International Journal of Mathematics and Soft Computing Vol.3, No.1 (2013), 29 - 35.

Multipliers of Hypersemilattices

M. Sambasiva Rao Department of Mathematics, MVGR College of Engineering, Chintalavalasa, Vizianagaram, Andhra Pradesh, INDIA-535005.

E-mail: mssraomaths35@rediffmail.com

Abstract

The notion of multipliers is introduced in a hypersemilattice and some properties of multipliers are studied. In addition, a set of equivalent conditions are established for two multipliers of a hypersemilattice to be equal in the sense of mappings. Further, the properties of invariance subsets and invariance congruences are studied with respect to multipliers.

Keywords: Hypersemilattice, multiplier, ideal, fixed element, *f*-invariant subset, *f*-invariant congruence.

AMS Subject Classification(2010): 06A06, 54A10.

1 Introduction

The theory of hyper algebras (multi-algebras) was introduced by F. Marty [3] in 1934. Hyper algebras has many applications to several branches of both pure Mathematics and applied Mathematics such as hypergroups [1], hyperrings [4], hyper *BCI*-algebras [6] and so on. In 2011, K.H. Kim [2] introduced and studied the properties of multipliers in BE-algebras.

The aim of this paper is to introduce and study the properties of multipliers in hypersemilattices. The images and inverse images of ideals under a multiplier are studied. The multipliers of direct products of hypersemilattices are studied. A set of equivalent conditions are derived for two multipliers to be equal. Finally, the concept of multiplier invariant congruences θ is introduced and obtained a necessary condition for the existence of multiplier of the quotient algebra L/θ .

For the notions and notations, the reader is referred to [7]. However, some of the preliminary definitions and results are presented for the ready reference of the readers. Throughout the rest of this note, Lstands for a hypersemilattice unless otherwise mentioned.

Definition 1.1. [4] Let *L* be a non-empty set and P(L) denotes the power set of *L*, $P^*(L) = P(L) - \emptyset$. A binary hyperoperation \circ on *L* is a function from $L \times L$ into $P^*(L)$. The image of pair (x, y) is denoted by $x \circ y$.

Let A, B be two non-empty subsets of L and $x \in L$. Then the sets $A \circ B$, $A \circ c$ and $c \circ C$ can be considered as follows:

(1)
$$x \circ A = \bigcup_{a \in A} (x \circ a)$$

(2) $A \circ x = \bigcup_{a \in A} (a \circ x)$
(3) $A \circ B = \bigcup_{a \in A, b \in B} (a \circ b)$

Definition 1.2. [4] Let L be a non-empty set with a binary hyperoperation \otimes on L satisfying the following conditions, for all $a, b, c \in L$,

- (1) $a \in a \otimes a$ (2) $a \otimes b = b \otimes a$
- (3) $(a \otimes b) \otimes c = a \otimes (b \otimes c)$

Then (L, \otimes) is called a hypersemi-lattice.

Definition 1.3. [4] Let (L, \otimes) be a hypersemi-lattice. An element $a \in L$ is called an absorbent element of L if $c \in a \otimes c$ for all $c \in L$. An element $b \in L$ is called a fixed element of L if $b \otimes c = \{b\}$ for all $c \in L$.

Proposition 1.4. [7] Let *L* be a non-empty set and \otimes a binary hyperoperation on *L*. Then (L, \otimes) is a hypersemilattice if and only if for all $A, B, C \in P^*(L)$, the following conditions hold

(a) $A \subseteq A \otimes A$ (b) $A \otimes B = B \otimes A$ (c) $(A \otimes B) \otimes C = A \otimes (B \otimes C)$

Definition 1.5. [4] Let (L, \otimes) be a hypersemilattice and N a nonempty subset of L. We say that N is an ideal of (L, \otimes) if $a \otimes N \subseteq N$ for all $a \in L$. An ideal N of L is called proper if $N \neq L$.

Theorem 1.6. [7] Let (L, \otimes) be hypersemilattice and N a nonempty subset of L. Then the following conditions are equivalent:

- (1) N is an ideal of L
- (2) $a \otimes n \in P^*(N)$ for all $a \in L$ and $n \in N$
- (3) $L \otimes N \subseteq N$

Definition 1.7. [7] Let (L, \otimes) be a hypersemilattice and $a, b \in L$. We say that $a \leq_L b$ if $a \otimes c \subseteq b \otimes c$ for all $c \in L$. In this case, we call \leq_L the hyperorder on hypersemilattice L.

Proposition 1.8. [7] Let N be an ideal of a hypersemi-lattice L and $a \in L$. If $b \leq_L a$, then $b \in N$.

