Majority domination vertex critical graphs

J. Joseline Manora
Department of Mathematics,
T.B.M.L. College, Porayar, Tamilnadu, INDIA-609307.
E-mail: mssraomaths35@rediffmail.com
V. Swaminathan
Ramanujan Research Center, Saraswathi Narayanan College, Madurai, Tamilnadu, INDIA-625022.
E-mail: sulanesri@yahoo.com

Abstract

This paper deals the graphs for which the removal of any vertex changes the majority domination number of the graph. In the following section, how the removal of a single vertex from G can change the majority domination number is surveyed for trees. Characterisation of $V_{M}^{+}(G)$ and $V_{M}^{-}(G)$ are determined.

Keywords: Majority Dominating Set, γ_{M}-critical vertex and graphs.
AMS Subject Classification(2010): 05C69.

1 Introduction

By a graph we mean a finite undirected graph without loops or multiple edges. Let $G=(V, E)$ be a finite graph with p vertices and q edges and v be a vertex in $V(G)$. The closed neighborhood of v is defined by $N[v]=N(v) \cup\{v\}$. The closed neighborhood of a set of vertices S is denoted as $N[S]$ and is $\bigcup_{s \in S} N[s]$.

Definition 1.1. [7]. A subset $S \subseteq V$ of vertices in a graph $G=(V, E)$ is called a Majority Dominating Set if at least half of the vertices of $V(G)$ are either in S or adjacent to elements of S. That is, $|N[S]| \geq\left\lceil\frac{|V(G)|}{2}\right\rceil$.

A majority dominating set S is minimal if no proper subset of S is a majority dominating set.
The minimum cardinality of a minimal majority dominating set is called the majority domination number and is denoted by $\gamma_{M}(G)$.

The maximum cardinality of a minimal majority dominating set is denoted by $\Gamma_{M}(G)$. Majority dominating sets have super hereditary property .

Change of majority domination number in the case of removal of a single vertex is defined and studied. Here, CVR means the change in vertex removal of a graph G and UVR means unchanged vertex removal of a graph G. The graphs in CVR were characterisied by Bauer et al. and H. B. Waliker and B. D. Acharya [8].

Definition 1.2. [4]. For any graph $G, C V R$ and $U V R$ with respect to majority domination is defined by
$C V R_{M}: \quad \gamma_{M}(G-u) \neq \gamma_{M}(G)$, for all $u \in V(G)$.
$U V R_{M}: \quad \gamma_{M}(G-u)=\gamma_{M}(G)$, for all $u \in V(G)$.

Definition 1.3. For any graph G, the vertex set can be partitioned with respect to majority domination into three sets $V_{M}^{0}(G), V_{M}^{-}(G)$ and $V_{M}^{+}(G)$
and is defined by
$V_{M}^{0}(G)=\left\{u \in V(G): \gamma_{M}(G-u)=\gamma_{M}(G)\right\}$
$V_{M}^{-}(G)=\left\{u \in V(G): \gamma_{M}(G-u)<\gamma_{M}(G)\right\}$
$V_{M}^{+}(G)=\left\{u \in V(G): \gamma_{M}(G-u)>\gamma_{M}(G)\right\}$.

2 Change of $\gamma_{M}(G)$ for Trees

Proposition 2.1. Let T be a tree with even numbers of vertices. Then $\gamma_{M}(T-u) \geq \gamma_{M}(T)$ for every $u \in V(T)$.

Proof. Suppose $\gamma_{M}(T-u)<\gamma_{M}(T)$. Let $D=\left\{w_{1}, w_{2}, \ldots, w_{s}\right\}$ be a γ_{M}-set of $T-u$. (i. e.), $\left\lceil\frac{p-1}{2}\right\rceil \leq|N[D]|<\left\lceil\frac{p}{2}\right\rceil$. Given $p=2 r$, then $r \leq|N[D]|<r$, a contradiction.

