International Journal of Mathematics and Soft Computing Vol.3, No.1 (2013), 47 - 51.

Majority domination vertex critical graphs

J. Joseline Manora Department of Mathematics, T.B.M.L. College, Porayar, Tamilnadu, INDIA-609307. E-mail: mssraomaths35@rediffmail.com

V. Swaminathan

Ramanujan Research Center, Saraswathi Narayanan College, Madurai, Tamilnadu, INDIA–625022. E-mail: sulanesri@yahoo.com

Abstract

This paper deals the graphs for which the removal of any vertex changes the majority domination number of the graph. In the following section, how the removal of a single vertex from G can change the majority domination number is surveyed for trees. Characterisation of $V_M^+(G)$ and $V_M^-(G)$ are determined.

Keywords: Majority Dominating Set, γ_M -critical vertex and graphs. AMS Subject Classification(2010): 05C69.

1 Introduction

By a graph we mean a finite undirected graph without loops or multiple edges. Let G = (V, E) be a finite graph with p vertices and q edges and v be a vertex in V(G). The closed neighborhood of v is defined by $N[v] = N(v) \cup \{v\}$. The closed neighborhood of a set of vertices S is denoted as N[S] and is $\bigcup_{s \in S} N[s]$.

Definition 1.1. [7]. A subset $S \subseteq V$ of vertices in a graph G = (V, E) is called a Majority Dominating Set if at least half of the vertices of V(G) are either in S or adjacent to elements of S. That is, $|N[S]| \ge \left\lceil \frac{|V(G)|}{2} \right\rceil$.

A majority dominating set S is minimal if no proper subset of S is a majority dominating set.

The minimum cardinality of a minimal majority dominating set is called the majority domination number and is denoted by $\gamma_M(G)$.

The maximum cardinality of a minimal majority dominating set is denoted by $\Gamma_M(G)$. Majority dominating sets have super hereditary property.

Change of majority domination number in the case of removal of a single vertex is defined and studied. Here, CVR means the change in vertex removal of a graph G and UVR means unchanged vertex removal of a graph G. The graphs in CVR were characterisied by Bauer et al. and H. B. Waliker and B. D. Acharya [8].

Definition 1.2. [4]. For any graph G, CVR and UVR with respect to majority domination is defined by CVR_M : $\gamma_M(G-u) \neq \gamma_M(G)$, for all $u \in V(G)$. UVR_M : $\gamma_M(G-u) = \gamma_M(G)$, for all $u \in V(G)$. **Definition 1.3.** For any graph G, the vertex set can be partitioned with respect to majority domination into three sets $V_M^0(G)$, $V_M^-(G)$ and $V_M^+(G)$ and is defined by $V_M^0(G) = \{u \in V(G) : \gamma_M(G-u) = \gamma_M(G)\}$ $V_M^-(G) = \{u \in V(G) : \gamma_M(G-u) < \gamma_M(G)\}$

 $V_M^+(G) = \{ u \in V(G) : \gamma_M(G-u) > \gamma_M(G) \}.$

2 Change of $\gamma_M(G)$ for Trees

Proposition 2.1. Let T be a tree with even numbers of vertices. Then $\gamma_M(T - u) \ge \gamma_M(T)$ for every $u \in V(T)$.

Proof. Suppose $\gamma_M(T-u) < \gamma_M(T)$. Let $D = \{w_1, w_2, ..., w_s\}$ be a γ_M -set of T-u. (i. e.), $\left\lceil \frac{p-1}{2} \right\rceil \leq |N[D]| < \lceil \frac{p}{2} \rceil$. Given p = 2r, then $r \leq |N[D]| < r$, a contradiction.

Proposition 2.2. Let T be a tree with odd number of vertices. Let D be a γ_M -set of T. Let $u \in V - D$. Then $\gamma_M(T - u) \leq \gamma_M(T)$.

Proposition 2.3. Let T be a tree. Let D be a γ_M -set of T such that there exists $u \in V(T)$ with $u \notin N[D]$. Then $\gamma_M(T-u) \leq \gamma_M(T)$.

Corollary 2.4. Let T be a tree with even number of vertices. Let D be a γ_M -set of T such that there exists a vertex $u \in V(T)$ with $u \notin N[D]$. Then $\gamma_M(T-u) = \gamma_M(T)$.

Proposition 2.5. Let T be a tree. Let $u \in V(T)$. Suppose there exists a γ_M -set of D of T such that $u \notin N[D]$ and there exists a γ_M -set D_1 of T - u with $|N[D_1]| \ge \left\lceil \frac{p}{2} \right\rceil$. Then $\gamma_M(T - u) = \gamma_M(T)$.

