Nordhaus-Gaddum Type results in Majority Domination

J. Joseline Manora
Department of Mathematics, T.B.M.L. College,
Porayar, Tamilnadu, INDIA.
E-mail: joseline-manora@yahoo.co.in.
\section*{V.Swaminathan}
Ramanujan Research Center, Saraswathi Narayanan College, Madurai, Tamilnadu, INDIA-625022.
E-mail: sulanesri@yahoo.com.

Abstract

In this paper we deal with Nordhaus-Gaddum type results in majority domination number of G and \bar{G} and also majority domatic number of G and \bar{G}. We also establish bounds for $\gamma_{M}(G)+d_{M}(G)$ and $\gamma_{M}(G) d_{M}(G)$.

Keywords: Majority dominating set, majority domination number $\gamma_{M}(G)$, majority domatic number $d_{M}(G)$.
AMS Subject Classification(2010): 05C69.

1 Introduction and Definitions

Nordhaus and Gaddum[2] established the inequality for the chromatic numbers $\chi(G)$ and $\chi(\bar{G})$ as $2 \sqrt{p} \leq \chi(G)+\chi(\bar{G}) \leq p+1$ and $p \leq \chi(G) \chi(\bar{G}) \leq \frac{(p+1)^{2}}{4}$. In 1972, Jaeger and Payan[3] published the first Nordhaus-Gaddum type result involving domination. In this paper we find Nordhaus-Gaddum type results in majority domination.

By a graph we mean a finite undirected graph without loops or multiple edges. Let $G=(V, E)$ be a finite graph with p vertices and q edges and v be a vertex in V. The closed neighborhood of v is defined by $N[v]=N(v) \cup\{v\}$.

Definition 1.1. [4] A subset $S \subseteq V(G)$ of vertices in a graph $G=(V, E)$ is called a majority dominating set if at least half of the vertices of $V(G)$ are either in S or adjacent to the elements of S.
That is, $|N[S]| \geq\left\lceil\frac{|V(G)|}{2}\right\rceil$.
Definition 1.2. A majority dominating set S is minimal if no proper subset of S is a majority dominating set. The minimum cardinality of a minimal majority dominating set is called the majority domination number and is denoted by $\gamma_{M}(G)$. The maximum cardinality of a minimal majority dominating set is denoted by $\Gamma_{M}(G)$. Also, majority dominating sets have superhereditary property.

Theorem 1.3. [4] Let S be a majority dominating set of G. S is minimal if and only if for every $v \in S$ one of the following conditions holds:
(i) $|N[S]|>\left\lceil\frac{p}{2}\right\rceil$ and $|P n[v, S]|>|N[S]|-\left\lceil\frac{p}{2}\right\rceil$.
(ii) $|N[S]|=\left\lceil\frac{p}{2}\right\rceil$ and either v is an isolate of S or $\operatorname{Pn}[v, S] \cap(V-S) \neq \phi$.

Definition 1.4. [5] The majority domatic number $d_{M}(G)$ of a graph G is the maximum number of elements in a partition of $V(G)$ into majority dominating sets.

2 Nordhaus-Gaddum type results in majority domination of G and \bar{G}

Theorem 2.1. [6] Let G be a graph without isolates. Then $\gamma_{M}(G) \leq\left\lceil\frac{p}{4}\right\rceil$.
Proposition 2.2. [4] Let G be any graph with p vertices. Then $\gamma_{M}(G)=1$ if and only if there exists a vertex of degree $\geq\left\lceil\frac{p}{2}\right\rceil-1$.

Theorem 2.3. For any graph $G, \gamma_{M}(G)+\gamma_{M}(\bar{G}) \leq\left\lceil\frac{p}{2}\right\rceil+1$ and equality holds if and only if $G=K_{p}$ or $\overline{K_{p}}$.

