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Abstract 

A connected graph is called neighbourly irregular (NI) if it contains no edge between the 

vertices of the same degree. In this paper we determine the upper bound for chromatic number of 

a neighbourly irregular graph. We also prove some results on neighbourly irregular graphs and its 

chromatic number. 
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1    Introduction 

Throughout this paper we consider only finite, simple and connected graphs. Notations and 

terminology that we do not define here can be found in [9]. Let G be a connected graph of order n. For 

1 ≤ i ≤ n-1, the subset Vi(G) (simply Vi) is defined as the set of all vertices of degree i in G, that is, 

Vi(G) = { v  V(G) | d(v) = i }. Note that |Vi| ≤ n for every i, 1 ≤ i ≤ n-1. The degree set D(G) of a 

graph G is the set of degrees of the vertices of G. A vertex of degree one is called a pendent vertex of 

G. The vertex which is adjacent to a pendent vertex is called a support vertex. For any two graphs G 

and H, the join G  H is the graph obtained from G  H by joining every vertex in G to each vertex in 

H. We denote the complement of G by G
c
. For any real number x, x denotes the greatest integer 

which does not exceed x and x denotes the least integer which exceed x. 

 It is well known that all non-trivial graphs must contain at least two vertices of the same degree. A 

graph is said to be regular if each vertex has the same degree. Indeed, a graph is r-regular if |Vr(G)| = 

n. A graph that is not regular is called irregular [2]. Let In denote a graph with vertex set V = {v1, v2, 

…, vn} and the edge set E = {vn+1-ivj, 1 ≤ i ≤ , i ≤ j ≤ n-i}, which has precisely two vertices with the 

same degree [7]. In is a special type of irregular graph for which D(In) = {1, 2, …, n-1}. In [11], the 

graph In is referred to as the pairlone graph and is denoted by PLn. Also it has been proved  that, for 

any n ≥ 2, there exists a unique pairlone graph of order n. It is clear that and (PLn) = n- . When n 

is odd, (PLn) = (n+1)/2.  

S. Gnaana Bhragsam and Ayyaswamy [12] have introduced the concept of neighbourly irregular 

graph. A connected graph G is said to be a neighbourly irregular graph (NI graph) if no two adjacent 

vertices of G have the same degree. For example, the graphs shown in Figure 1 are NI. It has been 
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proved that In is NI if and only if n is odd [7]. For more results in irregular graphs, one can refer to [1], 

[3], [4, [5], [8], [10], [13] and [14].  

 

 

 

 

 

         

 

 

 

 

Figure 1. 

 

It is clear that a connected graph G is NI if and only if for each i, 1 ≤ i ≤ n-1, Vi(G) is either empty 

or independent in G. In other words, a graph G is not NI if and only if for some i, Vi is neither empty 

nor independent in G. 

The following facts can be verified easily: 

Fact 1 [12] If v is a vertex of maximum degree in a NI graph, then at least two of the adjacent vertices 

of v have the same degree. 

Fact 2 [12] Km,n is NI if m ≠ n. 

Fact 3 [12] Let G be a NI graph of order n. Then for any positive integer m < n, there exists at most m 

vertices of degree n-m.

 Fact 4 [12] If a graph G is NI, then G
c
 is not NI. 

The converse of the Fact 4 is not true. For example, neither P4 nor P4
c
 are NI.

 Fact 5 [4] Any NI graph G with clique number k has at least 2k-1 vertices. For, the k vertices in the 

clique must have distinct degrees in G and therefore  (G) ≥ 2k-2. 

Fact 6 If G is an NI graph of order n then for any m ≥ 1, G  Km
c
 is NI if and only if Vn-m(G) is empty.  

In this paper we prove that for any NI graph G, (G) ≤ +1. Moreover we prove the existence of 

NI graph G of order n with (G) = k and (G) = d for any k, d and n such that 4  2k-2  d < n. We 

also prove that, if |d(u)-d(v)|  k > 2 for any edge uv in an NI graph G, then (G) ≤ . In addition, we 

determine (G) of an NI graph G for which |d(u)-d(v)| = k > 0 for any edge uv in G. Some results on 

NI graphs in which |d(u)-d(v)| = k > 0 for any edge uv have been obtained in [6].  

