Some results on $(\boldsymbol{k}, \boldsymbol{d})$ - even mean labeling

S. Kalaimathy
Department of Mathematics,
VHNSN College, Virudhunagar - 626001, INDIA.
E-mail: ranimathy@yahoo.co.in

Abstract

Let $G(V, \mathrm{E})$ be a graph with p vertices and q edges. A labeling is an assignment of numbers to vertices. For every labeling $f: V(G) \rightarrow\{0,1,2, \ldots, q\}$, an induced edge labeling $f^{*}: \mathrm{E}(G) \rightarrow\{1,2, \ldots, q\}$ is defined by $f^{*}(u v)=\frac{f(u)+f(v)}{2}$, if $f(u)$ and $f(v)$ are of same parity and $f^{*}(u v)=\frac{f(u)+f(v)+1}{2}$, otherwise. If the resulting edge labels are distinct, then f is called a mean labeling of G. If for a labeling $f: V(G) \rightarrow\{0,1,2, \ldots, 2 k+2(q-1) d\}, f^{*}(\mathrm{E})=\{2 \mathrm{k}, 2 k+2 d, \ldots$, $2 k+2(q-1) d\}$, then f is called a (k, d) - even mean labeling of G. In this paper, we prove some results on (k, d) - even mean labeling of some graphs. Keywords: k - even mean labeling, k - even mean graph, (k, d) - even mean labeling, (k, d) - even mean graph. AMS Subject Classification(2010): 05C78.

1 Introduction

In this paper, we consider only finite, simple and undirected graphs. For notations and terminology, we follow [3]. The disjoint union of m copies of a graph G is denoted by $m G$. Let G_{1} be a graph with vertices $v_{1}, v_{2}, \ldots, v_{p}$ and G_{2} be any graph. The corona $G_{1} \Theta G_{2}$ is the graph obtained from one copy of G_{1} and p copies of G_{2} by joining the vertex v_{i} of G_{1} to every vertex in the $i^{\text {th }}$ copy of G_{2}. The example for the corona graphs $P_{3} \Theta C_{4}$ and $C_{4} \Theta P_{3}$ are shown in Figure 1.

$P_{3} \theta C_{4}$

$C_{4} \otimes P_{3}$

Figure 1.

Let G_{1} and G_{2} be two graphs with fixed vertices u and v respectively. Denote the graph $\left(G_{1} \cup G_{2}\right)+$ $u v$ by $G_{1} \bullet G_{2}(u v)$.

Tthe graphs G_{1}, G_{2} and $G_{1} \bullet G_{2}(u v)$ are given in Figure 2.

Figure 2.
For a graph G with a fixed vertex v, the graph $\left(P_{m}: G\right)$ is obtained from m copies of G and a path P_{m} : $u_{1} u_{2} \ldots u_{m}$ by joining each u_{i} with the vertex corresponding to v in the $i^{\text {th }}$ copy of G by means of an edge, for $1 \leq i \leq m$. Throughout this paper, k and d denote positive integers greater than or equal to 1 .

The concept of mean labeling was initiated and studied by Somasundaram and Ponraj [10] in 2003. For more results on mean labeling, one can refer to [1], [2], [11], [12] and [13]. Recently, a notion of odd mean labeling was introduced in [9]. k - odd mean labeling and (k, d)-odd mean labeling have been introduced and discussed in [4], [5] and [6]. k - even mean labeling has been introduced in [7]. In 2011, Gayathri and Gopi [8] introduced the concept of (k, d) - even mean labeling.

A (p, q) graph G is said to have a (k, d) - even mean labeling $[(k, d)-E M L]$ if there exists an injection $f: V(G) \rightarrow\{0,1,2, \ldots, 2 k+2(q-1) d\}$ such that the induced map f^{*} defined on E by $f^{*}(u v)=\left\{\begin{array}{l}\frac{f(u)+f(v)}{2}, \text { if } f(u)+f(v) \text { is even } \\ \frac{f(u)+f(v)+1}{2}, \text { if } f(u)+f(v) \text { is odd, }\end{array}\right.$
is a bijection from E onto $\{2 k, 2 k+2 d, 2 k+4 d, \ldots, 2 k+2(q-1) d\}$. A graph that admits a (k, d)-even mean labeling is called a (k, d) - even mean graph.

A $(3,3)$ - EML of a graph G and a $(4,3)$ - EML of the path P_{5} are shown in Figure 3.

