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Abstract

In this paper Quasi-complemented lattices are characterized in terms of dominator ideals. A

closure operator is introduced on the ideal lattice and with the help of this operator the concept of

closure ideals is introduced and then these ideals are characterized. Further, a one-to-one correspon-

dence between the class of all prime closure ideals of a lattice and the ideal lattice of the lattice of

all dominator ideals is established.
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1 Introduction

In 1968, the theory of relative annihilators was introduced in lattices by Mark Mandelker[3] and he

characterized distributive lattices in terms of their relative annihilators. Several authors introduced the

concept of annihilators in the structures of rings as well as lattices and characterized many algebraic

structures in terms of annihilators. In this paper we study the structure of closure ideals in distributive

lattices with the support of annihilators.

Also the concept of closure ideals is introduced and characterized. The class of distributive?-

lattices[4] are also characterized in terms of dominator ideals. Finally, an isomorphism is obtained

between the lattices of closure ideals and the ideal lattice of dominator ideals.

2 Definition and Preliminary results

For the elementary notions one can refer to [1] and [2]. We give some of the preliminary definitions

and results which are useful for the present study.

For anya ∈ L in a distributive lattice(L,∨,∧, 0) with zero, we define the annihilator ofa by the set

(a]∗ = { x ∈ L | x ∧ a = 0 } where the principle ideal generated bya is written as(a]. An element

d ∈ L is called dense if(d]∗ = (0] and the setD of all dense elements is a filter wheneverD is non-

empty. An idealI of L is called proper ifI 6= L. A proper idealP is called prime if for anyx, y ∈ L,

x ∧ y ∈ P impliesx ∈ P or y ∈ P .

A distributive latticeL is called quasi-complemented if to eachx ∈ L, there existsy ∈ L such

thatx ∧ y = 0 andx ∨ y ∈ D. Clearly every quasi-complemented lattice contains a dense element.

Throughout this paper,L stands for a distributive lattice with 0, unless or otherwise specified.
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3 Main Results

In this section we begin with the definition of a dominator ideal. Then we introduce the notion

of closure ideals and obtain an isomorphism between the lattice of closure ideals and ideal lattice of

dominator ideals.

Definition 3.1. For any a ∈ L, the dominator of a is defied as

(a)e = {x ∈ L | (a]∗ ⊆ (x]∗}.

The following lemma is a direct consequence of the above definition.

Lemma 3.2.For any a, b ∈ L, we have the following:

(1) (a)e is an ideal of L.

(2) (a] ⊆ (a)e.

(3) a = 0 if and only if (a)e = (0].
(4) a ∈ (b)e implies (a)e ⊆ (b)e.

(5) a ≤ b implies (a)e ⊆ (b)e.

(6) a ∈ D if and only if (a)e = L.

(7) (a)e ∩ (b)e = (a ∧ b)e.

For anya ∈ L, the ideal(a)e is called as a dominator ideal. Then the setAe(L) of all dominator

ideals ofL is not a sublattice of the latticeI(L) of all ideals ofL. It can be observed from the following

example.

Consider the following distributive latticeL = {0, a, b, c, 1} whose Hasse diagram is given by:
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For a, b ∈ L, it can be observed that(a)e = {0, a} and(b)e = {0, b}. Also (a ∨ b)e = (c)e = L. But

(a)e ∨ (b)e = {0, a, b, c}. Therefore,Ae(L) is not a sublattice of the ideal latticeI(L). However, we

have the following:

Theorem 3.3.For any distributive lattice L, Ae(L) forms a complete distributive lattice with smallest

element {0}. Moreover, Ae(L) has the greatest element if and only if L has a dense element.

