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Abstract

The notion of multipliers is introduced in a hypersemilattice and some properties of multipliers
are studied. In addition, a set of equivalent conditions are established for two multipliers of a
hypersemilattice to be equal in the sense of mappings. Further, the properties of invariance subsets
and invariance congruences are studied with respect to multipliers.
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1 Introduction

The theory of hyper algebras (multi-algebras) was introduced by F. Marty [3] in 1934. Hyper al-
gebras has many applications to several branches of both pure Mathematics and applied Mathematics
such as hypergroups [1], hyperrings [4], hyde€ [-algebras [6] and so on. In 2011, K.H. Kim [2]
introduced and studied the properties of multipliers in BE-algebras.

The aim of this paper is to introduce and study the properties of multipliers in hypersemilattices. The
images and inverse images of ideals under a multiplier are studied. The multipliers of direct products
of hypersemilattices are studied. A set of equivalent conditions are derived for two multipliers to be
equal. Finally, the concept of multiplier invariant congruengéesintroduced and obtained a necessary
condition for the existence of multiplier of the quotient algebyd.

For the notions and notations, the reader is referred to [7]. However, some of the preliminary defini-
tions and results are presented for the ready reference of the readers. Throughout the rest of this note,
stands for a hypersemilattice unless otherwise mentioned.

Definition 1.1. [4] Let L be a non-empty set arfd( L) denotes the power set &f P*(L) = P(L) — 0.
A binary hyperoperation on L is a function fromL x L into P*(L). The image of pair (x, y) is denoted
by x o y.

Let A, B be two non-empty subsets @fandz € L. Then the setsl o B, Ao c andc o C can be
considered as follows:

1) z0cA= U (xoa)

a€A

@ Aox="U (aoa)
acA

8) AoB= |J (aob)
a€AbEB
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Definition 1.2. [4] Let L be a non-empty set with a binary hyperoperatiomn L satisfying the fol-
lowing conditions, for alk, b, c € L,

Q) aca®a
2axb=b®a
B) (a®b)®@c=a® (b®c)

Then(L, ®) is called a hypersemi-lattice.

Definition 1.3. [4] Let (L, ®) be a hypersemi-lattice. An element L is called an absorbent element
of Lif ce a®cforallc e L. An element € L is called a fixed element df if b ® ¢ = {b} for all
ce L.

Proposition 1.4.[7] Let L be a non-empty set and ® a binary hyperoperation on L. Then (L, ®) is a
hypersemilattice if and only if for all A, B,C € P*(L), the following conditions hold

(a) ACA®A

(b)) A B=B®A

() (A®B)®@C=A®(B®()

Definition 1.5. [4] Let (L, ®) be a hypersemilattice andl a nonempty subset df. We say thatV is
anideal of(L,®) if a®@ N C N foralla € L. Anideal N of L is called proper ifN # L.

Theorem 1.6.[7] Let (L, ®) be hypersemilattice and N a nonempty subset of L. Then the following

conditions are equivalent:

(1) N is an ideal of L
(2) a@n e P*(N) foralla € L andn € N
3 L&NCN

Definition 1.7. [7] Let (L, ®) be a hypersemilattice andb € L. We say thatt <; bif a® cCb®c
forall ¢ € L. In this case, we cak;, the hyperorder on hypersemilattiée

Proposition 1.8.[7] Let N be an ideal of a hypersemi-lattice L anda € L. Ifb <y, a, thenb € N.

Definition 1.9. [4] Let (L, ®) be a hypersemilattice artlan equivalence relation ob. We say that,
(A, B) € gifand only if to eachn € A, there exist$ € B such thaf(a,b) € 6 forany A, B C L.

Definition 1.10. [4] Let (L, ®) be a hypersemilattice. An equivalence relattban L is said to be a
congruence relation oh if for any a, b, ¢, d € L, (a,b) € 6 and(c,d) € 0 imply (a® c,b®d) € 6. We
denote the equivalence class ofang L by [z]g = {y € L | (z,y) € 0}

2 Multipliers of hypersemilattices

In this section, the notion of multipliers is introduced in hypersemilattices and their properties
are studied. The invariant properties of a subset and a congruence under a multiplier are studied in a
hypersemilattice.
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Definition 2.1. Let (L, ®) be a hypersemilattice. Then a self mappfngL. — L is called a multiplier
of Lifforall a,b € L it satisfies

fla®@b) =a® f(b)

Example 2.2.Let L = {a,b, ¢} and ® a binary hyperoperation on L defined as follows:

a b c

®
a | {a} | {a} |{a}
b
c

{a} | {ab} | {a}
{a} | {a} | {c}

Then (L, ®) is a hypersemilattice. Now define f : L — L as follows:

f(m):{ a ifr=a,b

c ifxr=c

It can be easily observed that f is a multiplier of L.

