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Abstract

In this paper, we identify a few proper subsets of the vertex set of a non-empty connected graph

and study their properties. Further, we obtain some results when the graph is semi-complete.
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1 Introduction

In defence , we come across situations where the complete strategy should not be known to a single

individual but can be shared by two officials. Further, in some situations there should not be a direct

contact between the two individuals, but can be linked by a superior (third) person.

In such situations, the notion of a complete graph does not serve the purpose. I.H. Naga Raja Rao

and S.V. Siva Rama Raju introduced a new type of graph called ”Semi-Complete Graph” and studied its

various properties in [2], [3] and [4].

For standard terminology and results we refer [1].

2 Preliminaries

Definition 2.1. [2] (i) A graph G is said to be semi-complete(SC) if it is simple and for any two

vertices u,v of G there is a vertex w of G such that {u, w, v} is a path in G.

(ii) A graph G is said to be purely semi-complete if and only if G is semi-complete but not complete.

Theorem 2.2.[2] If G is a semi-complete graph then there exists a unique path of length 2 between any

two vertices of G if and only if the edge set of G can be partitioned into edge disjoint triangles.

Theorem 2.3.[2] If G is a semi complete graph in which no two triangles have a common edge, then

all the triangles have a common vertex.
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Definition 2.4. [4] (i) A Path Connector set(PC-Set) in a graph G is a subset V ′ of the vertex set V

of G such that for any distinct pair of non-adjacent vertices in G there is a shortest path whose internal

vertices are from V ′.

(ii) A Path Connector Set in G is said to be a minimum Path Connector Set (mPC-Set) in G if and

only if it has the minimum cardinality among all the PC-Sets in G.

Theorem 2.5.[4] Let G be a purely semi-complete graph with vertex set V . Then

(a) Any PC-Set S in G is a dominating set in G.

(b) Further, if | S |≥ 2 then S is a connected dominating set in G.

Definition 2.6. [5] Let G be a connected graph. A set D ⊆ V (G) is a point-set dominating set (psd-Set)

of G if for every set S ⊆ V − D, there exists a vertex v ∈ D such that the subgraph < S
⋃
{v} >

induced by S
⋃
{v} is connected. The point-Set domination number γp(G) is the minimum cardinality

of a psd-Set.

3 Split/Non-split Path Connector Sets

Definition 3.1. Let G be a connected graph with vertex set V .

1. A proper Path Connector set (PC-Set) S of G is said to be a Split Path Connector Set (SPC-Set)

in G or a Non-Split Path Connector Set (NSPC-Set) in G according as the subgraph induced by

V − S is disconnected or connected.

2. An SPC-Set in G is said to be a minimum SPC-Set (mSPC-Set) if it has minimum cardinality

among all the SPC-Sets in G.

3. An NSPC-Set in G is said to be a minimum NSPC-Set (mNSPC-Set) if it has minimum cardinality

among all the NSPC-Sets in G.

Example 3.2.S = {v3, v5, v6 (or v7)} is an SPC-Set and also an mSPC-Set. S
′
= {v1, v2, v3, v4, v5, v6}

is an NSPC-Set.

Figure 1.

Example 3.3.For the graph given in Figure 2a, {v1}, {v4} are PC-Sets(infact mPC-Sets) and they are

also NSPC-Sets since the graph < V − {vi} >(i=1 or 4) is connected.
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Figure 2a.

For the graph given in Figure 2b,S = {v1, v4} is an SPC-Set inG, since< V − S > is disconnected.

A graphical representation of it is the null graph induced by{v6, v5, v2, v3}.
Observe thatS is not a mPC-Set inG, but it is an mSPC-Set inG.

Figure 2b.

Example 3.4.For the graph G given in Figure 3, {v0} is a mPC-Set and also an mSPC-Set. Clearly

V − {vi}(i = 1, 2, ..., 6) are NSPC-Sets.

Figure 3.

Theorem 3.5.If G is a connected graph having a cut-vertex, then any PC-Set in G is an SPC-Set.

Proof. Let v0 be a cut-vertex inG andS be a PC-Set inG. Thenv0 ∈ S and there exists a pair

of non-adjacent vertices inG, sayv1, v2 such thatv0 is the internal vertex in everyv1 − v2 path in

G ⇒< V − S > is disconnected. Thus,S is an SPC-Set inG.

The converse of the above theorem is false. For example, consider the graphG in Figure 4. Any PC-Set

in G is an SPC-Set inG, butG does not have any cut-vertex.
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Figure 4.

We prove a necessary and sufficient condition for a proper subset of the vertex set of a (non empty)

connected graph to be an SPC-Set.