Definition 1.9. [4] Let (L, \otimes) be a hypersemilattice and θ an equivalence relation on L. We say that, $(A, B) \in \theta$ if and only if to each $a \in A$, there exists $b \in B$ such that $(a, b) \in \theta$ for any $A, B \subseteq L$.

Definition 1.10. [4] Let (L, \otimes) be a hypersemilattice. An equivalence relation θ on L is said to be a congruence relation on L if for any $a, b, c, d \in L$, $(a, b) \in \theta$ and $(c, d) \in \theta$ imply $(a \otimes c, b \otimes d) \in \theta$. We denote the equivalence class of any $x \in L$ by $[x]_{\theta} = \{y \in L \mid (x, y) \in \theta\}$

2 Multipliers of hypersemilattices

In this section, the notion of multipliers is introduced in hypersemilattices and their properties are studied. The invariant properties of a subset and a congruence under a multiplier are studied in a hypersemilattice.

Definition 2.1. Let (L, \otimes) be a hypersemilattice. Then a self mapping $f : L \longrightarrow L$ is called a multiplier of *L* if for all $a, b \in L$ it satisfies

$$f(a \otimes b) = a \otimes f(b)$$

Example 2.2. Let $L = \{a, b, c\}$ and \otimes a binary hyperoperation on L defined as follows:

\otimes	а	b	С
а	<i>{a}</i>	{ <i>a</i> }	<i>{a}</i>
b	<i>{a}</i>	{ <i>a</i> , <i>b</i> }	<i>{a}</i>
c	<i>{a}</i>	{ <i>a</i> }	{ <i>c</i> }

Then (L, \otimes) is a hypersemilattice. Now define $f : L \longrightarrow L$ as follows:

$$f(x) = \begin{cases} a & \text{if } x = a, b \\ c & \text{if } x = c \end{cases}$$

It can be easily observed that f is a multiplier of L.

Lemma 2.3. Let (L, \otimes) be a hypersemilattice and f a multiplier of L. Then for any $a, b, c \in L$, we have the following:

- (1) if a is a fixed element then f(a) = a
- (2) $a \otimes f(b) = f(a) \otimes b$
- (3) $a \leq_L b$ implies that $f(a) \leq_L f(b)$

Proof. (1) Let a be a fixed element of L. Then $a \otimes c = \{a\}$ for all $c \in L$. Since $a \in a \otimes a$, we get $f(a) \in f(a \otimes a) = a \otimes f(a) = \{a\}$. Hence f(a) = a.

(2) For any $a, b \in L$, $a \otimes f(b) = f(a \otimes b) = f(b \otimes a) = b \otimes f(a) = f(a) \otimes b$.

(3) Suppose $a \leq_L b$. For any $c \in L$, we get that $f(a) \otimes c = f(a \otimes c) \subseteq f(b \otimes c) = f(b) \otimes c$. Therefore $f(a) \leq_L f(b)$.

Proposition 2.4. Let (L, \otimes) be a hypersemilattice. Then every idempotent multiplier of *L* is a homomorphism.

Proof. Let f be an idempotent multiplier of L. Then $f^2(x) = f(x)$ for all $x \in L$. Let $a, b \in L$. Then

$$f(a \otimes b) = f^2(a \otimes b) = f(f(a \otimes b)) = f(a \otimes f(b)) = f(a) \otimes f(b)$$

Therefore, f is a homomorphism of L.

Proposition 2.5. Let (L, \otimes) be a hypersemilattice. For any $a \in L$, define the self mapping $f_a : L \longrightarrow L$ by $f_a(x) = t$ if and only if $t \in a \otimes x$ for all $x \in L$. Then f_a is a multiplier of L.

Proof. Fix $a \in L$. Let $x, y \in L$. Suppose $f_a(x \otimes y) = t$. Then

$$t \in a \otimes (x \otimes y)$$
$$= (a \otimes x) \otimes y$$
$$= (x \otimes a) \otimes y$$
$$= x \otimes (a \otimes y)$$

Hence $t = x \otimes c$ for some $c \in a \otimes y$. Now $c \in a \otimes y$ implies that $f_a(y) = c$. Therefore $t = x \otimes c = x \otimes f_a(y)$. Thus $f_a(x \otimes y) = t = x \otimes f_a(y)$. Therefore f_a is a multiplier of L.

Remark 2.6. The composition of two multipliers f and g of a hypersemilattice L is also a multiplier of L where $(f \circ g)(x) = f(g(x))$ for all $x \in L$.

Let L_1 and L_2 be two hypersemilattices. Then $L_1 \times L_2$ is also a hypersemilattice [5] with respect to the operation given by:

$$(a,b) \otimes (c,d) = \{(x,y) \mid x \in a \otimes c, y \in b \otimes d\}$$

Now, we introduce the multipliers of direct products.