Proof. For anya, b ∈ L, define(a)e ∩ (b)e = (a ∧ b)e and (a)e t (b)e = (a ∨ b)e. Then clearly

〈Ae(L),∩,t〉 is a lattice. By the extension of the property(7) of Lemma 3.2,〈Ae(L),∩,t〉 is a

complete lattice with respect to the partial ordering defined as(a)e ≤ (b)e if and only if (a)e ⊆ (b)e.
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Now, for anya, b, c ∈ L, we have(a)e t {(b)e ∩ (c)e} = (a)e t (b ∧ c)e = {a ∨ (b ∧ c)}e =
{(a ∨ b) ∩ (a ∨ c)}e = (a ∨ b)e ∩ (a ∨ c)e = {(a)e t (b)e} ∩ {(a)e t (c)e}. Therefore,〈Ae(L),∩,t〉
is a complete distributive lattice with the smallest element{0}.

Suppose thatL has greatest element, say(d)e. Let x ∈ (d]∗. Thenx ∧ d = 0. Since(d)e is the

greatest element ofAe(L), we get(x)e = (x)e ∩ (d)e = (x ∧ d)e = (0)e = (0]. Hencex = 0. Hence

d is a dense element. Conversely, assume thatL has a dense element, sayd. Then by Lemma 3.2,

(d)e = L. Therefore,(d)e is the greatest element ofAe(L).

The quasi-complemented distributive lattice is now characterized in terms of the latticeAe(L) of all

dominator ideals.

Theorem 3.4.Let L be a distributive lattice with a dense element. Then L is quasi-complemented if

and only if 〈Ae(L),∩,t〉 is a Boolean algebra.

Proof. SupposeL has a dense element, sayd. Then(d)e is the greatest element ofAe(L) and hence

〈Ae(L),∩,t〉 is a bounded distributive lattice. Now, assume thatL is quasi-complemented. Let(a)e ∈
Ae(L), wherea ∈ L. Then there existsa′ ∈ L such thata ∧ a′ = 0 anda ∨ a′ is dense. Now

(a)e ∩ (a′)e = (a ∧ a′)e = (0)e = {0}. Also (a)e t (a′)e = (a ∨ a′)e = L(sincea ∨ a′ is dense). Thus

(a′)e is the complement of(a)e in 〈Ae(L),∩,t〉. Hence〈Ae(L),∩,t〉 is a Boolean algebra.

Conversely assume that〈Ae(L),∩,t〉 is a Boolean algebra. Leta ∈ L. Then(a)e ∈ Ae(L). Then

there exists(b)e ∈ Ae(L) such that(a)e ∩ (b)e = {0} and(a)e t (b)e = L. Hence(a ∧ b)e = {0} and

(a ∨ b)e = L. Thus we geta ∧ b = 0 anda ∨ b is dense. Therefore,L is quasi-complemented.

We now introduce a closure operation onI(L).

Definition 3.5. For any ideal I of L, define α(I) = { (a)e | a ∈ I }.

Definition 3.6. For any ideal Ĩ of Ae(L), define β(Ĩ) = { a ∈ L | (a)e ∈ Ĩ }.

Lemma 3.7.Let L be a distributive lattice. Then we have the following:

(a) For any ideal I of L, α(I) is an ideal in Ae(L).
(b) For any ideal Ĩ of Ae(L), β(Ĩ) is an ideal in L.

(c) α and β are isotones.

Proof. (a). Let I be an ideal ofL. Clearly(0)e ∈ α(I). Let (a)e, (b)e ∈ α(I). Then(a)e = (a′)e and

(b)e = (b′)e for somea′, b′ ∈ I. Hence(a)e t (b)e = (a′)e t (b′)e = (a′ ∨ b′)e ∈ α(I). Again, let

(x)e ∈ α(I) and(r)e ∈ Ae(L). Then(x)e = (x′)e for somex′ ∈ I. Now (x)e ∩ (r)e = (x′)e ∩ (r)e =
(x′ ∧ r)e ∈ α(I). Therefore,α(I) is an ideal inAe(L).