Proof. Case(i) : Let G or \bar{G} has an isolate. If G has an isolate, then $\gamma_{M}(G) \leq\left\lceil\frac{p}{2}\right\rceil$ and $\gamma_{M}(\bar{G})=1$. A similar result holds when \bar{G} has an isolate. Therefore, in both the cases $\gamma_{M}(G)+\gamma_{M}(\bar{G}) \leq\left\lceil\frac{p}{2}\right\rceil+1$.
Case(ii) : Neither G nor \bar{G} has isolates. By Theorem 2.1,
$\gamma_{M}(G) \leq\left\lceil\frac{p}{4}\right\rceil$ and $\gamma_{M}(\bar{G}) \leq\left\lceil\frac{p}{4}\right\rceil$. Hence $\gamma_{M}(G)+\gamma_{M}(\bar{G}) \leq\left\lceil\frac{p}{2}\right\rceil+1$.
Let $\gamma_{M}(G)+\gamma_{M}(\bar{G})=\left\lceil\frac{p}{2}\right\rceil+1$.
Suppose G has an isolate, then $\gamma_{M}(\bar{G})=1$. Then $\gamma_{M}(G)=\left\lceil\frac{p}{2}\right\rceil \Rightarrow G=\bar{K}_{p}$.
Suppose \bar{G} has an isolate, then $\gamma_{M}(G)=1$. Then $\gamma_{M}(\bar{G})=\left\lceil\frac{p}{2}\right\rceil \Rightarrow \bar{G}=\bar{K}_{p}$. Hence $G=K_{p}$.
Suppose G or \bar{G} has no isolates. Then by Theorem, $\gamma_{M}(G) \leq\left\lceil\frac{p}{4}\right\rceil$ and $\gamma_{M}(\bar{G}) \leq\left\lceil\frac{p}{4}\right\rceil$. Then $\gamma_{M}(G)+$ $\gamma_{M}(\bar{G}) \leq 2\left\lceil\frac{p}{4}\right\rceil$.
Case(i) : When $p \equiv 0,3(\bmod 4)$.
Then, $2\left\lceil\frac{p}{4}\right\rceil<\left\lceil\frac{p}{2}\right\rceil+1$. Therefore, $\gamma_{M}(G)+\gamma_{M}(\bar{G})<\left\lceil\frac{p}{2}\right\rceil+1$, which is a contradiction.
Case(ii) : When $p \equiv 1,2(\bmod 4)$.
Suppose G or \bar{G} is disconnected. Then $\gamma_{M}(G)+\gamma_{M}(\bar{G}) \leq\left\lceil\frac{p}{4}\right\rceil+1<\left\lceil\frac{p}{2}\right\rceil+1 p \geq 3$, which is a contradiction. If $p=2$ then $G=\overline{K_{2}}$. Therefore, G and \bar{G} are connected graphs with out isolates. Then $\gamma_{M}(G)+\gamma_{M}(\bar{G}) \leq 2\left\lceil\frac{p}{4}\right\rceil$.
By assumption, $\left\lceil\frac{p}{2}\right\rceil+1 \leq 2\left\lceil\frac{p}{4}\right\rceil$.
If $p \equiv 1,2(\bmod 4)$, then $\left\lceil\frac{p}{2}\right\rceil+1=2\left\lceil\frac{p}{4}\right\rceil$. This implies that $\gamma_{M}(G) \leq\left\lceil\frac{p}{4}\right\rceil$ and $\gamma_{M}(\bar{G}) \leq\left\lceil\frac{p}{4}\right\rceil$. Since G and \bar{G} are connected graphs with $\gamma_{M}(G) \leq\left\lceil\frac{p}{4}\right\rceil$ and $\gamma_{M}(\bar{G}) \leq\left\lceil\frac{p}{4}\right\rceil$, we have $p=3,4,7,8$. But $p \equiv 1,2(\bmod 4)$, a contradiction. Therefore $G=K_{p}$ or $\overline{K_{p}}$.
The converse is obvious.

Theorem 2.4. For any graph $G, \gamma_{M}(G) \gamma_{M}(\bar{G}) \leq\left\lceil\frac{p}{2}\right\rceil$.

Proof. For a set of vertices $X \subseteq V(G)$, define $D_{e}(X)=\{v \in V-X: v$ is adjacent to at least $\left[\frac{|X|}{2}\right]$ vertices in $\left.X\right\}$ and $D_{i}(X)=\left\{u \in X: u\right.$ is adjacent to at least $\left[\frac{|X|}{2}\right\rceil$ vertices of X other than $u\}$.