$(3,3)-$ EML of G

$(4,3)-$ EML of P_{5}

Figure 3.
In [8] it was proved that the graph $P_{m} \Theta n K_{1}(m \geq 3, n \geq 2)$ is a (k, d) - even mean graph if
(i) m is even , $n \geq 1, k \geq 1$ and $d \geq 1$.
(ii) both m and n are odd, $k \geq 1$ and $d \geq 1$
and (iii) m is odd, n is even and $k \geq d \geq 1$.

In this paper, we prove some results on (k, d) - EML of some graphs.

$2(k, k)$ Even Mean Labeling

In this section, we prove some results on $(k, 1)$ and (k, k) - EML. Also, we prove that $G_{1} \bullet G_{2}(u v)$ is $a(1,1)$ - even mean graph.

Lemma 2.1. If a graph G has a mean labeling in which either
(i) no two adjacent vertices receive odd labels when q is even or
(ii) no two adjacent vertices receive even labels when q is odd then G has a $(1,1)-E M L$.

Proof. Let $f: V(G) \rightarrow\{0,1,2, \ldots, q\}$ be a mean labeling of G. Then $f^{*}(\mathrm{E})=\{1,2, \ldots, q\}$. Let u_{1}, u_{2}.. u_{p} be the vertices of G.
When q is even, define $g: V(G) \rightarrow\{0,1,2, \ldots, 2 q\}$ by $g\left(u_{i}\right)=\left\{\begin{array}{l}2 f\left(u_{i}\right), \text { when } f\left(u_{i}\right) \text { is even } \\ 2 f\left(u_{i}\right)+1, \text { when } f\left(u_{\mathrm{i}}\right) \text { is odd } .\end{array}\right.$
Then for $1 \leq \mathrm{i}, j \leq p, \mathrm{~g}^{*}\left(u_{i} u_{j}\right)=2 f^{*}\left(u_{i} u_{j}\right)$. Thus $g^{*}(E)=\{2,4, \ldots, 2 q\}$ and hence g is a $(1,1)$ - EML. When q is odd, define $g: V(G) \rightarrow\{0,1,2, \ldots, 2 q\}$ by
$g\left(u_{i}\right)=\left\{\begin{array}{l}2 f\left(u_{i}\right)+1, \text { when } \mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right) \text { is even } \\ 2 f\left(u_{i}\right), \quad \text { when } \mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right) \text { is odd } .\end{array}\right.$
Then for $1 \leq i, j \leq p, g^{*}\left(u_{i} u_{j}\right)=2 f^{*}\left(u_{i} u_{j}\right)$. Thus $\mathrm{g}^{*}(E)=\{2,4, \ldots, 2 q\}$ and g is a $(1,1)$ - EML.
The example for the mean labelings of the cube Q_{3} (q is even) and the comb $P_{5} \Theta K_{1}$ (q is odd) and the corresponding $(1,1)$ - EMLs are shown in Figure 4.

Mean labeling of Q_{3}

(1,1)- EML of Q_{3}

Mean Labeling of comb $P_{5} \otimes K_{1}$

$(1,1)-$ EML of $P_{5} \Theta K_{t}$

Figure 4.

Lemma 2.2. If a graph G has a $(1,1)-E M L$ in which no two adjacent vertices receive odd labels, then G has a $(k, k)-E M L$ for any $k \geq 1$.
Proof. Let $f: V(G) \rightarrow\{0,1,2, \ldots, 2 q\}$ be a $(1,1)$ - EML of G. Then $f^{*}(E)=\{2,4, \ldots, 2 q\}$.
Let $u_{1}, u_{2}, \ldots, u_{p}$ be the vertices of G and let $k \geq 1$. Define $g: V(G) \rightarrow\{0,1,2, \ldots, 2 k q\}$ by $g\left(u_{i}\right)= \begin{cases}k f\left(u_{i}\right), & \text { if } f\left(u_{i}\right) \text { is even } \\ k f\left(u_{i}\right)+k-1, & \text { if } f\left(u_{i}\right) \text { is odd. }\end{cases}$

Then for $1 \leq i, j \leq p, \mathrm{~g}^{*}\left(u_{i} u_{j}\right)=k f^{*}\left(u_{i} u_{j}\right)$. Thus $g^{*}(E)=\{2 k, 2 k+2, \ldots, 2 k q\}$ and hence g is a $(k, k)-$ EML.

The example for a $(1,1)$ - EML and the corresponding $(4,4)$ - EML of a graph G are shown in Figure 5.

Figure 5.