(b). Let Ĩ be an ideal inAe(L). Clearly0 ∈ β(Ĩ). Let a, b ∈ β(Ĩ). Then we get(a)e, (b)e ∈ Ĩ. Since

Ĩ is an ideal, we get(a ∨ b)e = (a)e t (b)e ∈ Ĩ. Hence we geta ∨ b ∈ β(Ĩ). Again, letx ∈ β(Ĩ)
andr ∈ L. Then(x)e ∈ Ĩ. SinceĨ is an ideal inAe(L), we get(x ∧ r)e = (x)e ∧ (r)e ∈ Ĩ. Thus

x ∧ r ∈ β(Ĩ). Therefore,β(Ĩ) is an ideal inL.
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(c). Let I, J be two ideals ofL such thatI ⊆ J . Let (x)e ∈ α(I). Then we get(x)e = (y)e for some

y ∈ I ⊆ J . Hence(x)e ∈ α(J). Thusα is an isotone. Again, let̃I, J̃ be two ideals ofAe(L) such that

Ĩ ⊆ J̃ . Let x ∈ β(Ĩ). Then(x)e ∈ Ĩ ⊆ J̃ . Thusx ∈ β(J̃). Therefore,β is isotone.

It can be easily observed that the setI[Ae(L)] of all ideals ofAe(L) also forms a complete dis-

tributive lattice under set inclusion, in which infimum is
⋂

Ji, the set-theoretic intersection and the

supremum of any two ideals̃I, J̃ of Ae(L) is given by{ (i)e t (j)e | (i)e ∈ Ĩ and(j)e ∈ J̃ }. Hence,

a homomorphism is obtained between the latticeI(L) of all ideals ofL and the latticeI[Ae(L)] of all

ideals ofAe(L).

Theorem 3.8.The mapping α is a homomorphism of I(L) into I[Ae(L)].

Proof. Let I, J be two ideals inL. It is enough to prove thatα(I ∨ J) = α(I) t α(J) andα(I ∩ J) =
α(I) ∩ α(J). Sinceα is isotone, we getα(I) t α(J) ⊆ α(I ∨ J). Conversely, let(x)e ∈ α(I ∨ J).
Then(x)e = (y)e for somey ∈ I ∨ J . Hence(y)e = (i ∨ j)e for somei ∈ I andj ∈ J . Thus we get

(x)e = (y)e = (i)e t (j)e ∈ α(I) t α(J). Therefore,α(I ∨ J) ⊆ α(I) t α(J).

Sinceα is an isotone, we getα(I ∩ J) ⊆ α(I) ∩ α(J). Conversely, let(x)e ∈ α(I) ∩ α(J). Then

(x)e = (i)e and(x)e = (j)e for somei ∈ I andj ∈ J . Now (x)e = (x)e ∩ (x)e = (i)e ∩ (j)e =
(i ∧ j)e ∈ α(I ∩ J). Thusα(I) ∩ α(J) ⊆ α(I ∩ J). Therefore,α is a homomorphism.

Lemma 3.9.For any ideal I of L, the map I −→ β ◦ α(I) is a closure operator on I(L). That is,

(a) I ⊆ β ◦ α(I)
(b) β ◦ α[β ◦ α(I)] = β ◦ α(I)
(c) I ⊆ J ⇒ β ◦ α(I) ⊆ β ◦ α(J) for any two ideals I, J of L.

Proof. (a). Letx ∈ I. Then we get(x)e ∈ α(I). Sinceα(I) is an ideal inAe(L), we getx ∈ β ◦α(I).
Therefore,I ⊆ β ◦ α(I).
(b). Sinceβ ◦ α(I) is an ideal inL, by the condition(a), we getβ ◦ α ⊆ β ◦ α[β ◦ α(I)]. Conversely,

let x ∈ β ◦ α[β ◦ α(I)]. Then we get(x)e ∈ α[β ◦ α(I)]. Hence it is obtained(x)e = (y)e for some

y ∈ β ◦ α(I). Thus(x)e = (y)e ∈ α(I), which yields thatx ∈ β ◦ α(I). Therefore,β ◦ α[β ◦ α(I)] ⊆
β ◦ α(I).
(c). SupposeI, J are the two ideals ofL such thatI ⊆ J . Let x ∈ β ◦ α(I). Then we get(x)e ∈ α(I).
Hence(x)e = (y)e for somey ∈ I ⊆ J . Thus(x)e = (y)e ∈ α(I). Therefore,x ∈ β ◦ α(I).

