International Journal of Mathematics and Soft Computing Vol.2, No.1 (2012), 103 – 112.

Some results on (k, d) - even mean labeling

S. Kalaimathy Department of Mathematics, VHNSN College, Virudhunagar – 626001, INDIA. E-mail: ranimathy@yahoo.co.in

Abstract

Let G(V, E) be a graph with p vertices and q edges. A labeling is an assignment of numbers to vertices. For every labeling $f: V(G) \rightarrow \{0, 1, 2, ..., q\}$, an induced edge labeling $f^*: E(G) \rightarrow \{1, 2, ..., q\}$ is defined by $f^*(uv) = \frac{f(u) + f(v)}{2}$, if f(u) and f(v) are of same parity and $f^*(uv) = \frac{f(u) + f(v) + 1}{2}$, otherwise. If the resulting edge labels are distinct, then f is called a mean labeling of G. If for a labeling $f: V(G) \rightarrow \{0, 1, 2, ..., 2k + 2(q-1)d\}$, $f^*(E) = \{2k, 2k + 2d, ..., 2k + 2(q-1)d\}$, then f is called a (k, d) - even mean labeling of G. In this paper, we prove some results on (k, d) - even mean labeling of some graphs.

Keywords: k- even mean labeling, k- even mean graph, (k, d) - even mean labeling, (k, d) - even mean graph.

AMS Subject Classification(2010): 05C78.

1 Introduction

In this paper, we consider only finite, simple and undirected graphs. For notations and terminology, we follow [3]. The disjoint union of *m* copies of a graph *G* is denoted by *mG*. Let G_1 be a graph with vertices $v_1, v_2, ..., v_p$ and G_2 be any graph. The corona $G_1 \Theta G_2$ is the graph obtained from one copy of G_1 and *p* copies of G_2 by joining the vertex v_i of G_1 to every vertex in the *i*th copy of G_2 . The example for the corona graphs $P_3 \Theta C_4$ and $C_4 \Theta P_3$ are shown in Figure 1.

Figure 1.

S. Kalaimathy

Let G_1 and G_2 be two graphs with fixed vertices u and v respectively. Denote the graph $(G_1 \cup G_2) + uv$ by $G_1 \bullet G_2(uv)$.

The graphs G_1 , G_2 and $G_1 \bullet G_2(uv)$ are given in Figure 2.

For a graph *G* with a fixed vertex *v*, the graph (P_m : *G*) is obtained from *m* copies of *G* and a path P_m : $u_1u_2...u_m$ by joining each u_i with the vertex corresponding to *v* in the *i*th copy of *G* by means of an edge, for $1 \le i \le m$. Throughout this paper, *k* and *d* denote positive integers greater than or equal to 1.

The concept of mean *labeling* was initiated and studied by Somasundaram and Ponraj [10] in 2003. For more results on mean labeling, one can refer to [1], [2], [11], [12] and [13]. Recently, a notion of *odd mean labeling* was introduced in [9]. k - *odd mean labeling* and (k, d) - *odd mean labeling* have been introduced and discussed in [4], [5] and [6]. k - *even mean labeling* has been introduced in [7]. In 2011, Gayathri and Gopi [8] introduced the concept of (k, d) - even mean labeling.

A (p, q) graph G is said to have a (k, d) - even mean labeling [(k, d) - EML] if there exists an injection f: $V(G) \rightarrow \{0, 1, 2, ..., 2k+2(q-1)d\}$ such that the induced map f^* defined on E by

$$f^{*}(uv) = \begin{cases} \frac{f(u) + f(v)}{2}, & \text{if } f(u) + f(v) \text{ is even} \\ \frac{f(u) + f(v) + 1}{2}, & \text{if } f(u) + f(v) \text{ is odd}, \end{cases}$$

is a bijection from E onto $\{2k, 2k+2d, 2k+4d, ..., 2k+2(q-1)d\}$. A graph that admits a (k, d) - even mean labeling is called a (k, d) - even mean graph.

