$(r, 2, r(r-1))$-regular graphs

N. R. Santhi Maheswari
Department of Mathematics, G.Venkataswamy Naidu College, Kovilpatti, INDIA.
E-mail: nrsmaths@yahoo.com

C. Sekar

Department of Mathematics, Aditanar College of Arts and Science, Tiruchendur-628216, INDIA.
E-mail: sekar.acas@gmail.com

Abstract

A graph G is called $(r, 2, r(r-1))$-regular if each vertex in the graph G is at a distance one away from exactly r number of vertices and at a distance two away from exactly $r(r-1)$ number of vertices. That is, $d(v)=r$ and $d_{2}(v)=r(r-1)$, for all v in G. In this paper, we prove that for any $r>0$, r-regular graph with girth at least five is $(r, 2, r(r-1))$-regular and vice versa and also suggest a method to construct $(r, 2, r(r-1))$-regular graph on $n \times 2^{r-2}$ vertices.

Keywords: Distance degree regular graph, (d, k)-regular graph, girth, diameter, semiregular, $(r, 2, k)$ regular.
AMS Subject Classification(2010): 05C12.

1 Introduction

In this paper, we consider only finite, simple, connected graphs. We follow graph theoretic terminology proposed in the works of J. A. Bondy and U.S.R. Murty [4] and Harary [6]. We denote the vertex set and the edge set of a graph G by $V(G)$ and $E(G)$ respectively. The degree of a vertex v is the number of edges incident at v. A graph G is regular if all its vertices have the same degree.

For a connected graph G, the distance $d(u, v)$ between two vertices u and v is the length of a shortest (u, v) path. Therefore, the degree of a vertex v is the number of vertices at a distance 1 from v, and it is denoted by $d(v)$. The set of all verticees at a distance one from v is called the neighbourhood of v and is denoted by $N(v)$. This observation suggests a generalization of degree. That is, $d_{d}(v)$ is defined as the number of vertices at a distance d from v. Hence $d_{1}(v)=d(v)$ and $N_{d}(v)$ denote the set of all vertices that are at a distance d away from v in a graph G. Hence $N_{1}(v)=N(v)$. Girth of a graph is the smallest cycle in the graph and the diameter of graph $G=\max \{d(u, v) / u, v \in V(G)\}$. For any $S \subseteq V(G), G(S)$ is the subgraph of G induced by the vertices of S.

A graph G is called distance d-regular[4] if every vertex of G has the same number of vertices at a distance d from it. We call this graph by (d, k)-regular if every vertex of G has k number of vertices at a distance d from it. That is, a graph G is said to be (d, k) - regular graph if $d_{d}(v)=k$, for all v in G. The $(1, k)$-regular graphs are nothing but the k-regular graphs. A graph G is $(2, k)$ - regular if $d_{2}(v)=k$, for all $v \in G$.

The concept of the semiregular graph was introduced and studied by Alison Northup [2]. A graph G is said to be k-semiregular graph if each vertex of G is at a distance two away from exactly k vertices of G. We observe that $(2, k)$-regular graphs are k-semiregular graphs. Note that a $(2, k)$-regular graph may be regular or non-regular. Among the four $(2, k)$-regular graphs given in Figure 1, (i) and (ii) are regular whereas (iii) and (iv) are non-regular.

Figure 1.

In this paper, we consider only regular graphs with $(2, k)$-regular. We call r-regular graph with $(2, k)$-regular by $(r, 2, k)$-regular graph. A graph is called $(r, 2, k)$-regular if $d(v)=r$ and $d_{2}(v)=k$, for all v in G. If a graph G is $(r, 2, k)$-regular, then $0 \leq k \leq r(r-1)$. We have shown that an r-regular graph with girth at least five is $(r, 2, r(r-1))$-regular and vice versa. This result motivates to suggest some methods to construct r-regular graphs for any $r>1$ with girth at least five.

$2(r, 2, r(r-1))$-regular graphs

Definition 2.1. A graph G is called $(r, 2, r(r-1))$-regular if each vertex in the graph G is at distance one away from exactly r number of vertices and each vertex in the graph G is at distance two away from exactly $r(r-1)$ number of vertices. That is, $d(v)=r$ and $d_{2}(v)=r(r-1)$, for all $v \in V(G)$.