Let $d_{e}(X)=\left|D_{e}(X)\right|$ and $d_{i}(X)=\left|D_{i}(X)\right|$. Let $S=\left\{x_{1}, x_{2}, x_{3}, \cdots, x_{\gamma_{M}(G)}\right\}$ be a γ_{M}-set of G.
Choose a set $W \subseteq V(G)$ such that $|W|=\left\lceil\frac{p}{2}\right\rceil$ and W contains S. Now partition W into subsets $B_{1}, B_{2}, \ldots B_{\gamma_{M}(G)}$ such that $x_{j} \in B_{j}$ and at least $\left\lceil\frac{\left|B_{j}\right|}{2}\right\rceil$ vertices of B_{j} are adjacent to x_{j}.

Choose a partition P for which $d_{i}\left(B_{1}\right)+d_{i}\left(B_{2}\right)+\ldots \ldots .+d_{i}\left(B_{\gamma_{M}(G)}\right)$ is maximum. Suppose that $d_{e}\left(B_{j}\right) \geq 1$. Then there exists $x \in V-\left(B_{j}\right)$ such that x is adjacent to at least $\left\lceil\frac{\left|B_{j}\right|}{2}\right\rceil$ vertices of B_{j}. Then there exists an unique k such that $x \in B_{k}$. Suppose $x \in D_{i}\left(B_{k}\right)$. Then $\left(S-\left\{x_{j}, x_{k}\right\}\right) \cup\{x\}$ is a majority dominating set, a contradiction to the assumption that S is a γ_{M}-set. Therefore, $x \notin D_{i}\left(B_{k}\right)$.

Construct a new partition P^{\prime} with $B_{r}^{\prime}=B_{r}$ except $r=j, k . B_{j}^{\prime}=B_{j} \cup\{x\}$ and $B_{k}^{\prime}=B_{k}-\{x\}$, for which $d_{i}\left(B_{r}^{\prime}\right)=d_{i}\left(B_{r}\right), r \neq j, k . d_{i}\left(B_{j}^{\prime}\right)=d_{i}\left(B_{j}\right)+1$ and $d_{i}\left(B_{k}^{\prime}\right) \geq d_{i}\left(B_{k}\right)$. Then $\sum d_{i}\left(B_{l}^{\prime}\right)>$ $\sum d_{i}\left(B_{j}\right)$ which is a contradiction to the choice of P. Therefore, $d_{e}\left(B_{j}\right)=0$.

If $d_{e}(X)=0$ then X is a majority dominating set in \bar{G}. Hence B_{j} is a majority dominating set in \bar{G} for all j. Therefore $\gamma_{M}(\bar{G}) \leq\left|B_{j}\right|$, for all $j . \gamma_{M}(G) \gamma_{M}(\bar{G}) \leq\left|B_{1}\right|+\left|B_{2}\right|+\ldots \ldots \ldots+\left|B_{\gamma_{M}(G)}\right|=\left\lceil\frac{p}{2}\right\rceil$. Hence, $\gamma_{M}(G) \gamma_{M}(\bar{G}) \leq\left\lceil\frac{p}{2}\right\rceil$.

Corollary 2.5. For any graph $G, d_{M}(\bar{G}) \geq \gamma_{M}(G)$.

Proof. The proof follows since $\left\{B_{1}, B_{2}, \ldots \ldots, B_{\gamma_{M}(G)}\right\}$ is a partition of $V(\bar{G})$ into majority dominating sets of \bar{G}.

Corollary 2.6. For any graph $G, \quad d_{M}(G) \geq \gamma_{M}(\bar{G})$.

Theorem 2.7. Let G and \bar{G} have no isolates. Then $\gamma_{M}(G)+\gamma_{M}(\bar{G}) \leq\left\lceil\frac{p}{4}\right\rceil+1$. The bound is sharp.

Remark 2.8. If $\gamma_{M}(G)=\left\lceil\frac{p}{4}\right\rceil$ then $\gamma_{M}(\bar{G})$ need not be equal to 2 . For example, let $G=C_{4}$. Then, $\gamma_{M}(G)=\left\lceil\frac{p}{4}\right\rceil$ where as $\gamma_{M}(\bar{G})=1$.