Proof. Since $|N[D_1]| \ge \lceil \frac{p}{2} \rceil$, D_1 is a majority dominating set of T. Therefore, $\gamma_M(T) \le |D_1| = \gamma_M(T-u)$. Since there exists a γ_M -set D of T such that $u \notin N[D]$, $\gamma_M(T-u) \le \gamma_M(T)$.

Definition 2.6. Let $S \subseteq V(G)$. Let $x \in V(G)$. If $x \in S$, then pn[x, S] = N[x] - N[S - x]. If $x \notin S$, then pn[x, S] = N[x] - N[S].

Theorem 2.7. Let *T* be a tree . Let *u* be a pendent vertex and *v* be its support. Let *D* be a γ_M -set of T - u such that there exists a vertex $v \in V - D$ with the property that |pn[v, D]| > |pn[x, D]| for some $x \in D$. Then $\gamma_M(T) = \gamma_M(T - u)$.

Proof. Let S be a γ_M -set of T. If $u, v \notin S$, then $S - \{u\}$ is a majority dominating set of $T - \{u\}$. Therefore, $\gamma_M(T - u) \leq |S - \{u\}| = |S| = \gamma_M(T)$.

Let $v \in S$. Then $u \notin S$. Therefore, $\gamma_M(T-u) \leq |S-\{u\}| = |S| = \gamma_M(T)$. Suppose $u \in S$ and $v \notin S$.

S. Let $S_1 = (S - \{u\}) \cup \{v\}$. Therefore, S_1 is a majority dominating set of T of cardinality $\gamma_M(T)$ and $v \in S_1$. By the previous argument, $\gamma_M(T - u) \leq \gamma_M(T)$ (1) Given D is a γ_M -set of $T - \{u\}$ such that there exists a vertex $v \in V - D$ with the property that |pn[v, D]| > |pn[x, D]| for some $x \in D$. Therefore, $(D - \{x\}) \cup \{v\}$ is a majority dominating set of T. Hence, $\gamma_M(T) \leq |(D - \{x\}) \cup \{v\}| = \gamma_M(T - u)$ (2). Then, $\gamma_M(T) = \gamma_M(T - u)$.

Proposition 2.8. Let T be a tree with even number of vertices. Then there exists a pendent vertex $u \in V(T)$ such that $\gamma_M(T-u) = \gamma_M(T)$.

3 Change of $\gamma_M(G)$ for Graphs

Theorem 3.1. In any graph G with an isolate, there exists a γ_M -set of G not containing that isolate.

Remark 3.2.

- 1. Let v be an isolate and D be a γ_M -set of G not containing v. Then D v majority dominates G v. Therefore, $\gamma_M(G v) \leq |D v| = \gamma_M(G)$.
- 2. Let $v \in V_M^+(G)$. Then v is not an isolate of G.

Theorem 3.3. Let G be a graph of odd order. Let $v \in V_M^+(G)$. Then v belongs to every γ_M -set of G.

Proof. Let $v \in V_M^+(G)$. Suppose there exists a γ_M -set D such that $v \notin D$. Let $v \notin N[D]$. Then $|N[D]| \ge \lceil \frac{p}{2} \rceil \ge \lceil \frac{p-1}{2} \rceil$ in G - v.

Therefore, $\gamma_M(G-v) \leq |D| = \gamma_M(G)$ implies $v \notin V_M^+(G)$, a contradiction. Hence $v \in N[D]$. If $|N[D]| > \lceil \frac{p}{2} \rceil$ in G, then $|N[D]| \geq \lceil \frac{p}{2} \rceil$ in G-v. Therefore, D is a majority dominating set of G-v. It implies $v \notin V_M^+(G)$, a contradiction. Hence $|N[D]| = \lceil \frac{p}{2} \rceil$ in G. Then $|N[D]| = \lceil \frac{p}{2} \rceil - 1$ in G-v. Given p is odd, D is a majority dominating set in G-v, a contradiction to $v \in V_M^+(G)$. Thus v belongs to every γ_M -set of G.

Theorem 3.4. Let G be a graph. Let $v \in V_M^+(G)$ Then v belongs to N[D] for every γ_M -set D of G.

Remark 3.5. 1. If G is of odd order, then any vertex in $V_M^+(G)$ belongs to every γ_M -set of G.

2. If G is of even order, then any vertex in $V_M^+(G)$ belongs to every γ_M -set D of G such that $|N[D]| > \frac{p}{2}$ and belongs to N[D] if $|N[D]| = \frac{p}{2}$.