Example 2.2. (i) K_{2} is a $(1,2,1(1-1))$-regular graph.
(ii) Any cycle $C_{n}(n \geq 5)$ is $(2,2,2(2-1))$-regular graph.
(iii) $(3,2,3(3-1))$-regular graphs are shown in Figure 2.

Figure 2.

$3(r, 2, r(r-1))$-regular graphs related with girth

Theorem 3.1. For any $r>1$, a graph G is $(r, 2, r(r-1))$-regular if and only if G is r-regular with girth at least five.

Proof. For any $r>1$, let G be a $(r, 2, r(r-1))$-regular graph and $v \in V(G)$. Let $N(v)=$ $\left\{v_{1}, v_{2}, v_{3}, \cdots, v_{r}\right\}$. Then $d(v)=r$ and $d_{2}(v)=r(r-1)$, for all $v \in V(G)$ if and only if G is r-regular graph and $N(v)$ has distinct neighbours if and only if G is r-regular graph with $G(N(v))$ has no edge and $N\left(v_{i}\right) \cap N\left(v_{j}\right)=\{v\}$, for $1 \leq i<j \leq r$ if and only if G is r-regular graph which does not contain triangle and four cycle if and only if G is an r-regular graph and has girth at least five.

Note that construction of $(r, 2, r(r-1))$-regular graph is equivalent to the construction of r-regular graphs with girth at least five. With this characterization, we can easily construct $(r, 2, r(r-1))$-regular graphs.

4 Construction of $(r, 2, r(r-1))$-regular graphs

Theorem 4.1. For any $n \geq 5,(n \neq 6,8)$ and any $r>1$, there exists a $(r, 2, r(r-1))$-regular graph on $n \times 2^{r-2}$ vertices with girth five.

Proof. Let us prove this result by induction on r. When $r=2$, any n-cycle $(n \geq 5)$ is the required graph. Let G be the Peterson graph $P(n, 2)$ with the vertex set $V(G)=\left\{x_{i}^{(1)}, x_{i}^{(2)} / 0 \leq i \leq n-1\right\}$ and the edge set $E(G)=\left\{x_{i}^{(1)} x_{i}^{(2)}, x_{i}^{(2)} x_{i+1}^{(2)}, x_{i}^{(1)} x_{i+2}^{(1)} / 0 \leq i \leq n-1\right\}$ where the subscripts are taken modulo n. If $n=6$, then G is a graph with girth three, and if $n=8, G$ is a graph with girth four as shown in Figure 3.

Figure 3.

Therefore, we cannot take $n=6,8$ for constructing a graph with girth five. For any $n \neq 6,8$ we have for $0 \leq i \leq n-1$,

$$
\begin{aligned}
& N_{2}\left(x_{i}^{(1)}\right)=\left\{x_{i+n-4}^{(1)}, x_{i+4}^{(1)}, x_{i+1}^{(2)}, x_{i+2}^{(2)}, x_{i+n-2}^{(2)}, x_{i+n-1}^{(2)}\right\} \text { and } d_{2}\left(x_{i}^{(1)}\right)=6=3(3-1) . \\
& N_{2}\left(x_{i}^{(2)}\right)=\left\{x_{i+2}^{(2)}, x_{i+n-2}^{(2)}, x_{i+1}^{(1)}, x_{i+2}^{(1)}, x_{i+n-2}^{(1)}, x_{i+n-1}^{(1)}\right\} \text { and } d_{2}\left(x_{i}^{(2)}\right)=6=3(3-1) .
\end{aligned}
$$

