

Nordhaus-Gaddum Type results in Majority Domination

J. Joseline Manora Department of Mathematics, T.B.M.L. College, Porayar, Tamilnadu, INDIA. E-mail: joseline-manora@yahoo.co.in.

V.Swaminathan Ramanujan Research Center, Saraswathi Narayanan College, Madurai, Tamilnadu, INDIA–625022. E-mail: sulanesri@yahoo.com.

Abstract

In this paper we deal with Nordhaus-Gaddum type results in majority domination number of G and \overline{G} and also majority domatic number of G and \overline{G} . We also establish bounds for $\gamma_M(G) + d_M(G)$ and $\gamma_M(G)d_M(G)$.

Keywords: Majority dominating set, majority domination number $\gamma_M(G)$, majority domatic number $d_M(G)$.

AMS Subject Classification(2010): 05C69.

1 Introduction and Definitions

Nordhaus and Gaddum[2] established the inequality for the chromatic numbers $\chi(G)$ and $\chi(\overline{G})$ as $2\sqrt{p} \leq \chi(G) + \chi(\overline{G}) \leq p + 1$ and $p \leq \chi(G)\chi(\overline{G}) \leq \frac{(p+1)^2}{4}$. In 1972, Jaeger and Payan[3] published the first Nordhaus-Gaddum type result involving domination. In this paper we find Nordhaus-Gaddum type results in majority domination.

By a graph we mean a finite undirected graph without loops or multiple edges. Let G = (V, E) be a finite graph with p vertices and q edges and v be a vertex in V. The closed neighborhood of v is defined by $N[v] = N(v) \cup \{v\}$.

Definition 1.1. [4] A subset $S \subseteq V(G)$ of vertices in a graph G = (V, E) is called a majority dominating set if at least half of the vertices of V(G) are either in S or adjacent to the elements of S. That is, $|N[S]| \ge \left\lceil \frac{|V(G)|}{2} \right\rceil$.

Definition 1.2. A majority dominating set S is minimal if no proper subset of S is a majority dominating set. The minimum cardinality of a minimal majority dominating set is called the majority domination number and is denoted by $\gamma_M(G)$. The maximum cardinality of a minimal majority dominating set is denoted by $\Gamma_M(G)$. Also, majority dominating sets have superhereditary property.

Theorem 1.3. [4] Let S be a majority dominating set of G. S is minimal if and only if for every $v \in S$ one of the following conditions holds:

(i) $|N[S]| > \lceil \frac{p}{2} \rceil$ and $|Pn[v, S]| > |N[S]| - \lceil \frac{p}{2} \rceil$. (ii) $|N[S]| = \lceil \frac{p}{2} \rceil$ and either v is an isolate of S or $Pn[v, S] \cap (V - S) \neq \phi$. **Definition 1.4.** [5] The majority domatic number $d_M(G)$ of a graph G is the maximum number of elements in a partition of V(G) into majority dominating sets.

2 Nordhaus-Gaddum type results in majority domination of G and \overline{G}

Theorem 2.1. [6] Let G be a graph without isolates. Then $\gamma_M(G) \leq \left\lceil \frac{p}{4} \right\rceil$.

Proposition 2.2. [4] Let G be any graph with p vertices. Then $\gamma_M(G) = 1$ if and only if there exists a vertex of degree $\geq \left\lceil \frac{p}{2} \right\rceil - 1$.

Theorem 2.3. For any graph G, $\gamma_M(G) + \gamma_M(\overline{G}) \leq \left\lceil \frac{p}{2} \right\rceil + 1$ and equality holds if and only if $G = K_p$ or $\overline{K_p}$.

Proof. Case(i): Let G or \overline{G} has an isolate. If G has an isolate, then $\gamma_M(G) \leq \lfloor \frac{p}{2} \rfloor$ and $\gamma_M(\overline{G}) = 1$. A similar result holds when \overline{G} has an isolate. Therefore, in both the cases $\gamma_M(G) + \gamma_M(\overline{G}) \leq \left\lceil \frac{p}{2} \right\rceil + 1$. **Case(ii)**: Neither G nor \overline{G} has isolates. By Theorem 2.1,

 $\gamma_M(G) \leq \left\lceil \frac{p}{4} \right\rceil$ and $\gamma_M(\overline{G}) \leq \left\lceil \frac{p}{4} \right\rceil$. Hence $\gamma_M(G) + \gamma_M(\overline{G}) \leq \left\lceil \frac{p}{2} \right\rceil + 1$. Let $\gamma_M(G) + \gamma_M(\overline{G}) = \left\lceil \frac{p}{2} \right\rceil + 1.$

Suppose G has an isolate, then $\gamma_M(\overline{G}) = 1$. Then $\gamma_M(G) = \lceil \frac{p}{2} \rceil \Rightarrow G = \overline{K}_p$.