A (3, 3) - EML of a graph G and a (4, 3) - EML of the path P_5 are shown in Figure 3.

(i) *m* is even, *n*≥1, *k*≥1 and *d*≥1.
(ii) both *m* and *n* are odd, *k*≥1 and *d*≥1

and (iii) *m* is odd, *n* is even and $k \ge d \ge 1$.

In this paper, we prove some results on (k, d) - EML of some graphs.

2 (k, k) Even Mean Labeling

In this section, we prove some results on (k, 1) and (k, k) - EML. Also, we prove that $G_1 \cdot G_2(uv)$ is a (1, 1) - even mean graph.

Lemma 2.1. If a graph G has a mean labeling in which either (i) no two adjacent vertices receive odd labels when q is even or (ii) no two adjacent vertices receive even labels when q is odd then G has a (1, 1) - *EML*.

Proof. Let $f: V(G) \rightarrow \{0, 1, 2, ..., q\}$ be a mean labeling of G. Then $f^*(E) = \{1, 2, ..., q\}$. Let $u_1, u_{2...}$ u_p be the vertices of G.

When q is even, define g: $V(G) \rightarrow \{0, 1, 2, \dots, 2q\}$ by

$$g(u_i) = \begin{cases} 2f(u_i), \text{ when } f(u_i) \text{ is even} \\ 2f(u_i) + 1, \text{ when } f(u_i) \text{ is odd.} \end{cases}$$

Then for $1 \le i, j \le p, g^*(u_i u_j) = 2f^*(u_i u_j)$. Thus $g^*(E) = \{2, 4, ..., 2q\}$ and hence g is a (1, 1) - EML. When q is odd, define $g: V(G) \to \{0, 1, 2, ..., 2q\}$ by

$$g(u_i) = \begin{cases} 2f(u_i) + 1, \text{ when f } (u_i) \text{ is even} \\ 2f(u_i), \text{ when f } (u_i) \text{ is odd}. \end{cases}$$

Then for $1 \le i, j \le p, g^*(u_i u_j) = 2f^*(u_i u_j)$. Thus $g^*(E) = \{2, 4, ..., 2q\}$ and g is a (1, 1) - EML.

The example for the mean labelings of the cube Q_3 (*q* is even) and the comb $P_5 \Theta K_1$ (*q* is odd) and the corresponding (1, 1) - EMLs are shown in Figure 4.

Figure 4.

S. Kalaimathy

Lemma 2.2. If a graph G has a (1, 1) - EML in which no two adjacent vertices receive odd labels, then G has a (k, k) - EML for any $k \ge 1$.

Proof. Let $f: V(G) \to \{0, 1, 2, ..., 2q\}$ be a (1, 1) - EML of G. Then $f^*(E) = \{2, 4, ..., 2q\}$.

Let $u_1, u_2, ..., u_p$ be the vertices of G and let $k \ge 1$. Define $g: V(G) \to \{0, 1, 2, ..., 2kq\}$ by $g(u_i) = \begin{cases} kf(u_i), & \text{if } f(u_i) \text{ is even} \\ kf(u_i) + k - 1, & \text{if } f(u_i) \text{ is odd.} \end{cases}$

Then for $1 \le i, j \le p$, $g^*(u_i u_j) = k f^*(u_i u_j)$. Thus $g^*(E) = \{2k, 2k+2, ..., 2kq\}$ and hence g is a (k, k) - EML.

The example for a (1, 1) - EML and the corresponding (4, 4) - EML of a graph G are shown in Figure 5.

Theorem 2.3. If a graph G has a mean labeling in which

(i) no two adjacent vertices receive odd labels when q is even or (ii) no two adjacent vertices receive even label when q is odd, then G has a (k, k) - EML for any $k \ge 1$.

Proof. The theorem follows from Lemma 2.1 and Lemma 2.2. The labelings of the two graphs *H* and *G* shown in Figure 6 illustrate Theorem 2.3.

(3, 3) - EML of G

Figure 6.