G is a $(3,2,3(3-1))$-regular graph on $n \times 2^{3-2}$ vertices with girth 5 .
Step 1: Take another copy of G as G^{\prime}. Let $V\left(G^{\prime}\right)=\left\{x_{i}^{(3)}, x_{i}^{(4)} / 0 \leq i \leq n-1\right\}$ and $E\left(G^{\prime}\right)=$ $\left\{x_{i}^{(3)} x_{i}^{(4)}, x_{i}^{(4)} x_{i+1}^{(4)}, x_{i}^{(3)} x_{i+2}^{(3)} / 0 \leq i \leq n-1\right\}$, the subscripts being taken modulo n. The desired graph G_{1} has the vertex set $V\left(G_{1}\right)=V(G) \cup V\left(G^{\prime}\right)$ and the edge set $E\left(G_{1}\right)=E(G) \cup E\left(G^{\prime}\right) \cup$ $\left\{x_{i}^{(1)} x_{i+1}^{(4)}, x_{i}^{(2)} x_{i}^{(3)} / 0 \leq i \leq n-1\right\}$. Now the resulting graph G_{1} is a 4-regular graph having $n \times 2^{4-2}$ vertices with girth five.
Now consider the edges $x_{i}^{(1)} x_{i+1}^{(4)}$, for $0 \leq i \leq n-1$.

$$
N\left(x_{i}^{(1)}\right)=\left\{x_{i+2}^{(1)}, x_{i+n-2}^{(1)}, x_{i}^{(2)}\right\} \text { in } G \text { and }\left|N\left(x_{i}^{(1)}\right)\right|=3 \text { in } G, 0 \leq i \leq n-1
$$

$N\left(N\left(x_{i}^{(1)}\right)\right)=\left\{x_{i+n-2}^{(4)}, x_{i+n-1}^{(4)}, x_{i}^{(3)}\right\}$ in G^{\prime} and $\left|N\left(N\left(x_{i}^{(1)}\right)\right)\right|=3$ in $G^{\prime}, 0 \leq i \leq n-1$.
$N\left(x_{i+1}^{(4)}\right)=\left\{x_{i}^{(4)}, x_{i+2}^{(4)}, x_{i+1}^{(3)}\right\}$ in G^{\prime} and $\left|N\left(x_{i+1}^{(4)}\right)\right|=3$ in $G^{\prime}, 0 \leq i \leq n-1$.
$N\left(N\left(x_{i+1}^{(4)}\right)\right)=\left\{x_{i+n-1}^{(1)}, x_{i+1}^{(1)}, x_{i+1}^{(2)}\right\}$ in G and $\left|N\left(N\left(x_{i+1}^{(4)}\right)\right)\right|=3$ in $G, 0 \leq i \leq n-1$.
d_{2} of each vertex in $C^{(1)}$, where $C^{(1)}$ is the cycle induced by the vertices $\left\{x_{i}^{(1)} / 0 \leq i \leq n-1\right\}$ in G_{1}.
$d_{2}\left(x_{i}^{(1)}\right)$ in $G_{1}=d_{2}\left(x_{i}^{(1)}\right)$ in $G+\left|N\left(x_{i+1}^{(4)}\right)\right|$ in $G^{\prime}+\left|N\left(N\left(x_{i}^{(1)}\right)\right)\right|$ in $G^{\prime}=6+3+3=12=4(4-1)$, ($0 \leq i \leq n-1$).
d_{2} of each vertex in $C^{(4)}$, where $C^{(4)}$ is the cycle induced by the vertices $\left\{x_{i}^{(4)} / 0 \leq i \leq n-1\right\}$ in G_{1}.
$d_{2}\left(x_{i+1}^{(4)}\right)$ in $G_{1}=\left(d_{2}\left(x_{i+1}^{(4)}\right)\right)$ in $G^{\prime}+\left|N\left(x_{i}^{(1)}\right)\right|$ in $G+\left|N\left(N\left(x_{i+1}^{(4)}\right)\right)\right|$ in $G=6+3+3=12=4(4-1)$, $0 \leq i \leq n-1$.
Next consider the edges $x_{i}^{(2)} x_{i}^{(3)}$, for $0 \leq i \leq n-1$.