3 Nordhaus-Gaddum type results in majority domatic number of G and \bar{G}

Proposition 3.1. [5] Let G be any graph with p vertices. Then $1 \leq d_{M}(G) \leq p$ and the bounds are sharp.

Theorem 3.2. [5] For any graph $G, d_{M}(G)=p$ if and only if $\delta(G) \geq\left\lceil\frac{p}{2}\right\rceil-1$.

Theorem 3.3. Let G be any graph with p vertices. Then
(i) $d_{M}(G)+d_{M}(\bar{G}) \leq 2 p$.
(ii) $d_{M}(G) d_{M}(\bar{G}) \leq p^{2} \quad$ and equality holds if and only if all the vertices of G and \bar{G} have degree $\left\lceil\frac{p}{2}\right\rceil-1$ or $\left\lfloor\frac{p}{2}\right\rfloor$.

Proof. The two inequalities can be obtained using Proposition 3.1.
Let $d_{M}(G)+d_{M}(\bar{G})=2 p$. Then $d_{M}(G)=p=d_{M}(\bar{G})$. By Theorem 3.2, $\delta(G) \geq\left\lceil\frac{p}{2}\right\rceil-1$ and $\quad \delta(\bar{G}) \geq\left\lceil\frac{p}{2}\right\rceil-1$. It implies that $\left\lceil\frac{p}{2}\right\rceil-1 \leq \delta(G) \leq \Delta(G) \leq p-1-\left\lceil\frac{p}{2}\right\rceil+1=\left\lfloor\frac{p}{2}\right\rfloor$. Hence all the vertices of G and \bar{G} have degree $\left\lceil\frac{p}{2}\right\rceil-1$ or $\left\lfloor\frac{p}{2}\right\rfloor$. [When p is odd, every vertex of G as well as \bar{G} has degree $\left(\frac{p-1}{2}\right)$. When p is even, every vertex of G as well as \bar{G} has degree $\left(\frac{p}{2}\right)-1$ or $\left.\left(\frac{p}{2}\right)\right]$. Conversely, let all the vertices of G and \bar{G} have degree $\left\lceil\frac{p}{2}\right\rceil-1$ or $\left\lfloor\frac{p}{2}\right\rfloor$. Then $\delta(G) \geq\left\lceil\frac{p}{2}\right\rceil-1$ and $\delta(\bar{G}) \geq\left\lceil\frac{p}{2}\right\rceil-1$. Therefore $d_{M}(G)=p=d_{M}(\bar{G})$. Hence $d_{M}(G)+d_{M}(\bar{G})=2 p$.

Theorem 3.4. Let G be any graph with p vertices. Then $d_{M}(G)+d_{M}(\bar{G}) \geq p+1$ and equality holds if and only if $G=K_{p}$ or $\overline{K_{p}},(p$ odd $)$.

Proof. Suppose there exists t-vertices with degree $\geq\left\lceil\frac{p}{2}\right\rceil-1$. When $t=0$ or $t=p$ then $d_{M}(G) \geq$ 1 and $d_{M}(\bar{G})=p$ or $d_{M}(G)=p$ and $d_{M}(\bar{G}) \geq 1$ respectively. In either case, $d_{M}(G)+d_{M}(\bar{G}) \geq$ $p+1$. Let $0<t<p$. Then $d_{M}(G) \geq t+1$. In $\bar{G}, p-t$ vertices have degree greater than $\left\lfloor\frac{p}{2}\right\rfloor$. That implies $d_{M}(\bar{G}) \geq(p-t)+1$. Hence, $d_{M}(G)+d_{M}(\bar{G}) \geq p+2>p+1$. Let $G=K_{p}$ or $\left(\overline{K_{p}}, p\right.$ is odd). Then $d_{M}(G)+d_{M}(\bar{G})=p+1$.
Conversely, suppose that $d_{M}(G)+d_{M}(\bar{G})=p+1$ and there exist t-vertices with degree $\geq\left\lceil\frac{p}{2}\right\rceil-1$. Clearly $t=0$ or $t=p$, which is a contradiction.
Suppose $t=0$, then $d_{M}(\bar{G})=p$ and $d_{M}(G)=1$. It implies that $G=\overline{K_{p}}, p$ odd. Suppose $t=p$, then $d_{M}(G)=p$ and $d_{M}(\bar{G})=1$ which implies that $\bar{G}=\overline{K_{p}}, p$ is odd. Hence, $G=K_{p}, p$ is odd.