Theorem 2.3. If a graph G has a mean labeling in which
(i) no two adjacent vertices receive odd labels when q is even
or (ii) no two adjacent vertices receive even label when q is odd, then G has a $(k, k)-E M L$ for any $k \geq 1$.

Proof. The theorem follows from Lemma 2.1 and Lemma 2.2.
The labelings of the two graphs H and G shown in Figure 6 illustrate Theorem 2.3.

Mean labeling of a graph H

$(2,2)-$ EML of the graph H

Figure 6.
Lemma 2.4. If a graph G has $a(k, k)-E M L f$ in which $\left\{\left\lfloor\frac{f(v)}{k}\right\rfloor / v \in V\right\}=\{0,1, \ldots 2 q\}$, then G has a $(1,1)-E M L$.
Proof. Let $f: V(G) \rightarrow\{0,1,2, \ldots, 2 k q\}$ be a (k, k) - EML of G. Then $f^{*}(\mathrm{E})=\{2 k, 2 k+2, \ldots, 2 k q\}$. Let $u_{1}, u_{2}, \ldots, u_{\mathrm{p}}$ be the vertices of G.
Define $g: V(G) \rightarrow\{0,1,2, \ldots, 2 q\}$ by $g\left(u_{i}\right)=\left\lfloor\frac{f\left(u_{i}\right)}{k}\right\rfloor$, for $1 \leq i \leq p$.
Thus $g^{*}(E)=\{2,4, \ldots, 2 q\}$. Hence g is a $(1,1)-$ EML.
The example for a $(3,3)$ - EML of a graph G and the corresponding $(1,1)$ - EML of G are shown in Figure 7.

Figure 7.

Lemma 2.5. If a graph G has $a(1,1)-E M L f$ in which $\left\{\left[\frac{f(v)}{2}\right\rfloor / v \in V\right\}=\{0,1, \ldots q\}$, , then G has a mean labeling.
Proof. Let $f: V(G) \rightarrow\{0,1,2, \ldots, 2 q\}$ be a $(1,1)-\mathrm{EML}$ of G. Then $f^{*}(\mathrm{E})=\{2,4, \ldots, 2 q\}$. Let u_{1}, $u_{2, \ldots}, u_{p}$ be the vertices of G.
Define $g: V(G) \rightarrow\{0,1,2, \ldots, q\}$ by $g\left(u_{i}\right)=\left\lfloor\frac{f\left(u_{i}\right)}{2}\right\rfloor$, for $1 \leq i \leq p$.
Thus $g^{*}(E)=\{1,2, \ldots, q\}$. Hence g is a mean labeling of G.

The example for a $(1,1)$ - EML of a graph G and the corresponding mean labeling of G are shown in Figure 8.

Figure 8.
Theorem 2.6. If a graph G has $a(k, k)-E M L f$ in which $\left\{\left\lfloor\frac{f(v)}{k}\right\rfloor / v \in V\right\}=\{0,1, \ldots 2 q\}$, then G has a mean labeling.

Proof. The theorem follows from Lemma 2.4 and Lemma 2.5.
The example for a $(3,3)$ - EML of a graph G and the corresponding mean labeling of G are shown in Figure 9.

Figure 9.
Theorem 2.7. A graph G has $a(1,1)-E M L$ if and only if it has a $(k, 1)-E M L g$ such that $g: V(G) \rightarrow$ $\{2 k-2,2 k-1, \ldots, 2 k+2(q-1)\}$ for any $k \geq 1$.

Proof. Let $f: V(G) \rightarrow\{0,1,2, \ldots, 2 q\}$ be a $(1,1)$ - EML of G. Then $f^{*}(E)=\{2,4, \ldots, 2 q\}$. Let $k \geq 1$ be an integer. Now, define $g: V(G) \rightarrow\{0,1,2 \ldots 2 k+2(q-1)\}$ by $g(v)=f(v)+2(k-1)$. We claim that g is a $(k, 1)$ - EML of G.
Let x and y be two adjacent vertices in G. We consider the following two cases.
Case (i): $g(x)+g(y)$ is even.
Then, $g^{*}(x y)=\frac{g(x)+g(y)}{2}$

$$
\begin{aligned}
& =\frac{f(x)+2(k-1)+f(y)+2(k-1)}{2} \\
& =\frac{f(x)+f(y)}{2}+2(k-1) \\
& =f^{*}(x y)+2(k-1)
\end{aligned}
$$

Case (ii): $g(x)+g(y)$ is odd.
Then, $g^{*}(x y)=\frac{g(x)+g(y)+1}{2}$

$$
\begin{aligned}
& =\frac{f(x)+2(k-1)+f(y)+2(k-1)+1}{2} \\
& =\frac{f(x)+f(y)+1}{2}+2(k-1) \\
& =f^{*}(x y)+2(k-1) .
\end{aligned}
$$

Thus $g^{*}(E)=\left\{\ddot{f}^{*}(x y)+2(k-1) / x y \in E(G)\right\}=\{2 k, 2 k+1, \ldots, 2 k+2(q-1)\}$ and hence g is a $(k, 1)-$ EML for $k \geq 1$.