 

2    Main Results 

First we prove the existence of an NI tree of order n with (T) = d for any two positive integers n 

and d such that 3 ≤ d < n. P3 is the only NI tree when (T) = 2. 

Theorem 2.1. For any two positive integers n and d such that n ≥ d+1 ≥ 4, there is an NI tree T of 

order n with (T) = d. 

Proof.  Let d ≥ 3 be a given positive integer. We prove the existence of an NI tree of order n with  

(T) = d for any given n > d by induction on n. If n = d+1, then K1,d is the required one for any  d ≥ 3. 
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Assume that the result is true for all n  where n ≤ d+k, k ≥ 1 and let T be an NI tree of order n with 

(T) = d. We claim that the result is true for n+1, by constructing an NI tree T1 of order n+1 with (T) 

= d. 

If T has a pendent vertex v whose support vertex is u such that d(u) ≥ 3, then construct T1 from T 

by adding a new vertex w and a new edge wv. Clearly T1 is an NI tree of order n+1 with (T1) = d. 

Otherwise in T, the degree of any support vertex is 2. Since d ≥ 3, T must have at least 3 pendent 

vertices. Let v1 and v2 be any two pendent vertices in T. T \ v1 is also an NI tree of order n-1 with   

(T\ v1) = d. Now construct T1 from T \ v1 by adding two new vertices w1 and w2 and the edges w1v2 

and w2v2. Clearly T1 is an NI tree of order n+1 and (T1) = d.              

It is a well known fact that for any graph G, (G) ≤ +1. Brook’s [9] proved that  the upper bound 

of (G) is  if the graph G is neither complete nor an odd cycle. But this bound can be reduced further 

in case of NI graphs, which is established in the following theorem. 

Theorem 2.2. For any NI graph G, (G) ≤ +1. 

Proof. We prove the result for the case when  is odd and in a similar way one can prove the same 

when  is even. Let t = (+1)/2 and let S = { c1, c2, …, ct } be a set with t distinct colours. For each i,    

1 ≤ i ≤ t assign the colour ci to the vertices in V+1-i. Let Si be the set of vertices which receive the 

colour ci. Now it remains to assign colours to the vertices in Vi for all i, 1 ≤ i ≤ -t. Choose Vk for 

some k, 1 ≤ k ≤ -t. Clearly k < t. Let v  Vk. Since d(v) = k < t, N(v)  Si must be empty for some i,  

1 ≤ i ≤ t. Now assign the colour ci to the vertex v. Replace Si by Si { v }. Repeating the same process, 

we can colour all the vertices in Vk using colours c1, c2, …, ct. Since k is arbitrary, G is t-colourable. 

This completes the proof.                                            

Since for the NI graph I2n+1,  = 2n and  = n+1, the bound attained in the above theorem is sharp. 

Corollary 2.31.  Any NI graph G with (G) ≥ k has at least 2k-1 vertices. 

Proof.  Let G be an NI graph with (G) ≥ k. Suppose n < 2k-1. Then (G) < 2k-2. Now by     

Theorem 2.2, k ≤ (G) ≤ +1 < +1 = k, a contradiction. Therefore, G must have at least 2k-1 

vertices.                     

Theorem 2.4. For any three positive integers k, d and n such that n > d ≥ 2k-2 ≥ 4, there is an NI 

graph G of order n with (G) = k and (G) = d. 

Proof.  Let k ≥ 3 be given. We consider the following two cases. 

Case 1: Suppose n = d+1. 

If d = 2k-2, then G  I2k-1 of order d+1 is the required graph. If d > 2k-2, then construct a new 

graph G from I2k-1 by joining d-(2k-2) new vertices to the vertex of degree 2k-2. Clearly G is an NI 

graph of order d+1 with (G) = d. Thus for any k ≥ 3, there is an NI graph G of order n = d+1 with 

(G) = d, for any d ≥ 2k-2. 