Lemma 2.4. If a graph G has a (k, k) -EML f in which $\left\{ \left\lfloor \frac{f(v)}{k} \right\rfloor / v \in V \right\} = \{0, 1, \dots, 2q\}$, then G has a

(1, 1) - *EML*.

Proof. Let $f: V(G) \to \{0, 1, 2, ..., 2kq\}$ be a (k, k) - EML of G. Then $f^*(E) = \{2k, 2k+2, ..., 2kq\}$. Let $u_1, u_2, ..., u_p$ be the vertices of G.

Define
$$g: V(G) \to \{0, 1, 2, ..., 2q\}$$
 by $g(u_i) = \left\lfloor \frac{f(u_i)}{k} \right\rfloor$, for $1 \le i \le p$
Thus $g^*(E) = \{2, 4, ..., 2q\}$. Hence g is a $(1, 1)$ - EML.

The example for a (3, 3) - EML of a graph G and the corresponding (1, 1) - EML of G are shown in Figure 7.

Figure 7.

Lemma 2.5. If a graph G has a (1, 1) -EML f in which $\left\{ \left\lfloor \frac{f(v)}{2} \right\rfloor / v \in V \right\} = \{0, 1, \dots, q\}, \text{ , then G has a }$

mean labeling.

Proof. Let $f: V(G) \to \{0, 1, 2, ..., 2q\}$ be a (1, 1) - EML of G. Then $f^*(E) = \{2, 4, ..., 2q\}$. Let $u_{1, j}$ $u_{2,\ldots}, u_p$ be the vertices of G.

Define $g: V(G) \to \{0, 1, 2, ..., q\}$ by $g(u_i) = \left| \frac{f(u_i)}{2} \right|$, for $1 \le i \le p$. Thus $g^*(E) = \{1, 2, ..., q\}$. Hence g is a mean labeling of G.

The example for a (1, 1) - EML of a graph G and the corresponding mean labeling of G are shown in Figure 8.

Figure 8.

Theorem 2.6. If a graph G has a (k, k) -EML f in which $\left\{ \left| \frac{f(v)}{k} \right| / v \in V \right\} = \{0, 1, \dots, 2q\}, \text{ then } G$

has a mean labeling.

Proof. The theorem follows from Lemma 2.4 and Lemma 2.5.

The example for a (3, 3) - EML of a graph G and the corresponding mean labeling of G are shown in Figure 9.

Theorem 2.7. A graph G has a (1, 1) - EML if and only if it has a (k, 1) - EML g such that $g:V(G) \rightarrow C$ $\{2k-2, 2k-1, ..., 2k+2(q-1)\}$ for any $k \ge 1$.

Proof. Let $f: V(G) \to \{0, 1, 2, ..., 2q\}$ be a (1, 1) - EML of G. Then $f^*(E) = \{2, 4, ..., 2q\}$. Let $k \ge 1$ be an integer. Now, define $g: V(G) \to \{0, 1, 2..., 2k+2(q-1)\}$ by g(v) = f(v) + 2(k-1). We claim that g is a (k, 1) - EML of G.

Let x and y be two adjacent vertices in G. We consider the following two cases. Case (i): g(x) + g(y) is even.

Then,
$$g^*(xy) = \frac{g(x) + g(y)}{2}$$

$$= \frac{f(x) + 2(k-1) + f(y) + 2(k-1)}{2}$$

$$= \frac{f(x) + f(y)}{2} + 2(k-1)$$

$$= f^*(xy) + 2(k-1).$$
Case (ii): $g(x) + g(y)$ is odd.
Then, $g^*(xy) = \frac{g(x) + g(y) + 1}{2}$

$$= \frac{f(x) + 2(k-1) + f(y) + 2(k-1) + 1}{2}$$

$$= \frac{f(x) + f(y) + 1}{2} + 2(k-1)$$

$$= f^*(xy) + 2(k-1).$$
Thus, $g^*(E) = \{f^*(xy) + 2(k-1), xy \in E(G)\} = \{2k, 2k+1, \dots, 2k+2(a-1)\}$ and hence g is a $(k, 1) - 2k + 2(a-1)$

Thus $g'(E) = \{f'(xy) + 2(k-1) / xy \in E(G)\} = \{2k, 2k+1, ..., 2k+2(q-1)\}$ and hence g is a (k, 1) - EML for $k \ge 1$.