4 Bounds for $\gamma_{M}(G)+d_{M}(G)$ and $\gamma_{M}(G) d_{M}(G)$

Cockayne and Hedetniemi [1] established a bound on the sum and product of the domination number and the domatic number of a graph G. In this section, we establish a bound for the sum (product) of majority domination number and majority domatic number of a graph G.

Theorem 4.1. [5] $d_{M}(G)=1$ if and only if $G=\bar{K}_{p}, \quad p$ odd.
Theorem 4.2. [5] For any graph $G, d_{M}(G) \leq\left\lfloor\frac{p}{\gamma_{M}(G)}\right\rfloor$ and $\quad \gamma_{M}(G) \leq\left\lfloor\frac{p}{d_{M}(G)}\right\rfloor$.
Theorem 4.3. [4] For any graph $G,\left\lceil\frac{p}{2(\Delta(G)+1)}\right\rceil \leq \gamma_{M}(G) \leq\left\lceil\frac{p}{2}\right\rceil-\Delta(G)$. The bounds are sharp.
Theorem 4.4. For any graph G,
(i) $\gamma_{M}(G)+d_{M}(G) \leq\left\lceil\frac{p}{2}\right\rceil+\left\lfloor\frac{3 \Delta(G)}{2}\right\rfloor+2$ if $\Delta(G) \geq\left\lceil\frac{p}{2}\right\rceil-1$.
(ii) $\gamma_{M}(G)+d_{M}(G) \leq\left\lceil\frac{p}{2}\right\rceil+\Delta(G)+2 \quad$ if $\quad \Delta(G)<\left\lceil\frac{p}{2}\right\rceil-1$ and equality holds if and only if $G=\bar{K}_{p}, p$ even.

Proof. By Theorem 4.2, $d_{M}(G) \leq\left\lfloor\frac{p}{\gamma_{M}(G)}\right\rfloor$.
Since $\gamma_{M}(G) \geq\left\lceil\frac{p}{2(\Delta(G)+1)}\right\rceil$, we have $d_{M}(G) \leq\left\lfloor p \frac{2(\Delta(G)+1)}{p}\right\rfloor$.
Therefore, $d_{M}(G) \leq 2 \Delta(G)+2$.
If $\Delta(G) \geq\left\lceil\frac{p}{2}\right\rceil-1$ then $\gamma_{M}(G)=1 \leq\left\lceil\frac{p-\Delta(G)}{2}\right\rceil$.
Adding we get, $\gamma_{M}(G)+d_{M}(G) \leq\left\lceil\frac{p-\Delta(G)}{2}\right\rceil+2 \Delta(G)+2$.
Hence, $\gamma_{M}(G)+d_{M}(G) \leq\left\lceil\frac{p}{2}\right\rceil+\left\lfloor\frac{3 \Delta(G)}{2}\right\rfloor+2$.
If $\Delta(G)<\left\lceil\frac{p}{2}\right\rceil-1$, then $\gamma_{M}(G) \leq\left\lceil\frac{p}{2}\right\rceil-\Delta(G)$.
Therefore, $\gamma_{M}(G)+d_{M}(G) \leq\left\lceil\frac{p}{2}\right\rceil-\Delta(G)+2 \Delta(G)+2$, which gives $\gamma_{M}(G)+d_{M}(G) \leq\left\lceil\frac{p}{2}\right\rceil+$ $\Delta(G)+2$. Hence (i) and (ii) are proved.
Next we prove equality holds if and only if $G=\bar{K}_{p}, p$ even.
Let $\gamma_{M}(G)+d_{M}(G)=\left\lceil\frac{p}{2}\right\rceil+\Delta(G)+2$. Then $\gamma_{M}(G)=\left\lceil\frac{p}{2}\right\rceil \quad$ and $\quad d_{M}(G)=\Delta(G)+$