Proposition 2.2. Let T be a tree with odd number of vertices. Let D be a γ_{M}-set of T. Let $u \in V-D$. Then $\gamma_{M}(T-u) \leq \gamma_{M}(T)$.

Proposition 2.3. Let T be a tree. Let D be a γ_{M}-set of T such that there exists $u \in V(T)$ with $u \notin N[D]$. Then $\gamma_{M}(T-u) \leq \gamma_{M}(T)$.

Corollary 2.4. Let T be a tree with even number of vertices. Let D be a γ_{M}-set of T such that there exists a vertex $u \in V(T)$ with $u \notin N[D]$.
Then $\gamma_{M}(T-u)=\gamma_{M}(T)$.
Proposition 2.5. Let T be a tree. Let $u \in V(T)$. Suppose there exists a γ_{M}-set of D of T such that $u \notin N[D]$ and there exists a γ_{M}-set D_{1} of $T-u$ with $\left|N\left[D_{1}\right]\right| \geq\left\lceil\frac{p}{2}\right\rceil$. Then $\gamma_{M}(T-u)=\gamma_{M}(T)$.

Proof. Since $\left|N\left[D_{1}\right]\right| \geq\left\lceil\frac{p}{2}\right\rceil, \quad D_{1}$ is a majority dominating set of T. Therefore, $\gamma_{M}(T) \leq\left|D_{1}\right|=$ $\gamma_{M}(T-u)$. Since there exists a γ_{M}-set D of T such that $u \notin N[D], \quad \gamma_{M}(T-u) \leq \gamma_{M}(T)$.

Definition 2.6. Let $S \subseteq V(G)$. Let $x \in V(G)$. If $x \in S$, then $p n[x, S]=N[x]-N[S-x]$. If $x \notin S$, then $p n[x, S]=N[x]-N[S]$.

Theorem 2.7. Let T be a tree. Let u be a pendent vertex and v be its support. Let D be a γ_{M}-set of $T-u$ such that there exists a vertex $v \in V-D$ with the property that $|p n[v, D]|>|p n[x, D]|$ for some $x \in D$.
Then $\gamma_{M}(T)=\gamma_{M}(T-u)$.

Proof. Let S be a γ_{M}-set of T. If $u, v \notin S$, then $S-\{u\}$ is a majority dominating set of $T-\{u\}$. Therefore, $\gamma_{M}(T-u) \leq|S-\{u\}|=|S|=\gamma_{M}(T)$.
Let $v \in S$. Then $u \notin S$. Therefore, $\gamma_{M}(T-u) \leq|S-\{u\}|=|S|=\gamma_{M}(T)$. Suppose $u \in S$ and $v \notin$
S. Let $S_{1}=(S-\{u\}) \cup\{v\}$. Therefore, S_{1} is a majority dominating set of T of cardinality $\gamma_{M}(T)$ and $v \in S_{1}$. By the previous argument, $\gamma_{M}(T-u) \leq \gamma_{M}(T)$
Given D is a γ_{M}-set of $T-\{u\}$ such that there exists a vertex $v \in V-D$ with the property that $|p n[v, D]|>|p n[x, D]|$ for some $x \in D$. Therefore, $(D-\{x\}) \cup\{v\}$ is a majority dominating set of
T. Hence, $\gamma_{M}(T) \leq|(D-\{x\}) \cup\{v\}|=\gamma_{M}(T-u)$
Then, $\gamma_{M}(T)=\gamma_{M}(T-u)$.

Proposition 2.8. Let T be a tree with even number of vertices. Then there exists a pendent vertex $u \in V(T)$ such that $\gamma_{M}(T-u)=\gamma_{M}(T)$.

3 Change of $\gamma_{M}(G)$ for Graphs

Theorem 3.1. In any graph G with an isolate, there exists a γ_{M}-set of G not containing that isolate.

Remark 3.2.

1. Let v be an isolate and D be a γ_{M}-set of G not containing v. Then $D-v$ majority dominates $G-v$. Therefore, $\gamma_{M}(G-v) \leq|D-v|=\gamma_{M}(G)$.
2. Let $v \in V_{M}^{+}(G)$. Then v is not an isolate of G.