Suppose \overline{G} has an isolate, then $\gamma_M(G) = 1$. Then $\gamma_M(\overline{G}) = \left\lceil \frac{p}{2} \right\rceil \Rightarrow \overline{G} = \overline{K}_p$. Hence $G = K_p$. Suppose G or \overline{G} has no isolates. Then by Theorem, $\gamma_M(G) \leq \left\lceil \frac{p}{4} \right\rceil$ and $\gamma_M(\overline{G}) \leq \left\lceil \frac{p}{4} \right\rceil$. Then $\gamma_M(G) + \gamma_M(G) \leq \left\lceil \frac{p}{4} \right\rceil$. $\gamma_M(\overline{G}) \le 2 \left\lceil \frac{p}{4} \right\rceil.$

Case(i) : When $p \equiv 0, 3 \pmod{4}$.

Then, $2\left\lceil \frac{p}{4} \right\rceil < \left\lceil \frac{p}{2} \right\rceil + 1$. Therefore, $\gamma_M(G) + \gamma_M(\overline{G}) < \left\lceil \frac{p}{2} \right\rceil + 1$, which is a contradiction.

Case(ii) : When $p \equiv 1, 2 \pmod{4}$.

Suppose G or \overline{G} is disconnected. Then $\gamma_M(G) + \gamma_M(\overline{G}) \leq \left\lceil \frac{p}{4} \right\rceil + 1 < \left\lceil \frac{p}{2} \right\rceil + 1 \ p \geq 3$, which is a contradiction. If p = 2 then $G = \overline{K_2}$. Therefore, G and \overline{G} are connected graphs with out isolates. Then $\gamma_M(G) + \gamma_M(\overline{G}) \le 2 \left\lceil \frac{p}{4} \right\rceil.$

By assumption, $\left\lceil \frac{p}{2} \right\rceil + 1 \leq 2 \left\lceil \frac{p}{4} \right\rceil$.

If $p \equiv 1, 2 \pmod{4}$, then $\left\lceil \frac{p}{2} \right\rceil + 1 = 2 \left\lceil \frac{p}{4} \right\rceil$. This implies that $\gamma_M(G) \leq \left\lceil \frac{p}{4} \right\rceil$ and $\gamma_M(\overline{G}) \leq \left\lceil \frac{p}{4} \right\rceil$. Since G and \overline{G} are connected graphs with $\gamma_M(G) \leq \lfloor \frac{p}{4} \rfloor$ and $\gamma_M(\overline{G}) \leq \lfloor \frac{p}{4} \rfloor$, we have p = 3, 4, 7, 8. But $p \equiv 1, 2 \pmod{4}$, a contradiction. Therefore $G = K_p$ or $\overline{K_p}$.

The converse is obvious.

Theorem 2.4. For any graph G, $\gamma_M(G)\gamma_M(\overline{G}) \leq \left\lceil \frac{p}{2} \right\rceil$.

Proof. For a set of vertices $X \subseteq V(G)$, define $D_e(X) = \{v \in V - X : v \text{ is adjacent to at least}$ $\begin{bmatrix} \frac{|X|}{2} \end{bmatrix}$ vertices in X} and $D_i(X) = \{u \in X : u \text{ is adjacent to at least } \begin{bmatrix} \frac{|X|}{2} \end{bmatrix}$ vertices of X other than u.

Let $d_e(X) = |D_e(X)|$ and $d_i(X) = |D_i(X)|$. Let $S = \{x_1, x_2, x_3, \cdots, x_{\gamma_M(G)}\}$ be a γ_M -set of G. Choose a set $W \subseteq V(G)$ such that $|W| = \lfloor \frac{p}{2} \rfloor$ and W contains S. Now partition W into subsets $B_1, B_2, \dots, B_{\gamma_M(G)}$ such that $x_j \in B_j$ and at least $\left\lceil \frac{|B_j|}{2} \right\rceil$ vertices of B_j are adjacent to x_j .