Proposition 2.7. Let (L_1, \otimes) and (L_2, \otimes) be two hypersemilattices and k a fixed element of L_2 . Define a self mapping $f : L_1 \times L_2 \longrightarrow L_1 \times L_2$ by f(x, y) = (x, k) for all $(x, y) \in L_1 \times L_2$. Then f is a multiplier of the direct product $L_1 \times L_2$.

Proof. Let $(x_1, x_2), (y_1, y_2) \in L_1 \times L_2$. Then we get

$$f((x_1, x_2) \otimes (y_1, y_2)) = f(\{(x, y) \mid x \in x_1 \otimes y_1, y \in x_2 \otimes y_2\})$$

= $\{(x, k) \mid x \in x_1 \otimes y_1\}$
= $\{(x, k) \mid x \in x_1 \otimes y_1, k \in x_2 \otimes k\}$
= $(x_1, x_2) \otimes (y_1, k)$
= $(x_1, x_2) \otimes f(y_1, y_2)$

Therefore, f is a multiplier of the direct product $L_1 \times L_2$.

Proposition 2.8. Let f be a multiplier of a hypersemilattice (L, \otimes) . Then we have the following:

- (1) If a is a fixed element of L, then $f^{-1}(a)$ is an ideal of L.
- (2) If M is an ideal of L, then f(M) is an ideal of L.
- (3) If M is an ideal of L, then $f^{-1}(M)$ is an ideal of L.

Proof. (1) Let a be a fixed element of L. Let $x \in f^{-1}(a)$. Then f(x) = a. For any $m \in L$, we have $f(m \otimes x) = m \otimes f(x) = m \otimes a = \{a\}$, because of a is a fixed element. Hence $m \otimes x \subseteq f^{-1}(a)$. Thus $f^{-1}(a)$ is an ideal of L.

(2) Let M be an ideal of L. Let x ∈ L and y ∈ f(M). Then y = f(a) for some a ∈ M. Since M is an ideal, we get that x ⊗ a ⊆ M. Now x ⊗ f(a) = f(x ⊗ a) ⊆ f(M). Therefore f(M) is an ideal of L.
(3) Let M be an ideal of L. Let x ∈ L and a ∈ f⁻¹(M). Then f(a) ∈ M. Since M is an ideal, we get that f(x ⊗ a) = x ⊗ f(a) ⊆ x ⊗ M ⊆ M. Thus x ⊗ a ⊆ f⁻¹(M). Hence f⁻¹(M) is an ideal of L.

Definition 2.9. Let f be a multiplier of (L, \otimes) . Define $\triangle_f(L) = \{x \in L \mid f(x) = x\}$.

Clearly every fixed element of L is a member of $\triangle_f(L)$. If f is an idempotent multiplier, then clearly $f(x) \in \triangle_f(L)$ for all $x \in L$.

Theorem 2.10. Let f and g be two idempotent multipliers of a hypersemilattice L such that $f \circ g = g \circ f$. Then the following conditions are equivalent.

- (1) f = g.
- (2) f(L) = g(L).
- (3) $\triangle_f(L) = \triangle_g(L).$

Proof. $(1) \Rightarrow (2)$: It is obvious.

(2) \Rightarrow (3): Assume that f(L) = g(L). Let $x \in \Delta_f(L)$. Then we get $x = f(x) \in f(L) = g(L)$. Hence x = g(y) for some $y \in L$. Now $g(x) = g^2(y) = g(y) = x$. Thus $x \in \Delta_g(L)$. Therefore, $\Delta_f(L) \subseteq \Delta_g(L)$. Similarly, we can obtain that $\Delta_g(L) \subseteq \Delta_f(L)$. Therefore $\Delta_f(L) = \Delta_g(L)$. (3) \Rightarrow (1): Assume that $\Delta_f(L) = \Delta_g(L)$. Let $x \in L$. Since $f(x) \in \Delta_f(L) = \Delta_g(L)$, we get

g(f(x)) = f(x). Also we have $g(x) \in \triangle_g(L) = \triangle_f(L)$. Hence, f(g(x)) = g(x). Thus we have

$$f(x) = g(f(x)) = (g \circ f)(x) = (f \circ g)(x) = f(g(x)) = g(x)$$

Therefore, f = g.

Definition 2.11. Let f be a multiplier of a hypersemilattice L. A subset S of L is called f-invariant if $x \in S$ implies $f(x) \in S$.

Note that \emptyset and L are the f-invariant subsets of L. Also $\triangle_f(L)$ is an f-invariant subset of L. Let us denote the set of all f-invariant subsets of a hypersemilattice by $I_f(L)$.

Theorem 2.12. Let f be a multiplier of a hypersemilattice (L, \otimes) . Then $(I_f(L), \otimes)$ is a hypersemilattice.