Lemma 2.3.Let (L, ®) be a hypersemilattice and f a multiplier of L. Then for any a, b, ¢ € L, we have
the following:
(1) if a is a fixed element then f(a) = a

(2) a® f(b) = fla)©b
(3) a <r, bimplies that f(a) <, f(b)

Proof. (1) Leta be a fixed element of. Thena ® ¢ = {a} for all ¢ € L. Sincea € a ® a, we get
fla) € fla®a) =a® f(a) = {a}. Hencef(a) = a.

(2) Foranya,be L,a® f(b) = f(a®b) = f(b®a) =b® f(a) = f(a) ®D.

(3) Suppose <p, b. Foranyc € L, we getthatf(a) @ c = f(a®c) C f(b®c) = f(b) ® c. Therefore
fla) <o £(b). "

Proposition 2.4.Let (L, ®) be a hypersemilattice. Then every idempotent multiplier of L is a homo-

morphism.

Proof. Let f be an idempotent multiplier df. Thenf?(x) = f(x) forallz € L. Leta,b € L. Then
fla®b) = fAla®b) = f(fla®b)) = fla® f(b)) = f(a) ® f(b)

Therefore,f is a homomorphism of.. |

Proposition 2.5.Let (L, ®) be a hypersemilattice. For any a € L, define the self mapping f, : L — L
by fo(x) =t ifand only ift € a ® x forall x € L. Then f, is a multiplier of L.
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Proof. Fixa € L. Letz,y € L. Supposef,(x @ y) = t. Then

t € a®(r®y)
= (a®x)®y
= (z®a)Qy
= 2R ((a®y)

Hencet = x ® ¢ for somec € a ® y. Now ¢ € a ® y implies thatf,(y) = ¢. Thereforet =z ® ¢ =
z® fo(y). Thusfu(z @ y) =t = 2 ® f4(y). Thereforef, is a multiplier of L. [ |

Remark2.6. The composition of two multiplierg andg of a hypersemilatticd. is also a multiplier of
L where(f og)(z) = f(g(x)) forall z € L.

Let L; and L, be two hypersemilattices. Thédn x L, is also a hypersemilattice [5] with respect to
the operation given by:

(a,b) @ (¢,d) ={(z,y) | r €a®c,y €bRd}

Now, we introduce the multipliers of direct products.

Proposition 2.7.Let (L1, ®) and (L2, ®) be two hypersemilattices and k a fixed element of Lo. Define
a self mapping f : L1 X Lo — Ly X Lo by f(x,y) = (z,k) for all (x,y) € Ly x Ly. Then f is a
multiplier of the direct product Ly X Ls.

Proof. Let (z1,z2), (y1,y2) € L1 x Lo. Then we get

f((@1,22) @ (y1,92)) = f{(zy) |z €1 @Y1,y € x2®y2})
= {(z,k) |z €x1 @Y1}
= {
z1,22) ® (Y1, k)
x1,22) @ f(y1,y2)

(
(

r,k)|rex @y, k € xa Rk}

—~~

Therefore,f is a multiplier of the direct produdt; x L. |

Proposition 2.8.Let f be a multiplier of a hypersemilattice (L, ®). Then we have the following:

(1) If a is a fixed element of L, then f~'(a) is an ideal of L.
(2) If M is an ideal of L, then f(M) is an ideal of L.
(3) If M is an ideal of L, then f~'(M) is an ideal of L.

Proof. (1) Leta be a fixed element of. Letz € f~!(a). Thenf(x) = a. For anym € L, we have
fim®z) =me f(r) = m®a = {a}, because of is a fixed element. Hence ® x C f~!(a). Thus
f~(a) is an ideal ofL.
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(2) LetM be anideal ofL. Letx € Landy € f(M). Theny = f(a) for somea € M. SinceM is an
ideal, we getthat ® a C M. Nowz ® f(a) = f(z ® a) C f(M). Thereforef (M) is an ideal ofL.
(3) LetM be anideal of.. Letx € L anda € f~'(M). Thenf(a) € M. SinceM is an ideal, we get
thatf(z®a) =2® f(a) Ca®@M C M. Thusz®a C f~1(M). Hencef ' (M) is anideal ofL. W

Definition 2.9. Let f be a multiplier of(L, ®). DefineA;(L) = {x € L | f(z) = z}.