Definition 3.10.An ideal I of L is called a closure ideal if I = β ◦ α(I).

Theorem 3.11.Let I be an ideal of the lattice L. Then the following conditions are equivalent.

(a) I is a closure ideal.

(b) For x, y ∈ L, (x)e = (y)e and x ∈ I imply that y ∈ I .

(c) I =
⋃

x∈I

(x)e.
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Proof. (a) ⇒ (b): Assume thatI is a closure ideal ofL. ThenI = β ◦ α(I). Let x, y ∈ L be such

that (x)e = (y)e. Suppose thatx ∈ I = β ◦ α(I). Then we get(y)e = (x)e ∈ α(I). Therefore,

y ∈ β ◦ α(I) = I.

(b) ⇒ (c): For anyx ∈ I, we have(x] ⊆ (x)e. HenceI =
⋃

x∈I(x] ⊆
⋃

x∈I(x)e. Again, letx ∈ I and

y ∈ (x)e. Now,

y ∈ (x)e ⇒ (y)e ⊆ (x)e

⇒ (y)e = (x)e ∩ (y)e = (x ∧ y)e

⇒ y ∈ I by condition (2)

Hence(x)e ⊆ I for all x ∈ I. Therefore,
⋃

x∈I(x)e ⊆ I.

(c) ⇒ (a): We have alwaysI ⊆ β ◦α(I). Let x ∈ β ◦α(I). Then(x)e ∈ α(I). Hence(x)e = (y)e for

somey ∈ I. Thus we getx ∈ (x)e = (y)e ⊆
⋃

y∈I(y)e = I. Therefore,I is a closure ideal.

From the above Lemma, it can be observed that the class of all closure ideals forms a complete

distributive lattice in which the infimum of a set of closure idealsIi is∩Ii, their set-theoretic intersection.

The supremum isβ ◦ α(∨Ii) where∨Ii is their supremum in the lattice of all ideals ofL.

In the following theorem, a one-to-one correspondence is obtained between the class of all closure

ideals ofL and the class of all ideals ofAe(L). For this we need the following Lemma.

Lemma 3.12.The following conditions hold in a distributive lattice:

(i) For any ideal I of L, β ◦ α(I) =
⋃

a∈I(a)e.

(ii) For any ideal Ĩ of Ae(L), α ◦ β(Ĩ) = Ĩ .

Proof. (i) Let x ∈
⋃

a∈I(a)e. Then we getx ∈ (a)e for somea ∈ I. Hence(x)e ⊆ (a)e for some

a ∈ I. Now,

a ∈ I ⇒ (a)e ∈ α(I)

⇒ (x)e ∈ α(I) (sinceα(I) is an ideal,(x)e ⊆ (a)e)

⇒ x ∈ β ◦ α(I)

Therefore,
⋃

a∈I(a)e ⊆ β ◦ α(I).

Conversely, letx ∈ β ◦ α(I). Then we get(x)e ∈ α(I). Hence(x)e = (y)e for somey ∈ I. Thus

x ∈ (x)e = (y)e ⊆
⋃

a∈I(a)e, which yields thatβ ◦ α(I) ⊆
⋃

a∈I(a)e. Henceβ ◦ α(I) =
⋃

a∈I(a)e.