Choose a partition P for which $d_i(B_1) + d_i(B_2) + \dots + d_i(B_{\gamma_M(G)})$ is maximum. Suppose that $d_e(B_j) \ge 1$. Then there exists $x \in V - (B_j)$ such that x is adjacent to at least $\left\lceil \frac{|B_j|}{2} \right\rceil$ vertices of B_j . Then there exists an unique k such that $x \in B_k$. Suppose $x \in D_i(B_k)$. Then $(S - \{x_j, x_k\}) \cup \{x\}$ is a majority dominating set, a contradiction to the assumption that S is a γ_M -set. Therefore, $x \notin D_i(B_k)$.

Construct a new partition P' with $B'_r = B_r$ except r = j, k. $B'_j = B_j \cup \{x\}$ and $B'_k = B_k - \{x\}$, for which $d_i(B'_r) = d_i(B_r)$, $r \neq j, k$. $d_i(B'_j) = d_i(B_j) + 1$ and $d_i(B'_k) \ge d_i(B_k)$. Then $\sum d_i(B'_l) > \sum d_i(B_j)$ which is a contradiction to the choice of P. Therefore, $d_e(B_j) = 0$.

If $d_e(X) = 0$ then X is a majority dominating set in \overline{G} . Hence B_j is a majority dominating set in \overline{G} for all j. Therefore $\gamma_M(\overline{G}) \leq |B_j|$, for all j. $\gamma_M(G)\gamma_M(\overline{G}) \leq |B_1| + |B_2| + \dots + |B_{\gamma_M(G)}| = \lceil \frac{p}{2} \rceil$.

Corollary 2.5. For any graph G, $d_M(\overline{G}) \ge \gamma_M(G)$.

Proof. The proof follows since $\{B_1, B_2, \dots, B_{\gamma_M(G)}\}$ is a partition of $V(\overline{G})$ into majority dominating sets of \overline{G} .

Corollary 2.6. For any graph G, $d_M(G) \ge \gamma_M(\overline{G})$.

Theorem 2.7. Let G and \overline{G} have no isolates. Then $\gamma_M(G) + \gamma_M(\overline{G}) \leq \lfloor \frac{p}{4} \rfloor + 1$. The bound is sharp.

Remark 2.8. If $\gamma_M(G) = \lceil \frac{p}{4} \rceil$ then $\gamma_M(\overline{G})$ need not be equal to 2. For example, let $G = C_4$. Then, $\gamma_M(G) = \lceil \frac{p}{4} \rceil$ where as $\gamma_M(\overline{G}) = 1$.

3 Nordhaus-Gaddum type results in majority domatic number of G and \overline{G}

Proposition 3.1. [5] Let G be any graph with p vertices. Then $1 \le d_M(G) \le p$ and the bounds are sharp.

Theorem 3.2. [5] For any graph G, $d_M(G) = p$ if and only if $\delta(G) \ge \left\lceil \frac{p}{2} \right\rceil - 1$.

Theorem 3.3. Let G be any graph with p vertices. Then

(i) $d_M(G) + d_M(\overline{G}) \le 2p$. (ii) $d_M(G)d_M(\overline{G}) \le p^2$ and equality holds if and only if all the vertices of G and \overline{G} have degree $\left\lceil \frac{p}{2} \right\rceil - 1$ or $\left\lfloor \frac{p}{2} \right\rfloor$.

Proof. The two inequalities can be obtained using Proposition 3.1.

Let $d_M(G) + d_M(\overline{G}) = 2p$. Then $d_M(G) = p = d_M(\overline{G})$. By Theorem 3.2, $\delta(G) \ge \left\lceil \frac{p}{2} \right\rceil - 1$ and $\delta(\overline{G}) \ge \left\lceil \frac{p}{2} \right\rceil - 1$. It implies that $\left\lceil \frac{p}{2} \right\rceil - 1 \le \delta(G) \le \Delta(G) \le p - 1 - \left\lceil \frac{p}{2} \right\rceil + 1 = \left\lfloor \frac{p}{2} \right\rfloor$. Hence all the vertices of G and \overline{G} have degree $\left\lceil \frac{p}{2} \right\rceil - 1$ or $\left\lfloor \frac{p}{2} \right\rfloor$. [When p is odd, every vertex of G as well as \overline{G} has degree $\left(\frac{p-1}{2}\right)$. When p is even, every vertex of G as well as \overline{G} has degree $\left(\frac{p}{2}\right) - 1$ or $\left\lfloor \frac{p}{2} \right\rfloor$. Conversely, let all the vertices of G and \overline{G} have degree $\left\lceil \frac{p}{2} \right\rceil - 1$ or $\left\lfloor \frac{p}{2} \right\rfloor$. Then $\delta(G) \ge \left\lceil \frac{p}{2} \right\rceil - 1$ and $\delta(\overline{G}) \ge \left\lceil \frac{p}{2} \right\rceil - 1$. Therefore $d_M(G) = p = d_M(\overline{G})$. Hence $d_M(G) + d_M(\overline{G}) = 2p$. **Theorem 3.4.** Let G be any graph with p vertices. Then $d_M(G) + d_M(\overline{G}) \ge p + 1$ and equality holds if and only if $G = K_p$ or $\overline{K_p}$, (p odd).