$$
\begin{aligned}
& N\left(x_{i}^{(2)}\right)=\left\{x_{i+1}^{(2)}, x_{i+n-1}^{(2)}, x_{i}^{(1)}\right\} \text { in } G \text { and }\left|N\left(x_{i}^{(2)}\right)\right|=3 \text { in } G, 0 \leq i \leq n-1 . \\
& N\left(N\left(x_{i}^{(2)}\right)\right)=\left\{x_{i+1}^{(3)}, x_{i+n-1}^{(3)}, x_{i+1}^{(4)}\right\} \text { in } G^{\prime} \text { and }\left|N\left(N\left(x_{i}^{(2)}\right)\right)\right|=3 \text { in } G^{\prime}, 0 \leq i \leq n-1 . \\
& N\left(x_{i}^{(3)}\right)=\left\{x_{i+2}^{(3)}, x_{i+n-2}^{(3)}, x_{i}^{(4)}\right\} \text { in } G^{\prime} \text { and }\left|N\left(x_{i}^{(3)}\right)\right|=3 \text { in } G^{\prime}, 0 \leq i \leq n-1 . \\
& N\left(N\left(x_{i}^{(3)}\right)\right)=\left\{x_{i+2}^{(2)}, x_{i+n-2}^{(2)}, x_{i+n-1}^{(1)}\right\} \text { in } G \text { and } \mid N\left(N \left(x_{i}^{(3)} \mid=3 \text { in } G, 0 \leq i \leq n-1 .\right.\right.
\end{aligned}
$$

d_{2} of each vertex in $C^{(2)}$, where $C^{(2)}$ is the cycle induced by the vertices $\left\{x_{i}^{(2)} / 0 \leq i \leq n-1\right\}$ in G_{1}.
$d_{2}\left(x_{i}^{(2)}\right)$ in $G_{1}=d_{2}\left(x_{i}^{(2)}\right)$ in $G+\left|N\left(x_{i}^{(3)}\right)\right|$ in $G^{\prime}+\left|N\left(N\left(x_{i}^{(2)}\right)\right)\right|$ in $G^{\prime}=6+3+3=12=4(4-1)$, $0 \leq i \leq n-1$.
d_{2} of each vertex in $C^{(3)}$, where $C^{(3)}$ is the cycle induced by the vertices $\left\{x_{i}^{(3)} / 0 \leq i \leq n-1\right\}$ in G_{1}. $d_{2}\left(x_{i}^{(3)}\right)$ in $G_{1}=d_{2}\left(x_{i}^{(3)}\right)$ in $G^{\prime}+\left|N\left(x_{i}^{(2)}\right)\right|$ in $G+\mid N\left(N\left(x_{i}^{(3)} \mid\right.\right.$ in $G=6+3+3=12=4(4-1)$, $0 \leq i \leq n-1$.

In G_{1}, for $1 \leq t \leq 4, d_{2}\left(x_{i}^{(t)}\right)=4(4-1)$, for $0 \leq i \leq n-1 . G_{1}$ is $d(4,4(4-1))$-regular on $n \times 2^{4-2}$ vertices with the vertex set. $V\left(G_{1}\right)=\left\{x_{i}^{(t)} / 1 \leq t \leq 2^{4-2}, 0 \leq i \leq n-1\right\}$ and the edge set $E\left(G_{1}\right)=E(G) \cup E\left(G^{\prime}\right) \cup\left\{x_{i}^{(1)} x_{i+1}^{(4)}, x_{i}^{(2)} x_{i}^{(3)} / 0 \leq i \leq n-1\right\}$ of girth 5.

