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Abstract 
 

Let G(V, E) be a graph with  p vertices and  q edges. A labeling is an assignment of numbers 

to vertices. For every labeling  f : V(G)    {0, 1, 2,…, q},  an induced edge labeling                 

f*: E(G){1,2,…,q}is defined by 
2

)()(
)(* vfuf

uvf


 , if f(u) and f(v) are of same parity and  

2

1)()(
)(* 


vfuf
uvf , otherwise. If the resulting edge labels are distinct, then f is called a mean 

labeling of G. If for a labeling f : V(G){0, 1, 2,…, 2k+2(q-1)d}, f*(E) ={2k, 2k+2d, …, 

2k+2(q-1)d},  then f is called a (k, d) - even mean labeling of G. In this paper, we prove some 

results on (k, d) - even mean labeling of some graphs. 

Keywords: k- even mean labeling, k- even mean graph, (k, d) - even mean labeling, (k, d) - even 

mean graph. 
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1    Introduction 

In this paper, we consider only finite, simple and undirected graphs. For notations and 

terminology, we follow [3]. The disjoint union of m copies of a graph G is denoted by mG. Let G1 be a 

graph with vertices v1, v2,…, vp and G2 be any graph. The corona G1G2 is the graph obtained from 

one copy of G1  and  p copies  of  G2  by joining  the vertex vi  of  G1  to  every  vertex in the  i
th   

copy 

of  G2.  The example for the corona graphs P3  C4 and C4  P3 are shown in Figure 1. 

 

 
 

Figure 1. 
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Let G1 and G2 be two graphs with fixed vertices u and v respectively. Denote the graph (G1G2) + 

uv by G1 • G2 (uv).   

Tthe graphs G1, G2 and G1 • G2 (uv) are given in Figure 2.  

 

 

 

 

 

 

 

 

 

 
 

Figure 2. 
 

For a graph G with a fixed vertex v, the graph (Pm: G) is obtained from m copies of G and a path 

Pm: u1u2…um by joining each ui with the vertex corresponding to v in the i
th

 copy of G by means of an 

edge, for 1 ≤ i ≤ m. Throughout this paper, k and d denote positive integers greater than or equal to 1. 

The concept of mean labeling was initiated and studied by Somasundaram and Ponraj [10] in 2003. 

For more results on mean labeling, one can refer to [1], [2], [11], [12] and [13]. Recently, a notion of 

odd mean labeling was introduced in [9]. k - odd mean labeling  and (k, d) - odd mean labeling have 

been  introduced and  discussed in [4], [5] and [6]. k - even mean labeling has been introduced in [7]. 

In 2011, Gayathri and Gopi [8] introduced the concept of (k, d) - even mean labeling.  

A (p, q) graph G is said to have a (k, d) - even mean labeling [(k, d) – EML] if there exists an 

injection f: V(G) → {0, 1, 2,…, 2k+2(q-1)d} such that the induced map f
*
  defined   on E by 


















, odd  is  )()(  if,
2

1)()(

even  is  )(   )(  if,
2

)()(

)(*

v  f uf
vfuf

vfuf
vfuf

uvf    

is a  bijection  from   E  onto  {2k, 2k+2d, 2k+4d, …, 2k+2(q-1)d}. A graph that admits  a (k, d)  - even  

mean  labeling  is  called  a  (k, d)  -  even  mean  graph.  

A  (3, 3) - EML of a graph G and a (4, 3) - EML of the path P5 are shown in Figure 3. 

 

Figure 3. 

In  [8] it was proved that the graph Pm  nK1 (m ≥ 3, n ≥ 2) is a (k, d) - even mean graph if  

(i)  m is even , n ≥1, k ≥ 1 and d ≥ 1. 

(ii) both m and n are odd, k ≥ 1 and d ≥ 1 

         and  (iii) m is odd, n is even and k ≥ d ≥ 1. 
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In this paper, we prove some results on (k, d) - EML of some graphs. 

2    (k, k) Even Mean Labeling 

In this section, we prove some results on (k, 1) and (k, k) - EML.  Also, we prove that G1•G2 (uv) is 

a (1, 1) - even mean graph.  

Lemma 2.1. If a graph G has a mean labeling in which either 

(i) no two adjacent vertices receive odd labels when q is even or 

(ii) no two adjacent vertices receive even labels when q is odd 

then G has a (1, 1) - EML. 

Proof. Let f: V(G) → {0, 1, 2,…, q}  be  a  mean labeling of G. Then f
*
(E) = {1, 2,…, q}. Let u1, u2… 

up  be  the  vertices  of G. 

When q is even, define g: V(G) → {0, 1, 2,…, 2q}   by  








. odd  is  )( when  ,1)(2

even  is  )(when ),(2
)(

i
ufuf

uf uf
ug

i

ii

i
                                                        

Then for 1≤ i, j ≤ p, g
*
(uiuj) = 2f

*
(uiuj). Thus g

*
(E) = {2, 4, …, 2q}and hence g is a (1, 1) - EML. 