Proof. Suppose there exists t-vertices with degree $\geq \lfloor \frac{p}{2} \rfloor - 1$. When t = 0 or t = p then $d_M(\overline{G}) \geq 1$ and $d_M(\overline{G}) = p$ or $d_M(G) = p$ and $d_M(\overline{G}) \geq 1$ respectively. In either case, $d_M(G) + d_M(\overline{G}) \geq p + 1$. Let 0 < t < p. Then $d_M(G) \geq t + 1$. In \overline{G} , p - t vertices have degree greater than $\lfloor \frac{p}{2} \rfloor$. That implies $d_M(\overline{G}) \geq (p - t) + 1$. Hence, $d_M(G) + d_M(\overline{G}) \geq p + 2 > p + 1$. Let $G = K_p$ or $(\overline{K_p}, p + 1)$ is odd). Then $d_M(G) + d_M(\overline{G}) = p + 1$.

Conversely, suppose that $d_M(G) + d_M(\overline{G}) = p + 1$ and there exist t-vertices with degree $\geq \lfloor \frac{p}{2} \rfloor - 1$. Clearly t = 0 or t = p, which is a contradiction.

Suppose t = 0, then $d_M(\overline{G}) = p$ and $d_M(G) = 1$. It implies that $G = \overline{K_p}$, p odd. Suppose t = p, then $d_M(G) = p$ and $d_M(\overline{G}) = 1$ which implies that $\overline{G} = \overline{K_p}$, p is odd. Hence, $G = K_p$, p is odd.

4 Bounds for $\gamma_M(G) + d_M(G)$ and $\gamma_M(G)d_M(G)$

Cockayne and Hedetniemi [1] established a bound on the sum and product of the domination number and the domatic number of a graph G. In this section, we establish a bound for the sum (product) of majority domination number and majority domatic number of a graph G.

Theorem 4.1. [5] $d_M(G) = 1$ if and only if $G = \overline{K}_p$, p odd.

Theorem 4.2. [5] For any graph G, $d_M(G) \leq \left\lfloor \frac{p}{\gamma_M(G)} \right\rfloor$ and $\gamma_M(G) \leq \left\lfloor \frac{p}{d_M(G)} \right\rfloor$.

Theorem 4.3. [4] For any graph G, $\left\lceil \frac{p}{2(\Delta(G)+1)} \right\rceil \leq \gamma_M(G) \leq \left\lceil \frac{p}{2} \right\rceil - \Delta(G)$. The bounds are sharp.

Theorem 4.4. For any graph G, (i) $\gamma_M(G) + d_M(G) \le \left\lceil \frac{p}{2} \right\rceil + \left\lfloor \frac{3\Delta(G)}{2} \right\rfloor + 2$ if $\Delta(G) \ge \left\lceil \frac{p}{2} \right\rceil - 1$. (ii) $\gamma_M(G) + d_M(G) \le \left\lceil \frac{p}{2} \right\rceil + \Delta(G) + 2$ if $\Delta(G) < \left\lceil \frac{p}{2} \right\rceil - 1$ and equality holds if and only if $G = \overline{K}_p$, p even.