Theorem 3.6.Let G be a (non empty) connected graph with vertex set V and S be a proper subset of

V . Then S is an SPC-Set in G if and only if there is a pair of non-adjacent vertices in < V − S > such

that every path between them in G has atleast one internal vertex from S.

Proof. SinceS is an SPC-Set,< V − S > is disconnected. Hence, there is a pair of non adjacent

vertices in< V − S > such that there is no path between them in< V − S >. SinceG is connected,

there is a path between them inG. Hence, every path between them inG has atleast one internal vertex

from S.

Conversely, by the hypothesis there is a pair of vertices in< V − S > such that there is no path

between them in< V − S >. Hence< V − S > is disconnected. SinceS is a PC-Set,S is an SPC-Set

in G.

Corollary 3.7. G is a non empty connected graph with vertex set V and S is a proper PC-Set in G. Then

S is an NSPC-Set in G if and only if for every pair of non adjacent vertices in < V − S > there is a

path with no internal vertex from S.

Observation 3.8.If S and V − S are PC-Sets in G, then S is an NSPC-Set in G.

4 Complementary nil path connector set

Definition 4.1. Let G be a connected graph with vertex set V . A proper path connector set S of G is

said to be a complementary nil path connector set(CNPC-Set) in G if V − S is not a path connector set

in G.

Example 4.2.Consider the graph G given in Figure 5. S = {v1, v3, v6} is a PC-Set but V − S =
{v2, v4, v5, v7} is not a PC-Set, since there is no shortest v1 − v4 path(path of length 2) whose internal

vertices are from V − S. Thus S is a CNPC-Set for G. Whereas, for the graph G given in Example 3.3

Figure 2a, {vi} and V −{vi} are PC-Sets in G for i = 1, 4. Hence, {v1}, V −{v1} and {v4}, V −{v4}
are not CNPC-Sets in G.



On path connector sets 59

Figure 5.

Observation 4.3.

(i) An SPC-SetS in a connected graphG is a CNPC-Set inG, since< V − S > is disconnected (⇒
V −S is not a PC-Set inG). But the converse is not true. For the graphG in Figure 6,S = {v3, v5, v7}
is a CNPC-Set inG, but not an SPC-Set inG.

Figure 6.

(ii) An NSPC-SetS in a connected graphG needs not be a CNPC-Set inG. For example, for the

graphG in Figure 7,S = {v3, v7} is an NSPC-Set inG, but not a CNPC-Set inG.

Figure 7.

(iii) An NSPC-SetS in a connected graphG can be a CNPC-Set inG. For the graphG in Figure 8,

S = {v1, v4} is an NSPC-Set inG, which is also a CNPC-Set inG.

Figure 8.

Theorem 4.4.Let G be a connected graph with vertex set V and S be a proper PC-Set in G. Then S is

a CNPC-Set in G if and only if there is a pair of non-adjacent vertices in G such that every shortest path

between them in G has atleast one internal vertex from S.

Proof. Let S be a CNPC-Set inG. Hence by definition,V −S is not a PC-Set inG. So there is a pair of

non-adjacent vertices inG such that no shortest path between them (inG) have all its internal vertices

from V − S. Hence every shortest path between them inG has atleast one internal vertex which is not

in V − S and hence is inS.
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Conversely, suppose that there is a pair of non-adjacent vertices inG such that every shortest path

between them inG has atleast one internal vertex fromS. Then there is no shortest path between a pair

of non-adjacent vertices inG whose internal vertices are fromV − S ⇒ V − S is not a PC-Set inG.

Thus,S is a CNPC-Set inG.

Corollary 4.5. If G is a connected graph in which there exists a unique shortest path between a pair of

non-adjacent vertices in G, then every PC-Set in G is a CNPC-Set.

Proof. If S is any PC-Set inG then there is a pair of non-adjacent vertices inG such that every shortest

path between them inG(infact there is only one such path) has all its internal vertices fromS. Hence,

by Theorem 4.4,S is a CNPC-Set inG.

The converse of the above corollary is false in view of the graph given in Figure 8. Here,S =
{v1, v2, v4} is a CNPC-Set, but in this graph there exists two shortest paths, each of length 2 between

any pair of non-adjacent vertices.

Theorem 4.6.Let G be a connected graph having a cut-vertex . Then any PC-Set in G is a CNPC-Set

in G.

Proof. Let v0 be a cut-vertex inG. Therefore,v0 ∈ S. Hence there is a pair of non-adjacent vertices in

G, sayv1, v2 such thatv0 is the internal vertex in everyv1− v2 path inG ⇒< V −S > is not a PC-Set

in G. Thus,S is a CNPC-Set inG.