Proposition 3.6. Let G be any graph. Let $v \in V_M^+(G)$. Then there exists a vertex $w \in V(G)$ such that $\gamma_M(G-w) = \gamma_M(G)$.

Proof. Let O(G) = 2n + 1. Let $D = \{v, u_1, u_2, ..., u_{k-1}\}$ be a γ_M -set of G. Let $w \in V - D$ (note that $V - D \neq \phi$. Then $D \subset V - w$. Now, $|N_G[D]| \ge \lceil \frac{p}{2} \rceil = n + 1$. Therefore, $|N_{G-w}[D]| \ge n$. Then $\gamma_M(G - w) \le |D| = \gamma_M(G)$. If $\gamma_M(G - w) < \gamma_M(G)$, then $w \in V_M^-(G)$. Then $V = V_M^-(G)$, a

contradiction since $V_M^+(G) \neq \phi$.

Let G be a graph of order 2n. Let D be a γ_M -set of G.

Case(i): Let $N[D] \neq V(G)$. Then there exists $w \notin N[D]$. Therefore, $w \notin D$. Then $D \subseteq V - w$ and $|N_G[D]| \ge \left\lceil \frac{p}{2} \right\rceil = n$. Therefore, $|N_{G-w}[D]| \ge n$ (since $w \notin N[D]) \Rightarrow |N_{G-w}[D]| = \left\lceil \frac{p-1}{2} \right\rceil$. Therefore, D is a majority dominating set of G-w. Then $\gamma_M(G-w) \le |D| = \gamma_M(G)$. If $\gamma_M(G-w) < \gamma_M(G)$, then $w \in V_M^-(G)$. Then $V(G) = V_M^-(G)$, a contradiction since $V_M^+(G) \neq \phi$. **Case(ii):** Let N[D] = V(G). Now, $|N_G[D]| = 2n$. Therefore, $|N_{G-w}[D]| = 2n - 1 \ge n = \left\lceil \frac{p-1}{2} \right\rceil$, for all $n \ge 1$. Then $\gamma_M(G-w) \le |D| = \gamma_M(G)$. If $\gamma_M(G-w) < \gamma_M(G)$, then $w \in V_M^-(G)$. Then $V(G) = V_M^-(G)$. If $\gamma_M(G-w) < \gamma_M(G)$, then $w \in V_M^-(G)$.

4 Characterisation of $V_M^+(G)$ and $V_M^-(G)$

Theorem 4.1. A vertex $v \in V_M^+(G)$ if and only if $v \in V(G)$ satisfies the following conditions: (i) v is not an isolate and v belongs to every γ_M -set D of G if G is of odd order. If G is of even order, v belongs to every γ_M -set D of G such that $|N[D]| > \frac{p}{2}$ and belongs to N[D] if $|N[D]| = \frac{p}{2}$. (ii) No subset of $V(G) - \{v\}$ of cardinality $\gamma_M(G)$ majority dominates $G - \{v\}$.

Proof. Suppose $v \in V_M^+(G)$. Then by remarks 3.2, the theorem 3.3 and remarks 3.5, the condition (i) holds.

Let $D \subseteq V(G) - \{v\}$ and $|D| = \gamma_M(G)$. Suppose D majority dominates $G - \{v\}$. Then $\gamma_M(G - \{v\}) \leq |D| = \gamma_M(G)$, a contradiction to $v \in V_M^+(G)$. Hence the condition (ii) holds.

Conversely suppose the condition (i) and (ii) hold. Let D be a $\gamma_M(G)$ subset of $G - \{v\}$. If $|D| = \gamma_M(G)$, then we get a contradiction to (ii). Therefore, $|D| \neq \gamma_M(G)$. Suppose $|D| < \gamma_M(G)$. Then $|D| \leq \gamma_M(G) - 1$. Suppose $|N[D]| > \left\lceil \frac{p-1}{2} \right\rceil$. Then $|N[D]| \geq \left\lceil \frac{p}{2} \right\rceil$. Therefore, D is a majority dominating set of G, which is a contradiction to $|D| \leq \gamma_M(G) - 1$. Hence $|N[D]| = \left\lceil \frac{p-1}{2} \right\rceil$. Let $p \geq 3$, then there exists a vertex $u \neq v$, $u \notin N[D]$. $|N[D] \cup \{u\}| = \left\lceil \frac{p-1}{2} \right\rceil + 1 \geq \left\lceil \frac{p}{2} \right\rceil$. That implies $D \cup \{u\}$ is a majority dominating set of G. Hence $|D \cup \{u\}| = \gamma_M(G)$ and $|D| = \gamma_M(G) - 1$, $u \notin D$.

