Theorem 3.2, for $\alpha > 0$, there exists an operator $C \in B(H)$ and a vector $\zeta \in H$ such that $\|C\zeta\| = \|C\|$ and $\|S - \kappa - C\| < \alpha$. Let $Z = C + \kappa I$, $T_0 = \kappa I$. Therefore, we have that $\delta_{Z,T_0}^N(X) = CX$, $\forall X \in B(H)$. Let *P* be the projection on $\{\zeta\}$. Then $\|\delta_{Z,T_0}^N(P)\| = \|P\|$, which implies that δ_{Z,T_0}^N is norm-attainable and $\|\langle S,T\rangle - \langle Z - T_0\rangle\| < \alpha$. Suppose neither *S* nor *T* is a scalar operator, then there is a complex number β such that $\|\delta_{S,T}^N\| = \|S - \beta\| + \|T - \beta\|$ and $W_0\left(\frac{S-\beta}{\|S-\beta\|}\right) \cap W_0\left(\frac{T-\beta}{\|T-\beta\|}\right)$ is nonempty. Let $\nu \in W_0\left(\frac{S-\beta}{\|S-\beta\|}\right) \cap W_0\left(\frac{T-\beta}{\|T-\beta\|}\right)$. Then for $\alpha > 0$, from Theorem 3.2, there exists *Z* and T_0 and $\zeta, \eta \in H$ such that $\|Z\| = \|T_0\| = 1$, $\|\zeta\| = \|\eta\| = 1$, $\|\frac{S-\beta}{\|S-\beta\|} - Z\| < \frac{\alpha}{2}(\|\delta_{S,T}^N\| + 1)$ and $\|\frac{T-\beta}{\|T-\beta\|} - T_0\| < \frac{\alpha}{2}(\|\delta_{S,T}^N\| + 1)$, with

$$||Z\zeta|| = ||Z||, ||T_0\eta|| = ||T_0||, \langle Z\zeta, \zeta\rangle = \nu, \langle T_0\eta, \eta\rangle = -\nu.$$

Let $Z_0 = \|S - \beta\|Z$, $T_{00} = \|T - \beta\|T_0$. Then $\left\langle \frac{Z_0\zeta}{\|Z_0\|}, \zeta \right\rangle = \nu = -\left\langle \frac{T_{00}\eta}{\|T_{00}\|}, \eta \right\rangle$. By Theorem 3.4, $\delta^N_{Z_0,T_{00}}$ is norm-attainable. But we have $\|S - \beta - Z_0\| < \frac{\alpha}{2}$ and $\|T - \beta - T_{00}\| < \frac{\alpha}{2}$. Hence, $\|\langle S, T \rangle - \langle Z_0 + \beta, T_{00} + \beta \rangle\| < \alpha$, and $\delta^N_{\langle Z_0 + \beta, T_{00} + \beta \rangle}$ is norm-attainable.

Theorem 3.6. Let $S, T \in B(H)$. If both S and T are norm-attainable then the basic elementary operator $M_{S,T}^N$ is also norm-attainable.

Proof. For any $pS, T \in B(H)$, $||M_{S,T}^N|| = ||S|| ||T||$. We assume that ||S|| = ||T|| = 1. If both S and T are norm-attainable, then there exists unit vectors ζ and η with $||S\zeta|| = ||T\eta|| = 1$. Therefore, define an operator X by $X = \langle \cdot, T\eta \rangle \zeta$. Clearly, ||X|| = 1. Therefore, we have $||SXT|| \ge ||SXT\eta|| =$ $|||T\eta||^2 S\zeta|| = 1$. Hence, $||M_{S,T}^N(X)|| = ||SXT|| = 1$, that is $M_{S,T}^N$ is also norm-attainable.

Theorem 3.7. Let $S, T \in B(H)$ If both S and T are norm-attainable then the Jordan elementary operator $\mathcal{U}_{S,T}^N$ is also norm-attainable.

Proof. The proof is analogous to that of the previous Lemma.

As a remark, we give the following generalization on norm-attainable general elementary operator. An operator $\mathcal{T}_{\tilde{S},\tilde{T}}(X) = \sum_{i=1}^{n} S_i X T_i$, is said to be norm-attainable if there is a contraction X in the unit ball, $(B(H))_1$, such that $\|\mathcal{T}_{\tilde{S},\tilde{T}}(X)\| = \|\mathcal{T}_{\tilde{S},\tilde{T}}\|$, where $\tilde{S} = (S_1, ..., S_n)$ and $\tilde{T} = (T_1, ..., T_n)$ are *n*-tuples in B(H).

Acknowledgement

The first author is grateful to National Council for Science and Technology (NCST) of Kenya for funding this research and DAAD- Germany.

References

- [1] P. R. Halmos, A Hilbert space problem book, second ed., Springer-Verlag, Berlin, 1982.
- [2] N. B. Okelo, J.O. Agure and D. O. Ambogo, *Norms of elementary operators and characterization of norm attainable operators*, Int. Journal of Math. Analysis, 24(2010), 687-693.
- [3] A. Seddik, *On the numerical range and norm of elementary operators*, Linear Multilinear Algebra 52 (2004), 293-302.
- [4] J. G Stampfli, *The norm of a derivation*, Pacific journal of mathematics, Vol. 33, 3 (1970), 737-747.