Theorem 3.3. Let G be a graph of odd order. Let $v \in V_{M}^{+}(G)$. Then v belongs to every γ_{M}-set of G.
Proof. Let $v \in V_{M}^{+}(G)$. Suppose there exists a γ_{M}-set D such that $v \notin D$. Let $v \notin N[D]$. Then $|N[D]| \geq\left\lceil\frac{p}{2}\right\rceil \geq\left\lceil\frac{p-1}{2}\right\rceil$ in $G-v$.

Therefore, $\gamma_{M}(G-v) \leq|D|=\gamma_{M}(G)$ implies $v \notin V_{M}^{+}(G)$, a contradiction. Hence $v \in N[D]$. If $|N[D]|>\left\lceil\frac{p}{2}\right\rceil$ in G, then $|N[D]| \geq\left\lceil\frac{p}{2}\right\rceil$ in $G-v$. Therefore, D is a majority dominating set of $G-v$. It implies $v \notin V_{M}^{+}(G)$, a contradiction. Hence $|N[D]|=\left\lceil\frac{p}{2}\right\rceil$ in G. Then $|N[D]|=\left\lceil\frac{p}{2}\right\rceil-1$ in $G-v$. Given p is odd, D is a majority dominating set in $G-v$, a contradiction to $v \in V_{M}^{+}(G)$. Thus v belongs to every γ_{M}-set of G.

Theorem 3.4. Let G be a graph. Let $v \in V_{M}^{+}(G)$ Then v belongs to $N[D]$ for every γ_{M}-set D of G.

Remark 3.5. 1. If G is of odd order, then any vertex in $V_{M}^{+}(G)$ belongs to every γ_{M}-set of G.
2. If G is of even order, then any vertex in $V_{M}^{+}(G)$ belongs to every γ_{M}-set D of G such that $|N[D]|>\frac{p}{2}$ and belongs to $N[D]$ if $|N[D]|=\frac{p}{2}$.

Proposition 3.6. Let G be any graph. Let $v \in V_{M}^{+}(G)$. Then there exists a vertex $w \in V(G)$ such that $\gamma_{M}(G-w)=\gamma_{M}(G)$.

Proof. Let $O(G)=2 n+1$. Let $D=\left\{v, u_{1}, u_{2}, \ldots, u_{k-1}\right\}$ be a γ_{M}-set of G. Let $w \in V-D$ (note that $V-D \neq \phi$. Then $D \subset V-w$. Now, $\left|N_{G}[D]\right| \geq\left\lceil\frac{p}{2}\right\rceil=n+1$. Therefore, $\left|N_{G-w}[D]\right| \geq n$. Then $\gamma_{M}(G-w) \leq|D|=\gamma_{M}(G)$. If $\gamma_{M}(G-w)<\gamma_{M}(G)$, then $w \in V_{M}^{-}(G)$. Then $V=V_{M}^{-}(G)$, a
contradiction since $V_{M}^{+}(G) \neq \phi$.
Let G be a graph of order $2 n$. Let D be a γ_{M}-set of G.
Case(i): Let $N[D] \neq V(G)$. Then there exists $w \notin N[D]$. Therefore, $w \notin D$. Then $D \subseteq V-w$ and $\left|N_{G}[D]\right| \geq\left\lceil\frac{p}{2}\right\rceil=n$. Therefore, $\left|N_{G-w}[D]\right| \geq n$ (since $\left.w \notin N[D]\right) \Rightarrow\left|N_{G-w}[D]\right|=\left\lceil\frac{p-1}{2}\right\rceil$. Therefore, D is a majority dominating set of $G-w$. Then $\gamma_{M}(G-w) \leq|D|=\gamma_{M}(G)$. If $\gamma_{M}(G-w)<$ $\gamma_{M}(G)$, then $w \in V_{M}^{-}(G)$. Then $V(G)=V_{M}^{-}(G)$, a contradiction since $V_{M}^{+}(G) \neq \phi$.
Case(ii): Let $N[D]=V(G)$. Now, $\left|N_{G}[D]\right|=2 n$. Therefore, $\left|N_{G-w}[D]\right|=2 n-1 \geq n=\left\lceil\frac{p-1}{2}\right\rceil$, for all $n \geq 1$. Then $\gamma_{M}(G-w) \leq|D|=\gamma_{M}(G)$. If $\gamma_{M}(G-w)<\gamma_{M}(G)$, then $w \in V_{M}^{-}(G)$. Then $V(G)=V_{M}^{-}(G)$, a contradiction since $V_{M}^{+}(G) \neq \phi$. Hence $\gamma_{M}(G-w)=\gamma_{M}(G)$.