(ii). Let Ĩ be an ideal ofAe(L). Let (x)e ∈ Ĩ. Then we getx ∈ β(Ĩ). Hence(x)e ∈ α ◦ β(Ĩ).
Therefore,̃I ⊆ α ◦ β(Ĩ). Conversely, let(x)e ∈ α ◦ β(Ĩ). Then(x)e = (y)e for somey ∈ β(Ĩ). Since

y ∈ β(Ĩ), we get(x)e = (y)e ∈ Ĩ. Henceα ◦ β(Ĩ) ⊆ Ĩ. Therefore,α ◦ β(Ĩ) = Ĩ.

Theorem 3.13.Let L be a distributive lattice. Then the class of all closure ideals of L are isomorphic

to the class of all ideals of Ae(L). Under this isomorphism the prime closed ideals corresponds to the

prime ideals of Ae(L).
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Proof. Let Θ be the restriction ofα to the classCI(L) of all closure ideals ofL. Let I, J ∈ CI(L).
ThenΘ(I) = Θ(J) ⇒ α(I) = α(J) ⇒ β ◦ α(I) = β ◦ α(J) ⇒ I = J(sinceI, J ∈ CI(L)).
HenceΘ is one-one. Again, let̃I be an ideal ofAe(L). Thenβ(Ĩ) is an ideal inL. We now show that

β(Ĩ) is a closure ideal inL. We have alwaysβ(Ĩ) ⊆ β ◦ α[β(Ĩ)]. Let x ∈ β ◦ α[β(Ĩ)]. Then we get

(x)e ∈ α ◦ β(Ĩ) = Ĩ(by Lemma 3.12). Hencex ∈ β(Ĩ). Therefore,β(Ĩ) = β ◦ α[β(Ĩ)]. Now for this

β(Ĩ) ∈ L, we getΘ[β(Ĩ)] = α ◦ β(Ĩ) = Ĩ. Therefore,Θ is onto. Now, for anyI, J ∈ CI(L),

Θ(I ∨ J) = Θ[β ◦ α(I ∨ J)]

= α[β ◦ α(I ∨ J)]

= α(I ∨ J)

= α(I) t α(J)

= Θ(I) tΘ(J)

Also Θ(I ∩ J) = α(I ∩ J) = α(I)∩ α(J) = Θ(I)∩Θ(J). Therefore,Θ is an isomorphism ofCI(L)
onto the lattice of ideals ofAe(L).

We have obtained a one-to-one correspondence between prime closure ideals ofL and the prime

ideals ofAe(L). Let I be a prime closure ideal ofL. Suppose(x ∧ y)e = (x)e ∩ (y)e =∈ α(I).
Thenx ∧ y ∈ β ◦ α(I) = I(sinceI is a closed ideal). Thus we getx ∈ I or y ∈ I, which implies

that (x)e ∈ α(I) or (y)e ∈ α(I). Therefore,Θ(I) = α(I) is a prime ideal inAe(L). Conversely,

suppose that̃I is an ideal inAe(L). SinceΘ is onto, there exists a closure idealI in CI(L) such that

Ĩ = Θ(I) = α(I). Let x, y ∈ L such thatx ∧ y ∈ I. Then(x)e ∩ (y)e = (x ∧ y)e ∈ α(I). Hence

(x)e ∈ α(I) or (y)e ∈ α(I). SinceI is a closure ideal, we getx ∈ β ◦ α(I) = I or y ∈ β ◦ α(I) = I.

Therefore,I is a prime ideal inL.

References

[1] G. Birkhoff, Lattice theory, Amer. Math. Soc. Colloq. XXV, Providence, (1967), U.S.A.

[2] S. Burris, H.P. Sankappanavar,A Cource in Univerasal Algebra, Springer Verlag, (1981).

[3] Mark Mandelker,Relative annihilators in lattices, Duke Math. Jour., 37 (1970), 377-386.

[4] T.P. Speed,A note on commutative Semigroups, Jour. Aust. Math. Soc., 8(1968), 731-736.

[5] T.P. Speed,Some remarks on a class of distributive lattices, Jour. Aust. Math. Soc., 9(1969), 289-

296.