Conversely, let $g: V(G) \to \{2k-2, ..., 2k+2(q-1)\}$ be a (k, 1) - EML of G. Then $g^*(E) = \{2k, 2k+2, ..., 2k+2(q-1)\}$.

Now, define $f: V(G) \to \{0, 1, 2, ..., 2q\}$ by f(v) = g(v) + 2(1-k) for $k \ge 1$ and $g(v) \ge 2(k-1)$. We prove that f is a (1, 1) -EML of G.

Let x and y be the two vertices in G. We consider the following two cases. Case (i): f(x) + f(y) is even.

Now,
$$f^{*}(xy) = \frac{f(x) + f(y)}{2}$$

$$= \frac{g(x) + 2(1-k) + g(y) + 2(1-k)}{2}$$

$$= \frac{g(x) + g(y)}{2} + 2(1-k)$$

$$= g^{*}(xy) + 2(1-k).$$
Case (ii): $f(x) + f(y)$ is odd.
Now, $f^{*}(xy) = \frac{f(x) + f(y) + 1}{2}$

$$= \frac{g(x) + 2(1-k) + g(y) + 2(1-k) + 1}{2}$$

$$= \frac{g(x) + g(y) + 1}{2} + 2(1-k)$$

$$= g^{*}(xy) + 2(1-k).$$
Thus, $f^{*}(E) = \{g^{*}(xy) + 2(1-k) / xy \in E(G)\} = \{2, 4, ..., 2q)\}$ and hence f is a $(k, 1)$ - EML for $k \ge 1$.

The example for a (1, 1) - EML and the corresponding (5, 1) - EML of a graph *G* are shown in Figure 10.

Figure 10.

Also, a (4, 1) - EML and the corresponding (1, 1) - EML of a graph G are shown in Figure 11.

Figure 11.

Theorem 2.8. Let $G_1(p_1, q_1)$ be a (1, 1) - even mean graph and let $G_2(p_2, q_2)$ be a (1, 1) - even mean graph with EML g such that $g^*(vw) = 2$ and g(v) = 1 or 3, then $G_1 \bullet G_2(uv)$ is a (1, 1) - even mean graph for some vertex u in G_1 .

Proof. Let G_1 be a (1, 1) - even mean graph with EML f. Let $u_1, u_2, ..., u_{p_1}$ and $v_1, v_2, ..., v_{p_2}$ be the vertices of graphs G_1 and G_2 respectively.

Let $h: V(G_1 \bullet G_2(uv)) \to \{0, 1, 2, \dots, 2(q_1+q_2)\}$ be defined by $h(u_i) = f(u_i)$ for $1 \le i \le p_1$ and $h(v_j) = f(v_j) + 2q_1 + 2$ for $1 \le i \le p_2$.

Fix some vertex u in G₁, such that (2a, when g(v) = 1)

$$f(u) = \begin{cases} 2q_1, \text{ when } g(v) = 1\\ 2q_1 - 1, \text{ when } g(v) = 3. \end{cases}$$

The labels of the edges of $G_1 \bullet G_2(uv)$ are $h^*(e) = \begin{cases} f^*(e), & \text{if } e \in G_1 \\ g^*(e) + 2q_1 + 2, & \text{if } e \in G_2 \end{cases}$ Thus h is a (1, 1) - EML. Hence $G_1 \bullet G_2(uv)$ is a (1, 1) - even mean graph.

The example for (1, 1) - EML's of G_1 and G_2 and a (1, 1) - EML of $G_1 \bullet G_2(uv)$ are shown in

Figure 12.