The converse of the above theorem is false in view of the graph given in Figure 4. Any PC-Set inG

is a CNPC-Set inG, butG does not have cut-vertices.

Corollary 4.7. Let G be a purely semi-complete graph whose edge set is a union of edge disjoint trian-

gles. Then any PC-Set for G is a CNPC-Set in G.

Proof. The given hypothesis in virtue of Theorem 2.3 implies that all the triangles have a common

vertex,v0. Also there is a unique shortest path between any pair of non-adjacent vertices inG(each is

of length 2 and the internal vertex beingv0). Hence any proper subsetS of the vertex set ofG such that

v0 ∈ S is a PC-Set inG. Now by the above theorem, any PC-Set forG is a CNPC-Set inG.

Theorem 4.8.If G is a purely semi-complete graph in which no two triangles have a common edge,

then the intersection of all CNPC-Sets is a singleton.

Proof. By Theorem 2.3 all the triangles ofG have a common vertex, sayv0. If S is any PC-Set inG

thenv0 ∈ S. Clearly{v0} is also a PC-Set inG. Futher between any two non-adjacent vertices inG

there is a unique shortest path (of length 2). By Corollary 4.5, each PC-Set is a CNPC-Set. Hence, the

intersection of all CNPC-Sets is the singleton{v0}.
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Remark 4.9.The converse of the above theorem is false in view of the following example. Consider

the following graph G given in Figure 9. We observe that any CNPC-Set in G contains the vertex v0.

Hence the intersection of all CNPC-Sets is {v0}. But the edge set of G is not a union of edge disjoint

triangles.

Figure 9.

5 Point set path connector set

Definition 5.1. (i) Let G be a connected graph with vertex set V . A path connector set S in G is said

to be a point set path connector set (PSPC-Set) if for every P ⊆ V − S there is a u ∈ S such that

< P
⋃
{u} > is connected.

(ii) A PSPC-Set in G is said to be a minimum point set path connector set (mPSPC-Set) in G if it has

minimum cardinality among all the PSPC-Sets in G.

Example 5.2.Consider the graph given in Figure 4. Here, S = {v3, v5} is a PSPC-Set, since for any

P ⊆ V − S = {v1, v2, v4} there is a u ∈ S such that < P
⋃
{u} > is connected.

Example 5.3.For the following graph G given in Figure 10, S = {v3} is a PSPC-Set(infact mPSPC-

Set), since for any P ⊆ V − S = {v1, v2, v4, v5}, < P
⋃
{v3} > is connected.

Figure 10.

Remark 5.4.A PC-Set in a(connected) graph need not be PSPC-Set in view of the following example.

Consider the following graph G in Figure 11. For this graph, S = {v1, v5} is a PC-Set. It is not a

PSPC-Set , for P = {v4, v6} both < P
⋃
{v1} >, < P

⋃
{v5} > are disconnected.

Figure 11.
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Theorem 5.5.G is a connected graph with vertex set V and S is a PC-Set in G. If for every P ⊆
V − S, < P > has a PC-Set in itself, then S is a PSPC-Set in G.

Proof. By the given hypothesis,< P > is connected for everyP ⊆ V − S. SinceS is a PC-Set in

G by Theorem 2.5,S is a dominating set forG. So there is au ∈ S such thatu is adjacent with some

vertex ofP . Hence< P
⋃
{u} > is connected. Thus,S is a PSPC-Set inG.

Observation 5.6.The converse of the above theorem is false. For example, consider the graph G given

in Figure 12. S = {v1, v2, v4, v6} is a PSPC-Set in G. But for P = V − S = {v3, v5}, < P > has no

PC-Set in itself. Infact < P > is not connected.

Figure 12.

Theorem 5.7.Let G be a connected graph with vertex set V and S be a PSPC-Set in G. If for every

P ⊆ V − S, < P > has a PC-Set in P itself, then S is an NSPC-Set in G.

Proof. Let S be a PSPC-Set inG. Then< V − S > is connected and by definitionS is an NSPC-Set

in G.

Observation 5.8.The converse of the above theorem is false. Consider the graph G in Figure 13.

S = {v0} is an NSPC-Set in G. Since < V − S > = < {v1, v2, v3, v4, v5, v6} > is connected. But

P = {v1, v3} ⊆ V − S is such that < P > is not connected (and has no PC-Set in itself).

Figure 13.

Theorem 5.9.Let G be a connected graph with vertex set V and S be a PSPC-Set in G. If for every

P ⊆ V − S with |P | ≥ 2, < P > has atleast two components then S is an SPC-Set in G.