Conversely, let $g: V(G) \rightarrow\{2 k-2, \ldots, 2 k+2(q-1)\}$ be a $(k, 1)-$ EML of G. Then $g^{*}(E)=\{2 k$, $2 k+2, \ldots, 2 k+2(q-1)\}$.
Now, define $f: V(G) \rightarrow\{0,1,2, \ldots, 2 q\}$ by $f(v)=g(v)+2(1-k)$ for $k \geq 1$ and $g(v) \geq 2(k-1)$.
We prove that f is a $(1,1)$-EML of G.
Let x and y be the two vertices in G. We consider the following two cases.
Case (i): $f(x)+f(y)$ is even.

$$
\text { Now, } \begin{aligned}
f^{*}(x y) & =\frac{f(x)+f(y)}{2} \\
& =\frac{g(x)+2(1-k)+g(y)+2(1-k)}{2} \\
& =\frac{g(x)+g(y)}{2}+2(1-k) \\
& =g^{*}(x y)+2(1-k) .
\end{aligned}
$$

Case (ii): $f(x)+f(y)$ is odd.
Now, $f^{*}(x y)=\frac{f(x)+f(y)+1}{2}$

$$
=\frac{g(x)+2(1-k)+g(y)+2(1-k)+1}{2}
$$

$$
=\frac{g(x)+g(y)+1}{2}+2(1-k)
$$

$$
=g^{*}(x y)+2(1-k) .
$$

Thus, $\left.f^{*}(E)=\left\{g^{*}(x y)+2(1-k) / x y \in E(G)\right\}=\{2,4, \ldots, 2 q)\right\}$ and hence f is a $(k, 1)$ - EML for $k \geq 1$.

The example for a $(1,1)$ - EML and the corresponding $(5,1)$ - EML of a graph G are shown in Figure 10.

Figure 10.

Also, a $(4,1)-$ EML and the corresponding $(1,1)-$ EML of a graph G are shown in Figure 11.

Figure 11.
Theorem 2.8. Let $G_{1}\left(p_{1}, q_{1}\right)$ be a $(1,1)$ - even mean graph and let $G_{2}\left(p_{2}, q_{2}\right)$ be a $(1,1)$ - even mean graph with EML g such that $g^{*}(v w)=2$ and $g(v)=1$ or 3 , then $G_{1} \cdot G_{2}(u v)$ is a $(1,1)$ - even mean graph for some vertex u in G_{1}.
Proof. Let G_{1} be a $(1,1)$ - even mean graph with EML f. Let $u_{1,}, u_{2}, \ldots, u_{p_{1}}$ and $v_{1,} v_{2, \ldots}, v_{p_{2}}$ be the vertices of graphs G_{1} and G_{2} respectively.
Let $h: V\left(G_{1} \cdot G_{2}(u v)\right) \rightarrow\left\{0,1,2, \ldots, 2\left(q_{1}+q_{2}\right)\right\}$ be defined by $h\left(u_{i}\right)=f\left(u_{i}\right)$ for $1 \leq i \leq p_{1}$ and $h\left(v_{j}\right)$ $=f\left(v_{j}\right)+2 q_{1}+2$ for $1 \leq i \leq p_{2}$.
Fix some vertex u in G_{1}, such that
$f(u)=\left\{\begin{array}{l}2 q_{1}, \text { when } \mathrm{g}(v)=1 \\ 2 q_{1}-1, \text { when } \mathrm{g}(v)=3 .\end{array}\right.$
The labels of the edges of $G_{1} \cdot G_{2}(u v)$ are $h^{*}(e)=\left\{\begin{array}{l}f^{*}(e), \quad \text { if } e \in \mathrm{G}_{1} \\ g^{*}(e)+2 q_{1}+2, \text { if } e \in \mathrm{G}_{2}\end{array}\right.$
Thus h is a $(1,1)$ - EML. Hence $G_{1} \bullet G_{2}(u v)$ is a $(1,1)$ - even mean graph.
The example for $(1,1)$ - EML's of G_{1} and G_{2} and a $(1,1)$ - EML of $G_{1} \bullet G_{2}(u v)$ are shown in Figure 12.