Figure 12.

Theorem 2.9. If a tree T has a (1, 1) -EML f in which $\left\{ \left\lfloor \frac{f(v)}{2} \right\rfloor / v \in V \right\} = \{0, 1, \dots, q\}$, then T ΘK_1 has

a mean labeling.

Proof. Let $f: V(T) \rightarrow \{0, 1, 2, ..., 2q\}$ be a (1, 1) - EML of T. Then $f^*(E) = \{2, 4, ..., 2q\}$. Let $u_1, u_2, ..., u_p$ be the vertices of T and $v_1, v_2, ..., v_p$ be the corresponding new vertices in $T\Theta K_1$. Define $g: V(T \Theta K_1) \rightarrow \{0, 1, 2, ..., 2q+1\}$ by $g(u_i) = f(u_i)$, for $1 \le i \le p$

 $g(v_i) = \begin{cases} f(u_i) + 1, \text{ when } f(u_i) \text{ is even} \\ f(u_i) - 1, \text{ when } f(u_i) \text{ is odd}. \end{cases}$

If both x and y are in T, then $g^*(xy) = f^*(xy) = \{2, 4, 6, ..., 2q\}$. If not, then g(x) and g(y) are consecutive integers and therefore, $g^*(xy) \in \{1, 3, 5, ..., 2q+1\}$. Thus $g^*(E) = \{1, 2, ..., 2q+1\}$. Hence g is a mean labeling of $T \Theta K_1$ and $T\Theta K_1$ is a mean graph.

The example for a (1, 1) - EML of a tree T and the mean labeling of $T \Theta K_1$ are shown in Figure 13.

(1, 1) - EML of T

Figure 13.

S. Kalaimathy

References

- [1] Selvam Avadayappan, R. Vasuki, Some results on mean graphs, Ultra Scientist, 21(1) M, (2009), 273-284.
- [2] Selvam Avadayappan, R. Vasuki, *New families of mean graphs*, International J.Math. Combin, 2(2010), 68-80.
- [3] R. Balakrishnan, K. Ranganathan, A Text book of graph theory, Springer, NewYork (2000).
- [4] B. Gayathri, K. Amuthavalli, *k odd mean labeling of crown graphs*, International Journal of Mathematics and Computer Science, 3(2), (2007), 253-259.
- [5] B. Gayathri, K. Amuthavalli, k odd mean labeling of $\langle K_{1, n}$: $K_{1, m} \rangle$, Acta Ciencia Indica, XXXIVM (2), (2008), 827-834.
- [6] B. Gayathri, K. Amuthavalli, (*k*, *d*) odd mean labeling of some graphs, Bulletin of Pure and Applied Sciences, 26E (2), (2007), 263-267.
- [7] B. Gayathri, R. Gopi, k even mean labeling of $D_{m,n}$ @ C_n , International Journal of Engineering Science, Advanced Computing and Bio-Technology, 1 (B) (2010), 137 145.
- [8] B. Gayathri, R. Gopi, (k, d) even mean labeling of $P_m \Theta nK_1$, International Journal of Mathematics and Soft Computing, Vol. 1, No.1 (2011), 115 129.
- K. Manickam, M. Marudai, *Odd mean labeling of graphs*, Bulletin of Pure and Applied sciences, 25E (1) (2006), 149 153.
- [10] S. Somasundaram, R. Ponraj, *Mean labelings of graphs*, Natl. Academy science letter, 26 (7 8) (2003), 10 - 13.
- [11] S. Somasundaram, R. Ponraj, *Non-existence of mean labeling for a wheel*, Bull. Pure and Applied Sciences. (Mathematics and statistics), 22E (2003), 103-111.
- [12] S. Somasundaram, R. Ponraj, Some results on mean graphs, Pure and Applied Mathematical Sciences, 58 (2003), 29-35.
- [13] S. Somasundaram, R. Ponraj, On *mean graphs of order < 5*, J. Decision and Mathematical Sciences, 9(2004), 47-58.