Proof. Let $A, B \in I_f(L)$. Let $x \in A \otimes B$. Then $x = a \otimes b$ for some $a \in A$ and $b \in B$. Hence $f(x) = f(a \otimes b) = a \otimes f(b) \in A \otimes B$. Therefore $A \otimes B$ is *f*-invariant. It is clear that $A \subseteq A \otimes A$ for any $A \subseteq L$. Again, we have $x = a \otimes b = b \otimes a$. Hence, $A \otimes B = B \otimes A$. In a similar way, we can prove that $(A \otimes B) \otimes C = A \otimes (B \otimes C)$ for any $A, B, C \in I_f(L)$. Therefore, $(I_f(L), \otimes)$ is a hypersemilattice.

We now introduce a congruence on L in terms of multipliers.

Proposition 2.13. Let f be a multiplier of a hypersemilattice (L, \otimes) . Define a relation θ_f on L by $(x, y) \in \theta_f$ if and only if f(x) = f(y) for all $x, y \in L$. Then θ_f is a congruence on L.

Proof. Clearly θ_f is an equivalence relation on L. Let $(a, b), (c, d) \in \theta_f$. Then f(a) = f(b) and f(c) = f(d). Let $x \in a \otimes c$. Then $f(x) \in f(a \otimes c) = a \otimes f(c) = a \otimes f(d) = f(a \otimes d) = f(a) \otimes d = f(b) \otimes d = f(b \otimes d)$. Hence f(x) = f(y) for some $y \in b \otimes d$. Therefore $(a \otimes c, b \otimes d) \in \theta_f$.

Definition 2.14. Let f be a multiplier of L. A congruence θ on L is called f-invariant if it satisfies the following property:

$$(x,y) \in \theta$$
 if and only if $(f(x), f(y)) \in \theta$ for all $x, y \in L$

In [5], the author proved that L_{θ} is a hyperlattice for any congruence θ on a hyperlattice L. Hence the following result is a similar observation.

Theorem 2.15. If θ is a congruence on *L*, then L/θ is a hypersemilattice.

In view of Theorem 2.15, we conclude this article with the existence of an injective multiplier on the quotient lattice L_{θ} , where θ is an *f*-invariant congruence on *L*.

Theorem 2.16. Let f be an injective multiplier of an a hypersemilattice L. If θ is an f-invariant congruence on L, then there exists an injective multiplier on L/θ .

Proof. By Theorem 2.16, L/θ is a hypersemilattice. Define $h: L/\theta \longrightarrow L/\theta$ by $h([x]_{\theta}) = [f(x)]_{\theta}$ for all $[x]_{\theta} \in L/\theta$. Clearly h is well defined. Let $[x]_{\theta}, [y]_{\theta} \in L/\theta$ be such that $h([x]_{\theta}) = h([y]_{\theta})$. Then $[f(x)]_{\theta} = [f(y)]_{\theta}$. Hence $(f(x), f(y)) \in \theta$. Since θ is invariant under f, we get $(x, y) \in \theta$. Thus $[x]_{\theta} = [y]_{\theta}$. Therefore, h is injective. Again

$$h([x]_{\theta} \otimes [y]_{\theta}) = h(\{[t]_{\theta} \mid t \in x \otimes y\})$$

$$= \{[f(t)]_{\theta} \mid t \in x \otimes y\}$$

$$= \{[f(t)]_{\theta} \mid f(t) \in f(x \otimes y)\}$$

$$= \{[f(t)]_{\theta} \mid f(t) \in x \otimes f(y)\}$$

$$= [x]_{\theta} \otimes [f(y)]_{\theta}$$

$$= [x]_{\theta} \otimes h([y]_{\theta})$$

Therefore, h is an injective multiplier of L/θ .

References

- [1] J. James, *Transposition hypergroups:Noncommutative Join Spaces*, Journal of Algebra, 187(1997), 97-119.
- [2] K.H. Kim, *Multipliers in BE-algebras*, Inter. Mathematical Forum, 6, No.17(2011), 815-820.

- [3] F. Marty, *Surene generalization de la notion de group*, In eighth Congress Math., Scandinaves, Stockholm, (1934), 45-49.
- [4] R. Rosaria, Hyperaffine planes over hyperrings, Discrete Mathematics, 155(1996), 215-223.
- [5] P. Srinivasa Rao, *Direct products of hyperlattices*, Inter. Journal of Computational Cognition, 8, No.3 (2010), 104-107.
- [6] X. L. Xin, *Hyper BCI-algebras*, Discussion Mathematicae General Algebra and Applications, 26(2006), 5-19.
- [7] Bin Zhao, Ying Xiao and W. Sheng Han, Hypersemilattices.