Figure 12.
Theorem 2.9. If a tree T has a $(1,1)-E M L$ f in which $\left\{\left\lfloor\frac{f(v)}{2}\right\rfloor / v \in V\right\}=\{0,1, \ldots q\}$, then $T \Theta K_{1}$ has a mean labeling.
Proof. Let $f: V(T) \rightarrow\{0,1,2, \ldots, 2 q\}$ be a $(1,1)$ - EML of T. Then $f^{*}(E)=\{2,4, \ldots, 2 q\}$. Let $u_{1}, u_{2, \ldots}$, u_{p} be the vertices of T and $v_{1}, v_{2}, \ldots, v_{p}$ be the corresponding new vertices in $T \Theta K_{1}$.
Define $g: V\left(T \Theta K_{1}\right) \rightarrow\{0,1,2, \ldots, 2 q+1\}$ by $g\left(u_{i}\right)=f\left(u_{i}\right)$, for $1 \leq i \leq p$
$g\left(v_{i}\right)=\left\{\begin{array}{l}f\left(u_{i}\right)+1, \text { when } f\left(u_{\mathrm{i}}\right) \text { is even } \\ f\left(u_{i}\right)-1, \text { when } f\left(u_{\mathrm{i}}\right) \text { is odd. }\end{array}\right.$
If both x and y are in T, then $g^{*}(x y)=f^{*}(x y)=\{2,4,6, \ldots, 2 q\}$.
If not, then $g(x)$ and $g(y)$ are consecutive integers and therefore, $g^{*}(x y) \in\{1,3,5, \ldots, 2 q+1\}$.
Thus $g^{*}(E)=\{1,2, \ldots, 2 q+1\}$. Hence g is a mean labeling of $T \Theta K_{1}$ and $T \Theta K_{1}$ is a mean graph.
The example for a $(1,1)$ - EML of a tree T and the mean labeling of $T \Theta K_{1}$ are shown in Figure 13.

Figure 13.

References

[1] Selvam Avadayappan, R. Vasuki, Some results on mean graphs, Ultra Scientist, 21(1) M, (2009), 273-284.
[2] Selvam Avadayappan, R. Vasuki, New families of mean graphs, International J.Math. Combin, 2(2010), 68-80.
[3] R. Balakrishnan, K. Ranganathan, A Text book of graph theory, Springer, NewYork (2000).
[4] B. Gayathri, K. Amuthavalli, k - odd mean labeling of crown graphs, International Journal of Mathematics and Computer Science, 3(2), (2007), 253-259.
[5] B. Gayathri, K. Amuthavalli, k - odd mean labeling of $\left\langle K_{1, n}: K_{1, m}\right\rangle$, Acta Ciencia Indica, XXXIVM (2), (2008), 827-834.
[6] B. Gayathri, K. Amuthavalli, (k, d) - odd mean labeling of some graphs, Bulletin of Pure and Applied Sciences, 26E (2), (2007), 263-267.
[7] B. Gayathri, R. Gopi, k - even mean labeling of $D_{m, n} @ C_{n}$, International Journal of Engineering Science, Advanced Computing and Bio- Technology, 1 (B) (2010), 137-145.
[8] B. Gayathri, R. Gopi, (k, d) - even mean labeling of $P_{m} \Theta n K_{1}$, International Journal of Mathematics and Soft Computing, Vol. 1, No. 1 (2011), 115-129.
[9] K. Manickam, M. Marudai, Odd mean labeling of graphs, Bulletin of Pure and Applied sciences, 25E (1) (2006), 149-153.
[10] S. Somasundaram, R. Ponraj, Mean labelings of graphs, Natl. Academy science letter, 26 (7-8) (2003), 10-13.
[11] S. Somasundaram, R. Ponraj, Non-existence of mean labeling for a wheel, Bull. Pure and Applied Sciences. (Mathematics and statistics), 22E (2003), 103-111.
[12] S. Somasundaram, R. Ponraj, Some results on mean graphs, Pure and Applied Mathematical Sciences, 58 (2003), 29-35.
[13] S. Somasundaram, R. Ponraj, On mean graphs of order < 5, J. Decision and Mathematical Sciences, 9(2004), 47-58.