Proof. By the given hypothesis,< V − S > has atleast two components and hence< V − S > is

disconnected⇒ S is an SPC-Set inG.
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Observation 5.10.The converse of the above theorem is false in view of the following. Consider the

graph given in Figure 3. {v0} is a PSPC-Set which is an SPC-Set in G. Now P = {v1, v2} ⊆ V −{v0}
with |P | = 2 and < P > is connected and hence has no two components.

Theorem 5.11.If G is a connected graph and S is a PC-Set in G which is not a PSPC-Set in G, then

|mpcs(G)| ≥ 2.

Proof. S is not a PSPC-Set inG. Hence, there is aP ⊆ V −S such that< P
⋃
{u} > is not connected

for anyu ∈ S. Then< P > is not connected and hence has atleast two components. So atleast two

vertices inP are not dominated by a single vertex fromS ⇒ |mpcs(G)| ≥ 2.

Observation 5.12.The converse of the above theorem is not true. For example consider the graph G

given in Figure 14. Here, |mpcs(G)| = 2. But clearly every pc-Set in G is a PSPC-Set in G.

Figure 14.

Theorem 5.13.If G is a purely semi-complete graph and S is a PC-Set in G, then S is a PSPC-Set in

G if and only if for any independent set B ⊆ V − S, there is a v ∈ S such that every vertex of B is

adjacent to v in G.

Proof. Let S be a PSPC-Set inG andB be any independent set inV − S. Then there is av ∈ S such

that < B
⋃
{v} > is connected. Since no two elements inB are adjacent we have for anyv1, v2 ∈

B, {v1, v, v2} is a path inG, of length 2. Thus the necessary part holds.

Conversely, suppose thatS is a PC-Set inG and the stated condition holds. LetP ⊆ V − S. If

< P > is connected then the result is trivial. Otherwise, letP1, P2, ..., Pn be the components ofP ,

wheren ≥ 2. Selectvi ∈ Pi(i = 1, 2, ..., n). SoB = {v1, v2, ..., vn} is an independent set inG. Now,

by the hypothesis there exists av ∈ S such that< B
⋃
{v} > is connected (since eachvi is adjacent to

v in G). Therefore,< P
⋃
{v} > is connected. Hence,S is a PSPC-Set inG.

Theorem 5.14.If G is a purely semi-complete graph, then every PSPC-Set in G is a point set dominating

set in G.

Proof. Let S be a PSPC-Set in the purely semi-complete graphG andP ⊆ V − S. Let B ⊆ P be

any independent set. By the above theorem, there is av ∈ S such that< B
⋃
{v} > is connected

⇒< P
⋃
{v} > is connected⇒ S is a point set dominating set inG.
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Observation 5.15.The converse of the above theorem is false. For the graph G given in Figure 15,

{v2, v4, v6} is a point set dominating set in G. But it is not even a pc-Set in G and hence not a PSPC-Set

in G.

Figure 15.

Theorem 5.16.Let G be a purely semi-complete graph with n vertices and S be a PC-Set in G such

that |S| ≥ n− 2. Then S is a PSPC-Set in G.

Proof. Let P ⊆ V − S. Then eitherP is singleton or two elements set. LetP = {v}. SinceS is a

pc-Set inG, by Theorem 2.5,S is a dominating set inG. So there is au ∈ S such thatv is adjacent to

u ⇒< P
⋃
{u} > is connected.

Let P = {v1, v2}. If v1, v2 are adjacent , then as in the previous case, there is au ∈ S such that

< P
⋃
{u} > is connected. Ifv1 andv2 are non-adjacent, then by the nature ofS, there is au ∈ S such

that< P
⋃
{u} > is connected.ThusS is a PSPC-Set inG.

Remark 5.17.The converse of the above theorem is false in view of the graph given in Figure 14.

S = {v2, v5} is a PSPC-Set in G. But, P = V − S = {v1, v3, v4, v6} is such that |P | = 4 > 2.

Theorem 5.18.If G is a purely semi-complete graph that has a unique path between any pair of vertices

in G, then the intersection of all PSPC-Sets in G is a singleton.

Proof. By Theorem 2.2,G is a union of edge disjoint triangles having a common vertex, sayv0. It

follows that any PSPC-Set inG contains vertexv0. Infact{v0} itself is a PSPC-Set inG. Hence, their

intersection is{v0}.

Observation 5.19.The converse of the above theorem is false. Consider the graph G given in Figure

16. Clearly all PSPC-Sets in G include v1. But there are two shortest paths between v1 and v5 namely

{v1, v4, v5} and {v1, v6, v5}.
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Figure 16.
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