Proof. By Theorem 4.2, $d_M(G) \leq \left\lfloor \frac{p}{\gamma_M(G)} \right\rfloor$. Since $\gamma_M(G) \geq \left\lceil \frac{p}{2(\Delta(G)+1)} \right\rceil$, we have $d_M(G) \leq \left\lfloor p \ \frac{2(\Delta(G)+1)}{p} \right\rfloor$. Therefore, $d_M(G) \leq 2\Delta(G) + 2$. If $\Delta(G) \geq \left\lceil \frac{p}{2} \right\rceil - 1$ then $\gamma_M(G) = 1 \leq \left\lceil \frac{p - \Delta(G)}{2} \right\rceil$. Adding we get, $\gamma_M(G) + d_M(G) \leq \left\lceil \frac{p - \Delta(G)}{2} \right\rceil + 2\Delta(G) + 2$. Hence, $\gamma_M(G) + d_M(G) \leq \left\lceil \frac{p}{2} \right\rceil + \left\lfloor \frac{3\Delta(G)}{2} \right\rfloor + 2$. If $\Delta(G) < \left\lceil \frac{p}{2} \right\rceil - 1$, then $\gamma_M(G) \leq \left\lceil \frac{p}{2} \right\rceil - \Delta(G)$. Therefore, $\gamma_M(G) + d_M(G) \leq \left\lceil \frac{p}{2} \right\rceil - \Delta(G) + 2\Delta(G) + 2$, which gives $\gamma_M(G) + d_M(G) \leq \left\lceil \frac{p}{2} \right\rceil + \Delta(G) + 2$. Hence (i) and (ii) are proved. Next we prove equality holds if and only if $G = \overline{K}_p$, p even. 2, since $\gamma_M(G) \leq \left\lceil \frac{p}{2} \right\rceil - \Delta(G)$.

Suppose that $G \neq \overline{K}_p$, p even. Then $G = \overline{K_p}$, p odd and $\Delta(G) = 0$. By Theorem 4.1, $G = \overline{K}_p$, p odd if and only if $d_M(G) = 1$. Hence, $\gamma_M(G) + d_M(G) < \left\lfloor \frac{p}{2} \right\rfloor + 2$, which is a contradiction.

Suppose $G \neq \overline{K_p}$, then $\Delta(G) \geq 1$. If G has no isolates, then $\gamma_M(G) \leq \lfloor \frac{p}{4} \rfloor < \lfloor \frac{p}{2} \rfloor$ and if $\gamma_M(G) < \lceil \frac{p}{2} \rceil$ then $d_M(G) \ge 3$, since $d_M(G) \le \lfloor \frac{p}{\gamma_M(G)} \rfloor$. Hence $\gamma_M(G) + d_M(G) \le \lceil \frac{p}{4} \rceil + \frac{p}{2}$ $\Delta(G) + 2 < \left\lceil \frac{p}{2} \right\rceil + \Delta(G) + 2$, a contradiction.

Suppose G has isolates and $\Delta(G) \geq 1$. Then $\gamma_M(G) < \lfloor \frac{p}{2} \rfloor$ and $d_M(G) \geq 2$. Hence, $\gamma_M(G) + d_M(G) \geq 2$. $d_M(G) < \left|\frac{p}{2}\right| + \Delta(G) + 2$, which is a contradiction.

Therefore, $G = \overline{K}_p$, p even, is the required graph to satisfy $\gamma_M(G) = \lfloor \frac{p}{2} \rfloor$ and $d_M(G) = 2$. Thus $G = \overline{K}_p, p$ even.

The converse is obvious.

Theorem 4.5. For a graph G, $\gamma_M(G)d_M(G) \geq 3$ if and only if $G \notin \{K_1, K_2, \overline{K}_2, \overline{K}_3\}$.

Proof. If $\gamma_M(G) \ge 3$ or $d_M(G) \ge 3$, then $\gamma_M(G)d_M(G) \ge 3$. Suppose $\gamma_M(G) < 3$. (i. e.), $\gamma_M(G) \leq 2$. **Case (i):** $\gamma_M(G) = 1$. Let $\{u\}$ be a majority dominating set. Then $|N(u)| \ge \left\lceil \frac{p}{2} \right\rceil - 1 \ge \left\lfloor \frac{p}{2} \right\rfloor.$ **Subcase (i):** Let $|N(u)| > |\frac{p}{2}|$. Suppose that $|N(u)| = \left\lfloor \frac{p}{2} \right\rfloor + t$ $(t \ge 1)$. Let $A = \{u\}$, B be a subset of N(u) containing exactly $\left\lfloor \frac{p}{2} \right\rfloor$ vertices. Let C = V(G) - A - B. Then $|C| = \lfloor \frac{p}{2} \rfloor$. Since u belongs to N(B) as well as N(C), A, B, Care majority dominating sets. Therefore $d_M(G) \ge 3$. **Subcase (ii):** Let $|N(u)| = \lfloor \frac{p}{2} \rfloor$ and $V(G) - \{u\}$ is totally disconnected. Let $A = \{u\}$, B be subset of N(u) containing exactly $\left\lceil \frac{p}{4} \right\rceil$ vertices and $\left\lceil \frac{p}{4} \right\rceil K_1$ vertices. Since u belongs to N(B) and $\{N(C), A, B, C\}$ are all majority dominating sets, $d_M(G) \ge 3$.