Case 2: Suppose n > d+1. 

Construct an NI graph G of order d+1 with (G) = d as in Case 1. Let t = n-(d+1). If t = 1 or 2, 

then construct a new graph H from G by introducing t new vertices and joining them with a pendent 

vertex of G. If t = 3, then construct a new graph H from G by identifying a vertex of degree 2 of P4 

with a pendent vertex of G.  
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Suppose t > 3. Let T be an NI tree of order t+1 with (T) = 3 (T exists by Theorem 2.1). Let v be 

the vertex of degree d in G and let u be a pendent vertex which is adjacent to v. Now construct a new 

graph H from G \ u by identifying a vertex of T with v. Clearly H is an NI graph of order n with (H) 

= k and (H) = d. This completes the proof.                                 

In any graph G, |d(u)-d(v)| ≥ 0 for any edge uv. G is regular if |d(u)-d(v)| = 0 for any edge uv in G. 

Clearly in an NI graph |d(u)-d(v)| ≥ 1 for any edge uv. That is, a graph is NI if and only if the lowest 

bound for the difference between the degrees of the adjacent vertices is at least one. The following 

theorem gives the bound for the chromatic number if the lowest bound for the difference between the 

degrees of the adjacent vertices is known. 

Theorem 2.5. Let G be a graph in which |d(u)-d(v)| ≥ k > 2 for any edge uv in G. Then (G) ≤ . 

Proof. Take (G) = tk+r where 0 ≤ r < k. Suppose r = 0. Consider Si = 
ki

ikj

j GV
)1(

1

)(




, i = 1, 2, …, t. 

Clearly each Si is independent in G. For each i, 1 ≤ i ≤ t assign the colour ci to the vertices in Si. 

Obviously, if Si is empty for some i, 1 ≤ i ≤ t, then the number of colours used to colour the vertices of 

G is fewer than t. Therefore, (G) ≤ . 

If r ≠ 0, then consider St+1 =
tk

j

j GV


1

)( . Clearly St+1 is independent in G. For each i, 1 ≤ i ≤ t+1 

assign the colour ci to the vertices in Si. Clearly as discussed earlier, (G) ≤ t+1 = .                       

The above limit for (G) is tight. For example, consider the graph G1 and G2 in Figure 2, clearly 

|d(u)-d(v)| ≥ 2 for any edge uv in G1 and |d(u)-d(v)| ≥ 3 for any edge uv in G2. It can be verified that  

(G1) =   = 3, whereas (G2) =  = 3. 
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Figure 2. 

 

Fact 7 Let G be an NI graph such that |d(u)-d(v)| ≥ k > 2 for any edge uv in G. If the clique number of 

G is , then G has at least +(-1)k vertices. 

For, any two vertices u and v in the clique, |d(u)-d(v)| ≥ k in G, and thus there must be at least one 

vertex of degree (-1)+(-1)k. 

Let G be an NI graph of order n. The chromatic number becomes 2 if |d(u)-d(v)| = k > 0, for any 

two adjacent vertices u and v which is shown in the following theorem. 
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Theorem 2.6.  Let G be an NI graph of order n such that |d(u)-d(v)| = k > 0 for any edge uv in G. 

Then,  (G) = 2. 

Proof.  Suppose G has an odd cycle C = v, v1, v2, …, vm, um, um-1, …, u1, v of length 2m+1. Let d(v) = 

d  in G. Since v1 and u1 are adjacent to v, the degree of v1 and u1 must be dk. |d(u1)-d(v1)| is either 0 

or 2k. Again degree of v2 and u2 must be d or d2k. Thus |d(u2)-d(v2)| is either 0 or 2k or 4k. 

Proceeding like this we get for each i, 1 ≤ i ≤ m, |d(vi)-d(ui)| is either 0 or greater than k. Indeed, 

|d(vm)-d(um)| is either 0 or greater than k. But vm and um are adjacent in G. This is a contradiction to 

our assumption that |d(vm)-d(um)| = k. Thus G contains no odd cycle and hence it is bipartite and 

hence (G) = 2.                        
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