When q is odd, define g: V(G) → {0, 1, 2,…, 2q}   by  



 


. odd  is  )(u f        when,)(2

even  is  )(u fwhen ,1)(2
)(

i

i

i

i

i
uf

uf
ug                                                         

Then for 1≤ i, j ≤ p, g
*
(uiuj) = 2f

*
(uiuj). Thus g

*
(E) = {2, 4, …, 2q} and g is a (1, 1) - EML.                                                  

The example for the mean labelings of the cube Q3 (q is even) and the comb P5  K1 (q is odd) and the 

corresponding (1, 1) - EMLs are shown in Figure 4. 

 

 
 

 
Figure 4. 
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Lemma 2.2.  If a graph G has a (1, 1) - EML in which no two adjacent vertices receive odd labels, 

then G has a (k, k) - EML for any k ≥ 1. 

Proof.  Let f: V(G) → {0, 1, 2,…, 2q} be a (1, 1) - EML  of G. Then f
*
(E) = {2, 4,…, 2q}.  

Let u1, u2, …, up  be the vertices of  G  and  let  k ≥ 1. Define g: V(G) → {0, 1, 2, …, 2kq}  by 








.  is  u  f,k)kf(u

  is  uf ),kf(u
)g(u

ii

ii

i
 odd)(if 1

even)(if          
                                             

Then for 1≤ i, j ≤ p, g
*
(uiuj) = kf

*
( uiuj). Thus g

*
(E) = {2k, 2k+2, …,2kq} and hence  g is a (k, k) - 

EML.                                                       

                     

The example for a (1, 1) -  EML  and the corresponding (4, 4)  -  EML of  a  graph  G   are  shown 

in  Figure 5. 

               

                   
Figure 5. 

 

Theorem 2.3. If a graph G has a mean labeling in which  

(i) no two adjacent vertices receive odd labels when q is even  

      or (ii) no two adjacent vertices receive even label when q is odd,  

then G has a (k, k) - EML for any k ≥ 1.                                                                                      

Proof.  The theorem follows from Lemma 2.1 and Lemma 2.2.             

The labelings of the two graphs H and G shown in Figure 6 illustrate Theorem 2.3. 
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Figure 6. 

 

Lemma 2.4.  If a graph G has a (k, k) -EML f in which
















Vv

k

vf
/

)(
 = {0, 1,…2q}, then G has a 

(1, 1) - EML. 

Proof. Let f: V(G) → {0, 1, 2, …, 2kq} be a (k, k) - EML of G. Then f
*
(E) = {2k, 2k+2,…, 2kq}.  Let  

u1, u2,…, up  be  the  vertices  of  G.  

Define g: V(G) → {0, 1, 2,…, 2q} by g(ui) = 








k

uf
i
)(

 , for 1 ≤  i  ≤  p. 

Thus g
*
(E) = {2, 4,…, 2q}. Hence g is a (1, 1) - EML.                

The example for a (3, 3) - EML  of  a graph G  and  the corresponding (1, 1) - EML of  G are  shown 

in Figure 7. 

 

 

 

Figure 7. 
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Lemma 2.5.  If a graph G has a (1, 1)  -EML f in which
















Vv

vf
/

2

)(
 = {0, 1,…q}, , then G has a 

mean labeling. 

Proof. Let f: V(G) → {0, 1, 2, …, 2q} be a (1, 1) - EML of G. Then f
*
(E) = {2, 4,…, 2q}. Let  u1, 

u2,…, up  be  the  vertices  of  G.  

Define g: V(G) → {0, 1, 2,…, q} by g(ui) = 








2

)(
i

uf
 , for 1 ≤  i  ≤  p. 

Thus g
*
(E) = {1, 2,…, q}. Hence g is a mean labeling of G.                 

 

The example for a (1, 1) - EML  of   a graph G  and  the corresponding  mean  labeling  of  G are  

shown in Figure 8. 

 

Figure 8. 

 

Theorem 2.6.  If a graph G has a  (k, k) -EML  f  in  which  
















Vv

k

vf
/

)(
 = {0, 1,…2q}, then G 

has a mean labeling. 

Proof. The theorem follows from Lemma 2.4 and Lemma 2.5.                     

The example for a (3, 3) - EML  of  a graph G  and  the corresponding mean  labeling  of  G are  

shown in Figure 9. 

 

Figure 9. 

 

Theorem  2.7.  A graph G has a (1, 1) - EML if and only if it has a (k, 1) - EML g such that g:V(G) → 

{2k- 2, 2k-1,…, 2k+2(q-1)} for any k ≥ 1. 
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Proof. Let f: V(G) → {0, 1, 2,…, 2q} be a (1, 1) - EML  of G. Then f
*
(E) = {2, 4,…, 2q}. Let k ≥ 1 be 

an integer. Now, define g: V(G) → {0, 1, 2… 2k+2(q-1)} by g(v) = f(v) + 2(k-1). We claim that g is a 

(k, 1) - EML of G.                                                                                          

Let x and y be two adjacent vertices in G. We consider the following two cases. 

Case (i):   g(x) + g(y) is even. 