Clearly every fixed element df is a member of\ ¢ (L). If fis anidempotent multiplier, then clearly
f(x) e Ay(L)forallz € L.

Theorem 2.10.Let f and g be two idempotent multipliers of a hypersemilattice L such that fog = go f.
Then the following conditions are equivalent.

(D f=g.
2 f(L) = g(L).
3) Af(L) = Ag(L)*

Proof. (1) = (2): Itis obvious.

(2) = (3): Assume thatf(L) = g(L). Letx € A¢(L). Then we getr = f(z) € f(L) = g(L).
Hencez = g(y) for somey € L. Now g(z) = ¢*(y) = g(y) = z. Thusz € A,(L). Therefore,
Af(L) € Ay(L). Similarly, we can obtain that,(L) C A¢(L). ThereforeA (L) = Ay(L).

(3) = (1): Assume thatA\;(L) = Ay4(L). Letx € L. Sincef(x) € Ay(L) = Ay(L), we get
g(f(z)) = f(x). Also we havey(z) € Ay(L) = A¢(L). Hence,f(g(x)) = g(z). Thus we have

f(@) = g(f(x)) = (go f)(z) = (fog)(x) = f(9(x)) = g(x)

Therefore,f = g. |

Definition 2.11. Let f be a multiplier of a hypersemilattice. A subsetS of L is called f-invariant if
x € Simpliesf(z) € S.

Note that}) and L are thef-invariant subsets af. Also Af(L) is an f-invariant subset of.. Let us
denote the set of aff-invariant subsets of a hypersemilattice hyL).

Theorem 2.12.Let f be a multiplier of a hypersemilattice (L, ®). Then (I§(L),®) is a hypersemilat-

tice.

Proof. Let A, B € If(L). Letx € A® B. Thenz = a ® b for somea € A andb € B. Hence
f(z) = fla®b) =a® f(b) € A® B. ThereforeA ® B is f-invariant. Itis clearthal C A ® A
forany A C L. Again, we haver = a ® b = b ® a. Hence,A ® B = B ® A. In a similar way, we
can prove thafA ® B) @ C = A® (B® C) forany A, B,C € I;(L). Therefore,(I¢(L),®) is a
hypersemilattice. |

We now introduce a congruence arin terms of multipliers.
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Proposition 2.13.Let f be a multiplier of a hypersemilattice (L, ®). Define a relation §; on L by
(x,y) € Oy ifand only if f(x) = f(y) forall x,y € L. Then 0y is a congruence on L.

Proof. Clearly ; is an equivalence relation ab. Let (a,b),(c,d) € 6;. Thenf(a) = f(b) and
fle)=f(d). Letz € a®c. Thenf(z) € fla®c) =a® f(c) =a® f(d) = fla®d) = f(a) @d =
f(b) ®d= f(b®d). Hencef(x) = f(y) for somey € b ® d. Thereforegla ® ¢, b ® d) € 6. [ |

Definition 2.14. Let f be a multiplier ofL. A congruence on L is called f-invariant if it satisfies the
following property:

(xz,y) € Oifand only if (f(z), f(y)) € 0 forallx,y € L

In [5], the author proved that 4 is a hyperlattice for any congruenéen a hyperlattice.. Hence
the following result is a similar observation.

Theorem 2.15.If 0 is a congruence on L, then L/0 is a hypersemilattice.

In view of Theorem 2.15, we conclude this article with the existence of an injective multiplier on the
quotient latticel /4, wheref is an f-invariant congruence oh.

Theorem 2.16.Let f be an injective multiplier of an a hypersemilattice L. If 0 is an f-invariant con-

gruence on L, then there exists an injective multiplier on L /6.

Proof. By Theorem 2.16L/6 is a hypersemilattice. Defirfe: L/6 — L /60 by h([x]g) = [f(x)]s for
all [z]p € L/6. Clearlyh is well defined. Lefz|y, [yl € L/60 be such that([z]g) = h([y]s). Then
[f(z)]o = [f(y)]e- Hence(f(z), f(y)) € 0. Sinced is invariant underf, we get(z,y) € 6. Thus
[x]s = [yl Thereforep is injective. Again

Mlzlo ® [ylo) = h({[tlo |t €z ®y})

= {[f®l|tez®y}
= {[f@Wle | f(t) € flz®y)}
= {[f@Wle | f(t) ez ® f(y)}
fWle
h([ylo)

>

X

= [z]p ®
[z]o ©

>

Therefore ) is an injective multiplier of./6. |
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