Suppose p is odd. By hypothesis, $v \in D \cup \{u\}$. But $v \neq u$. Therefore, $v \in D$. But D is a γ_M -set of G - v. It implies that $v \notin D$, a contradiction. Hence $|D| \geq \gamma_M(G)$.

Suppose p is even. $D \cup \{u\}$ is a γ_M -set of G and $|N[D \cup \{u\}]| \ge \left\lceil \frac{p-1}{2} \right\rceil + 1 > \frac{p}{2}$. Therefore, $v \in D \cup \{u\}$ but $v \ne u$. $v \in D$, which is a contradiction to $D \subseteq V(G) - \{v\}$. Hence $|D| \ge \gamma_M(G)$. Since $|D| \ne \gamma_M(G)$, $|D| > \gamma_M(G)$. Therefore, $v \in V_M^+(G)$.

Theorem 4.2. A vertex $v \in V_M^-(G)$ if and only if (i) order of the graph is odd. (ii) $\gamma_M(G) = \gamma_M(G - v) + 1$.

Proof. Let $v \in V_M^-(G)$. Then $\gamma_M(G-v) < \gamma_M(G)$. Let D be γ_M -set of $G - \{v\}$. Then $|N_{G-v}[D]| \ge \lfloor \frac{p-1}{2} \rfloor$ and $|N_G[D]| < \lfloor \frac{p}{2} \rfloor$. Let p = 2n. Then $|N_{G-v}[D]| \ge n$ and $|N_G[D]| < n$, a contradiction. Therefore, p is odd. Then $|N_{G-v}[D]| \ge n$ and $|N_G[D]| < n + 1$. Therefore, $|N_{G-v}[D]| = n$.

Case(i): Let $v \notin N_G[D]$. Then $|N_G[D \cup \{v\}]| \ge n+1 = \lceil \frac{p}{2} \rceil$. Therefore, $D \cup \{v\}$ is a majority

dominating set of G. Then $\gamma_M(G) \leq |D \cup \{v\}| = \gamma_M(G - v) + 1$. By hypothesis, $\gamma_M(G - v) < \gamma_M(G) \leq \gamma_M(G - v) + 1$. **Case(ii):** Let $v \in N_G[D]$. Let $u \in V(G)$ such that $u \notin N_G[D]$. Then $|N_G[D \cup \{u\}]| \geq n + 1 = \lceil \frac{p}{2} \rceil$.

Therefore, $D \cup \{u\}$ is a majority dominating set of G. Proceeding as in case(i), $\gamma_M(G) = \gamma_M(G-v)+1$. The converse is obvious.

Remark 4.3.

- 1. For a graph with even number of vertices $V_M^-(G) = \phi$.
- 2. Let $V_M^-(G) \neq \phi$. Then $V_M^-(G) = V(G)$.
- 3. $G \in CVR_M$ if and only if $V(G) = V_M^-(G)$.

References

- [1] T.W. Haynes and S.T. Hedetniemi Peter J. Slater, *Fundamentals of Domination in Graphs*, 1998, Marcel Dekker, Inc., New york.
- [2] J. Joseline Manora and V. Swaminathan, *Majority Domatic number of a Graph*, Global Journal of Pure and Applied Mathematics, Vol. 6, No. 3(2010), 275 - 283.
- [3] J. Joseline Manora and V. Swaminathan, *Majority Neighbourhood Number of Graph*, Scientia Magna, Northwest University, P.R.China, Vol(6), No.2(2010), 20-25.
- [4] J. Joseline Manora and V. Swaminathan, *Majority Domination Edge Critical Graphs*, International Journal of Contemporary Mathematical Sciences, Bulgaria, Vol(6), No.37(2011), 1829 -1834.
- [5] J. Joseline Manora and V. Swaminathan, *Results on Majority Dominating Sets*, Scientia Magna, Dept. of Mathematics, Northwest University, X'tian, P.R.China - Vol. 7, No.3(2011), 53-58.
- [6] D.P. Summer and P. Blitch, *Domination critical graphs*, Combin, J., Theory Ser.B, 34(1983), 65-76.
- [7] V. Swaminathan and J. Joseline Manora, *Majority Dominating Sets in Graphs I Jamal Academic Research Journal*, Vol. 3, No. 2(2006), 75 82.
- [8] H.B. Waliker and B.D. Acharya, *Domination Critical Graphs*, Nat. Acad. Sci. Letters, Vol. 2, No.2(1979).