Then, g
*
(xy) = 

2

)()( ygxg 
 

                    =  
2

)1(2)()1(2)(  kyfkxf
       

                    = )1(2
2

)()(



k

yfxf
 

                    =  ).1(2)(*  kxyf  

Case (ii):   g(x) + g(y) is odd. 

Then, g
*
(xy) = 

2

1)()(  ygxg
 

                    =  
2

1)1(2)()1(2)(  kyfkxf
       

                    = )1(2
2

1)()(



k

yfxf
 

                    =  ).1(2)(*  kxyf  

Thus   g
*
(E) = {f

*
(xy) + 2(k-1) / xyE(G)} = {2k, 2k+1, …, 2k+2(q-1)}  and  hence  g  is a (k, 1) - 

EML for k ≥ 1. 

Conversely, let  g: V(G) → {2k-2, …, 2k+2(q-1)} be  a  (k, 1) - EML  of  G. Then  g
*
(E) = {2k, 

2k+2,…, 2k+2(q-1)}. 

Now, define f: V(G) → {0, 1, 2, …, 2q} by f(v) = g(v) + 2(1-k)  for  k ≥ 1  and  g(v) ≥ 2(k-1). 

We prove that f is a (1, 1) -EML of G. 

Let x and y be the two vertices in G. We consider the following two cases. 

Case (i):  f(x) + f(y) is even. 

Now, f
*
(xy) = 

2

)()( yfxf 
 

                    =  
2

)1(2)()1(2)( kygkxg 
       

                    = )1(2
2

)()(
k

ygxg



 

                    =  ).1(2)(* kxyg   

Case (ii):   f(x) + f(y) is odd. 

Now, f
*
(xy) = 

2

1)()(  yfxf
 

                    =  
2

1)1(2)()1(2)(  kygkxg
       

                    = )1(2
2

1)()(
k

ygxg



 

                    =  ).1(2)(* kxyg   

Thus,   f
*
(E) = { g

*
(xy) + 2(1-k)  / xy E(G) } = {2, 4, …, 2q)} and  hence  f  is a (k, 1) - EML   for 

k ≥ 1.                  
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The example for a (1, 1) - EML and the corresponding (5, 1) - EML of a graph G are shown in Figure 

10.   

 

      

Figure 10. 

 

Also, a   (4, 1) - EML   and the   corresponding   (1, 1) - EML   of   a   graph   G are shown in   

Figure 11.  

 

 

 

Figure 11. 

Theorem 2.8. Let G1(p1, q1) be a (1, 1) - even mean graph and let G2(p2, q2) be a (1, 1) - even mean 

graph with EML g such that g
*
(vw) = 2 and g(v) = 1 or 3, then G1 • G2(uv) is a (1, 1) - even mean 

graph for some  vertex u in G1. 

Proof. Let G1 be a (1, 1) - even mean graph with EML f. Let u1, u2,…, 
1p

u  and v1, v 2,…, 
2pv  be the 

vertices of graphs G1 and G2 respectively. 

Let  h: V (G1 • G2(uv))  →  {0, 1,2,…,2(q1+q2)}  be  defined  by  h(ui) = f(ui)  for  1 ≤ i ≤ p1   and h(vj) 

= f(vj) + 2q1+ 2 for 1 ≤ i ≤ p2. 

Fix some vertex u in G1, such that 

 f (u) =




 . 3 = )g(when   ,12

1 = )g(when   ,2

1

1

vq

vq
   

The labels of the edges of G1 • G2(uv) are h
*
(e) =











 G if  ,22)(

G if               ),(

21

*

1

*

eqeg

eef
   

Thus h is a (1, 1) - EML. Hence G1 • G2 (uv) is a (1, 1) - even mean graph.                                

The example for  (1, 1) - EML’s of G1 and G2 and a (1, 1) - EML of G1 • G2(uv) are shown in 

Figure 12.  
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Figure 12. 

Theorem 2.9. If a tree T has a  (1, 1) -EML f in which
















Vv

vf
/

2

)(
 = {0, 1,…q}, then T K1 has 

a mean labeling. 

Proof. Let f: V(T) → {0, 1, 2, …, 2q} be a (1, 1) - EML of T. Then f
*
(E) = {2, 4,…, 2q}. Let  u1, u2,…, 

up  be  the  vertices  of  T  and  v1, v2,…, vp be the corresponding new vertices in TK1. 

Define g: V(T K1) → {0, 1, 2,…, 2q+1} by g(ui) = f(ui),  for 1 ≤ i ≤ p  

g(vi) =








. odd is )(when ,1)(

even is )(when ,1)(

i

i

ufuf

ufuf

i

i
  

If both x and y are in T, then g
*
(xy) = f

*
(xy) = {2, 4, 6,…, 2q}. 

If not, then g(x) and g(y) are consecutive integers and therefore, g
*
(xy)   {1, 3, 5, …, 2q+1}. 

Thus g
*
(E) = {1, 2,…, 2q+1}. Hence g is a mean labeling of T K1 and TK1 is a mean graph.         

The example for a (1, 1) - EML  of  a tree  T  and  the  mean  labeling  of  T K1 are  shown in 

Figure 13.  

Figure 13. 
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