2, since $\gamma_{M}(G) \leq\left\lceil\frac{p}{2}\right\rceil-\Delta(G)$.
Suppose that $G \neq \bar{K}_{p}, p$ even. Then $G=\overline{K_{p}}$, p odd and $\Delta(G)=0$. By Theorem 4.1, $G=\bar{K}_{p}, p$ odd if and only if $d_{M}(G)=1$. Hence, $\gamma_{M}(G)+d_{M}(G)<\left\lceil\frac{p}{2}\right\rceil+2$, which is a contradiction.

Suppose $G \neq \overline{K_{p}}$, then $\Delta(G) \geq 1$. If G has no isolates, then $\gamma_{M}(G) \leq\left\lceil\frac{p}{4}\right\rceil<\left\lceil\frac{p}{2}\right\rceil$ and if $\gamma_{M}(G)<\left\lceil\frac{p}{2}\right\rceil$ then $d_{M}(G) \geq 3$, since $d_{M}(G) \leq\left\lfloor\frac{p}{\gamma_{M}(G)}\right\rfloor$. Hence $\gamma_{M}(G)+d_{M}(G) \leq\left\lceil\frac{p}{4}\right\rceil+$ $\Delta(G)+2<\left\lceil\frac{p}{2}\right\rceil+\Delta(G)+2$, a contradiction.
Suppose G has isolates and $\Delta(G) \geq 1$. Then $\gamma_{M}(G)<\left\lceil\frac{p}{2}\right\rceil$ and $d_{M}(G) \geq 2$. Hence, $\gamma_{M}(G)+$ $d_{M}(G)<\left\lceil\frac{p}{2}\right\rceil+\Delta(G)+2$, which is a contradiction.

Therefore, $G=\bar{K}_{p}, p$ even, is the required graph to satisfy $\gamma_{M}(G)=\left\lceil\frac{p}{2}\right\rceil$ and $d_{M}(G)=2$. Thus $G=\bar{K}_{p}, p$ even.
The converse is obvious.

Theorem 4.5. For a graph $G, \gamma_{M}(G) d_{M}(G) \geq 3$ if and only if $G \notin\left\{K_{1}, K_{2}, \bar{K}_{2}, \bar{K}_{3}\right\}$.

Proof. If $\gamma_{M}(G) \geq 3$ or $d_{M}(G) \geq 3$, then $\gamma_{M}(G) d_{M}(G) \geq 3$.
Suppose $\gamma_{M}(G)<3$. (i. e.), $\gamma_{M}(G) \leq 2$.
Case (i): $\gamma_{M}(G)=1$. Let $\{u\}$ be a majority dominating set. Then
$|N(u)| \geq\left\lceil\frac{p}{2}\right\rceil-1 \geq\left\lfloor\frac{p}{2}\right\rfloor$.
Subcase (i): Let $|N(u)|>\left\lfloor\frac{p}{2}\right\rfloor$.
Suppose that $|N(u)|=\left\lfloor\frac{p}{2}\right\rfloor+\mathrm{t}(t \geq 1)$. Let $A=\{u\}, \quad B$ be a subset of $N(u)$ containing exactly $\left\lfloor\frac{p}{2}\right\rfloor$ vertices. Let $\mathrm{C}=V(G)-A-B$. Then $|C|=\left\lfloor\frac{p}{2}\right\rfloor$. Since u belongs to $N(B)$ as well as $N(C), A, B, C$ are majority dominating sets. Therefore $d_{M}(G) \geq 3$.
Subcase (ii): Let $|N(u)|=\left\lfloor\frac{p}{2}\right\rfloor$ and $V(G)-\{u\}$ is totally disconnected.
Let $A=\{u\}$, B be subset of $N(u)$ containing exactly $\left\lceil\frac{p}{4}\right\rceil$ vertices and $\left\lceil\frac{p}{4}\right\rceil K_{1}$ vertices. Since u belongs to $N(B)$ and $\{N(C), A, B, C\}$ are all majority dominating sets, $d_{M}(G) \geq 3$.
Here the following three cases arise.
(i) If $B \neq \phi, C=\phi$ then $G=K_{2}$.
(ii) If $B=\phi, C=\phi$ then $G=K_{1}$.
(iii) If $B=\phi, C=\phi$ then $G=\bar{K}_{2}$.