Here the following three cases arise.

(i) If $B \neq \phi$, $C = \phi$ then $G = K_2$.

(ii) If $B = \phi$, $C = \phi$ then $G = K_1$.

(iii) If
$$B = \phi$$
, $C = \phi$ then $G = \overline{K}_2$.

In all these cases, $\gamma_M(G) = 1$ and $d_M(G) = 1$ or 2. $\gamma_M(G)d_M(G) = 1$ or 2. Hence $G \notin \{K_1, K_2, \overline{K}_2\}$.

Subcase (iii): Let $|N(u)| = \left|\frac{p}{2}\right|$ and $V(G) - \{u\}$ be not totally disconnected. Let $A = \{u\}$. Since $V(G) - \{u\}$ is not totally disconnected, there exists an edge e = xy, where $x, y \in V(G) - \{u\}$. Partition $V(G) - \{u, x, y\}$ into two disjoint subsets B, C such that $|B| = \left\lfloor \frac{p-3}{2} \right\rfloor$

and $|C| = \left\lfloor \frac{p-3}{2} \right\rfloor$. Then $A, B \cup \{x\}$ and $C \cup \{y\}$ form a majority domatic partitions of G. Therefore $d_M(G) \ge 3.$

From sub cases (i), (ii) and (iii), if $\gamma_M(G) = 1$ then $d_M(G) \ge 3$ if and only if $G \notin \{K_1, K_2, \overline{K_2}\}$. **Case (ii):** Let $\gamma_M(G) = 2$. If $d_M(G) \ge 2$ then we are through. Suppose $d_M(G) = 1$. Then $G = \overline{K}_p$, where p is odd. Since $\gamma_M(G) = 2$ and $d_M(G) = 1$, then $G = \overline{K_3}$ and $\gamma_M(G)d_M(G) \leq 2$, a contradiction. It implies that, if $G \neq \overline{K}_3$ then $d_M(G) = 1$ implies $\gamma_M(G) \geq 3$. Therefore,
$$\begin{split} \gamma_M(G)d_M(G) &\geq 3. \\ \text{Hence, } \gamma_M(G)d_M(G) &\geq 3 \text{ if and only if } G \notin \{K_1, \ K_2, \ \overline{K_2}, \ \overline{K_3}\}. \end{split}$$

Proposition 4.6. Let G be a graph of order p. Then $\gamma_M(G)d_M(G) = p$ if and only if $\delta(G) \ge \left\lceil \frac{p}{2} \right\rceil - 1$.

Proof. By Proposition 2.2, $\gamma_M(G) = 1$ if and only if $\delta(G) \ge \lfloor \frac{p}{2} \rfloor - 1$ and by Theorem 3.2, $\gamma_M(G)d_M(G) = p$ if and only if $\delta(G) \ge \lfloor \frac{p}{2} \rfloor - 1$.

References

- [1] E. J. Cockayne, S. J. Hedetniemi, *Towards a theory of domination in graphs*, Networks 7(1977), 247 261.
- [2] F. Harary, Teresa W. Haynes, *Nordhaus-Gaddum inequalities for domination in graphs*, Discrete Math. 155(1996), 99-105.
- [3] T.W. Haynes, S.T. Hedetniemi, Peter J. Slater, *Fundamentals of domination in graphs*, 1998 by Marcel Dekker, Inc., New york.
- [4] J. Joseline Manora, V. Swaminathan, *Majority dominating sets in graphs*, Jamal Academic Research Journal, Vol. 3, No. 2(2006), 75 82.
- [5] J. Joseline Manora, V. Swaminathan, *Majority domatic number of a graph*, Global Journal of Pure and Applied Mathematics, Vol. 6, No. 3(2010), 275 283.
- [6] J. Joseline Manora, V. Swaminathan, *Results on majority dominating set*, Science Magna, North-West University, X'tian, P.R.China, Vol. 7, No. 3(2011), 53 58.