4 Characterisation of $V_{M}^{+}(G)$ and $V_{M}^{-}(G)$

Theorem 4.1. A vertex $v \in V_{M}^{+}(G)$ if and only if $v \in V(G)$ satisfies the following conditions:
(i) v is not an isolate and v belongs to every γ_{M}-set D of G if G is of odd order. If G is of even order, v belongs to every γ_{M}-set D of G such that $|N[D]|>\frac{p}{2}$ and belongs to $N[D]$ if $|N[D]|=\frac{p}{2}$.
(ii) No subset of $V(G)-\{v\}$ of cardinality $\gamma_{M}(G)$ majority dominates
$G-\{v\}$.
Proof. Suppose $v \in V_{M}^{+}(G)$. Then by remarks 3.2, the theorem 3.3 and remarks 3.5 , the condition (i) holds.
Let $D \subseteq V(G)-\{v\} \quad$ and $\quad|D|=\gamma_{M}(G)$. Suppose D majority dominates $G-\{v\}$. Then $\gamma_{M}(G-\{v\}) \leq|D|=\gamma_{M}(G)$, a contradiction to $v \in V_{M}^{+}(G)$. Hence the condition (ii) holds.
Conversely suppose the condition (i) and (ii) hold. Let D be a $\gamma_{M}(G)$ subset of $G-\{v\}$. If $|D|=$ $\gamma_{M}(G)$, then we get a contradiction to (ii). Therefore, $|D| \neq \gamma_{M}(G)$. Suppose $|D|<\gamma_{M}(G)$. Then $|D| \leq \gamma_{M}(G)-1$. Suppose $|N[D]|>\left\lceil\frac{p-1}{2}\right\rceil$. Then $|N[D]| \geq\left\lceil\frac{p}{2}\right\rceil$. Therefore, D is a majority dominating set of G, which is a contradiction to $|D| \leq \gamma_{M}(G)-1$. Hence $|N[D]|=\left\lceil\frac{p-1}{2}\right\rceil$. Let $p \geq 3$, then there exists a vertex $u \neq v, u \notin N[D] .|N[D] \cup\{u\}|=\left\lceil\frac{p-1}{2}\right\rceil+1 \geq\left\lceil\frac{p}{2}\right\rceil$. That implies $D \cup\{u\}$ is a majority dominating set of G. Hence $|D \cup\{u\}|=\gamma_{M}(G)$ and $|D|=\gamma_{M}(G)-1, u \notin D$.
Suppose p is odd. By hypothesis, $v \in D \cup\{u\}$. But $v \neq u$. Therefore, $v \in D$. But D is a γ_{M}-set of $G-v$. It implies that $v \notin D$, a contradiction. Hence $|D| \geq \gamma_{M}(G)$.
Suppose p is even. $D \cup\{u\}$ is a γ_{M}-set of G and $|N[D \cup\{u\}]| \geq\left\lceil\frac{p-1}{2}\right\rceil+1>\frac{p}{2}$. Therefore, $v \in D \cup\{u\}$ but $v \neq u . v \in D$, which is a contradiction to $D \subseteq V(G)-\{v\}$. Hence $|D| \geq \gamma_{M}(G)$. Since $|D| \neq \gamma_{M}(G), \quad|D|>\gamma_{M}(G)$. Therefore, $v \in V_{M}^{+}(G)$.