In all these cases, $\gamma_{M}(G)=1$ and $d_{M}(G)=1$ or $2 . \gamma_{M}(G) d_{M}(G)=1$ or 2 .
Hence $G \notin\left\{K_{1}, K_{2}, \bar{K}_{2}\right\}$.
Subcase (iii): Let $|N(u)|=\left\lfloor\frac{p}{2}\right\rfloor$ and $V(G)-\{u\}$ be not totally disconnected.
Let $A=\{u\}$. Since $V(G)-\{u\}$ is not totally disconnected, there exists an edge $e=x y$, where $x, y \in V(G)-\{u\}$. Partition $V(G)-\{u, x, y\}$ into two disjoint subsets B, C such that $|B|=\left\lceil\frac{p-3}{2}\right\rceil$ and $|C|=\left\lfloor\frac{p-3}{2}\right\rfloor$. Then $A, B \cup\{x\}$ and $C \cup\{y\}$ form a majority domatic partitions of G. Therefore $d_{M}(G) \geq 3$.
From sub cases (i), (ii) and (iii), if $\gamma_{M}(G)=1$ then $d_{M}(G) \geq 3$ if and only if $G \notin\left\{K_{1}, K_{2}, \overline{K_{2}}\right\}$.
Case (ii): Let $\gamma_{M}(G)=2$. If $d_{M}(G) \geq 2$ then we are through. Suppose $d_{M}(G)=1$. Then $G=\bar{K}_{p}$, where p is odd. Since $\gamma_{M}(G)=2$ and $d_{M}(G)=1$, then $G=\overline{K_{3}}$ and $\gamma_{M}(G) d_{M}(G) \leq 2$, a contradiction. It implies that, if $G \neq \bar{K}_{3}$ then $d_{M}(G)=1$ implies $\gamma_{M}(G) \geq 3$. Therefore,
$\gamma_{M}(G) d_{M}(G) \geq 3$.
Hence, $\gamma_{M}(G) d_{M}(G) \geq 3$ if and only if $G \notin\left\{K_{1}, K_{2}, \overline{K_{2}}, \bar{K}_{3}\right\}$.

Proposition 4.6. Let G be a graph of order p. Then $\gamma_{M}(G) d_{M}(G)=p$ if and only if $\delta(G) \geq\left\lceil\frac{p}{2}\right\rceil-1$.
Proof. By Proposition 2.2, $\quad \gamma_{M}(G)=1$ if and only if $\delta(G) \geq\left\lceil\frac{p}{2}\right\rceil-1$ and by Theorem 3.2, $\gamma_{M}(G) d_{M}(G)=p$ if and only if $\delta(G) \geq\left\lceil\frac{p}{2}\right\rceil-1$.

References

[1] E. J. Cockayne, S. J. Hedetniemi, Towards a theory of domination in graphs, Networks - 7(1977), 247-261.
[2] F. Harary, Teresa W. Haynes, Nordhaus-Gaddum inequalities for domination in graphs, Discrete Math. 155(1996), 99-105.
[3] T.W. Haynes, S.T. Hedetniemi, Peter J. Slater, Fundamentals of domination in graphs, 1998 by Marcel Dekker, Inc., New york.
[4] J. Joseline Manora, V. Swaminathan, Majority dominating sets in graphs, Jamal Academic Research Journal, Vol. 3, No. 2(2006), $75-82$.
[5] J. Joseline Manora, V. Swaminathan, Majority domatic number of a graph, Global Journal of Pure and Applied Mathematics, Vol. 6, No. 3(2010), 275-283.
[6] J. Joseline Manora, V. Swaminathan, Results on majority dominating set, Science Magna, NorthWest University, X'tian, P.R.China, Vol. 7, No. 3(2011), 53-58.