Theorem 4.2. A vertex $v \in V_{M}^{-}(G)$ if and only if (i) order of the graph is odd. (ii) $\gamma_{M}(G)=\gamma_{M}(G-$ $v)+1$.

Proof. Let $v \in V_{M}^{-}(G)$. Then $\gamma_{M}(G-v)<\gamma_{M}(G)$. Let D be γ_{M}-set of $G-\{v\}$. Then $\left|N_{G-v}[D]\right| \geq$ $\left\lceil\frac{p-1}{2}\right\rceil$ and $\left|N_{G}[D]\right|<\left\lceil\frac{p}{2}\right\rceil$. Let $p=2 n$. Then $\left|N_{G-v}[D]\right| \geq n$ and $\left|N_{G}[D]\right|<n$, a contradiction. Therefore, p is odd. Then $\left|N_{G-v}[D]\right| \geq n$ and $\left|N_{G}[D]\right|<n+1$. Therefore, $\left|N_{G-v}[D]\right|=n$.
Case(i): Let $v \notin N_{G}[D]$. Then $\left|N_{G}[D \cup\{v\}]\right| \geq n+1=\left[\frac{p}{2}\right\rceil$. Therefore, $D \cup\{v\}$ is a majority
dominating set of G. Then $\gamma_{M}(G) \leq|D \cup\{v\}|=\gamma_{M}(G-v)+1$. By hypothesis, $\gamma_{M}(G-v)<$ $\gamma_{M}(G) \leq \gamma_{M}(G-v)+1$.
Case(ii): Let $v \in N_{G}[D]$. Let $u \in V(G)$ such that $u \notin N_{G}[D]$. Then $\left|N_{G}[D \cup\{u\}]\right| \geq n+1=\left\lceil\frac{p}{2}\right\rceil$.
Therefore, $D \cup\{u\}$ is a majority dominating set of G. Proceeding as in case(i), $\gamma_{M}(G)=\gamma_{M}(G-v)+1$. The converse is obvious.

Remark 4.3.

1. For a graph with even number of vertices $V_{M}^{-}(G)=\phi$.
2. Let $V_{M}^{-}(G) \neq \phi$. Then $V_{M}^{-}(G)=V(G)$.
3. $G \in C V R_{M}$ if and only if $V(G)=V_{M}^{-}(G)$.

References

[1] T.W. Haynes and S.T. Hedetniemi Peter J. Slater, Fundamentals of Domination in Graphs, 1998, Marcel Dekker, Inc., New york.
[2] J. Joseline Manora and V. Swaminathan, Majority Domatic number of a Graph, Global Journal of Pure and Applied Mathematics, Vol. 6, No. 3(2010), 275-283.
[3] J. Joseline Manora and V. Swaminathan, Majority Neighbourhood Number of Graph, Scientia Magna, Northwest University, P.R.China, Vol(6), No.2(2010), 20-25.
[4] J. Joseline Manora and V. Swaminathan, Majority Domination Edge Critical Graphs, International Journal of Contemporary Mathematical Sciences, Bulgaria, Vol(6), No.37(2011), 1829 1834.
[5] J. Joseline Manora and V. Swaminathan, Results on Majority Dominating Sets, Scientia Magna, Dept. of Mathematics, Northwest University, X'tian, P.R.China - Vol. 7, No.3(2011), 53-58.
[6] D.P. Summer and P. Blitch, Domination critical graphs, Combin, J., Theory Ser.B, 34(1983), 6576.
[7] V. Swaminathan and J. Joseline Manora, Majority Dominating Sets in Graphs - I - Jamal Academic Research Journal, Vol. 3, No. 2(2006), 75-82.
[8] H.B. Waliker and B.D. Acharya, Domination Critical Graphs, Nat. Acad. Sci. Letters, Vol. 2, No.2(1979).