That is, the result is true for $r=4$.
Step 2: Take another copy of G_{1} as G_{1}^{\prime} with the vertex set $V\left(G_{1}^{\prime}\right)=\left\{x_{i}^{(t)} / 2^{4-2}+1 \leq t \leq 2^{4-1}, 0 \leq\right.$ $i \leq n-1\}$ and each $x_{i}^{(t)}, 2^{4-2}+1 \leq t \leq 2^{4-1}$ corresponds to $x_{i}^{(t)}, 1 \leq t \leq 2^{4-2}$ for $0 \leq$ $i \leq n-1$. The desired graph G_{2} has the vertex set $V\left(G_{2}\right)=V\left(G_{1}\right) \cup V\left(G_{1}^{\prime}\right)$ and the edge set $E\left(G_{2}\right)=E\left(G_{1}\right) \cup E\left(G_{1}^{\prime}\right) \cup\left\{x_{i}^{(1)} x_{i+1}^{(8)}, x_{i}^{(2)} x_{i}^{(7)}, x_{i}^{(3)} x_{i+1}^{(6)}, x_{i}^{(4)} x_{i}^{(5)}\right\}$. Now the resulting graph G_{2} is a 5-regular graph having $n \times 2^{5-2}$ vertices with girth 5 .
Consider the edges $x_{i}^{(1)} x_{i+1}^{(8)}$ for $0 \leq i \leq n-1$.
$N\left(x_{i}^{(1)}\right)=\left\{x_{i+2}^{(1)}, x_{i+n-1}^{(1)}, x_{i}^{(2)}, x_{i+1}^{(4)}\right\}$ in G_{1} and $\left|N\left(x_{i}^{(1)}\right)\right|=4$ in G_{1}.
$N\left(N\left(x_{i}^{(1)}\right)\right)=\left\{x_{i+n-2}^{(8)}, x_{i+n-1}^{(8)}, x_{i}^{(7)}, x_{i+1}^{(5)}\right\}$ in G_{1}^{\prime} and $\left|N\left(N\left(x_{i}^{(1)}\right)\right)\right|=4$ in G_{1}^{\prime}.
$N\left(x_{i+1}^{(8)}\right)=\left\{x_{i}^{(8)}, x_{i+2}^{(8)}, x_{i+1}^{(7)}, x_{i}^{(5)}\right\}$ in G_{1}^{\prime} and $\left|N\left(x_{i+1}^{(8)}\right)\right|=4$ in G_{1}^{\prime}.
$N\left(N\left(x_{i+1}^{(8)}\right)\right)=\left\{x_{i+1}^{(1)}, x_{i+n-1}^{(1)}, x_{i+1}^{(2)}, x_{i}^{(4)}\right\}$ in G_{1} and $\left|N\left(N\left(x_{i-1}^{(8)}\right)\right)\right|=4$ in G_{1}.
d_{2} of each vertex in $C^{(1)}$, where $C^{(1)}$ is the cycle induced by the vertices $\left\{x_{i}^{(1)} / 0 \leq i \leq n-1\right\}$ in G_{2}.
$d_{2}\left(x_{i}^{(1)}\right)$ in $G_{2}=d_{2}\left(x_{i}^{(1)}\right)$ in $G_{1}+\left|N\left(x_{i+1}^{(8)}\right)\right|$ in $G_{1}^{\prime}+\left|N\left(N\left(x_{i}^{(1)}\right)\right)\right|$ in $G_{1}^{\prime}=12+4+4=20=5(5-1)$, $0 \leq i \leq n-1$.
d_{2} of each vertex in $C^{(8)}$, where $C^{(8)}$ is the cycle induced by the vertices $\left\{x_{i}^{(8)} / 0 \leq i \leq n-1\right\}$ in G_{2}.
$d_{2}\left(x_{i+1}^{(8)}\right)$ in $G_{2}=\left(d_{2}\left(x_{i+1}^{(8)}\right.\right.$ in $G_{1}^{\prime}+\left|N\left(x_{i}^{(1)}\right)\right|$ in $G_{1}+\mid\left(N\left(N\left(x_{i+1}^{(8)}\right)\right) \mid\right.$ in $G_{1}=12+4+4=20=5(5-1)$, $0 \leq i \leq n-1$.
Next consider the edge $x_{i}^{(2)} x_{i}^{(7)}$, for $0 \leq i \leq n-1$.
$N\left(x_{i}^{(2)}\right)=\left\{x_{i+1}^{(2)}, x_{i+n-1}^{(2)}, x_{i}^{(1)}, x_{i}^{(3)}\right\}$ in G_{1} and $\left|N\left(x_{i}^{(2)}\right)\right|=4$ in G_{1}.
$N\left(N\left(x_{i}^{(2)}\right)\right)=\left\{x_{i+1}^{(7)}, x_{i+n-1}^{(7)}, x_{i+1}^{(8)}, x_{i+1}^{(6)}\right\}$ in G_{1}^{\prime} and $\left|N\left(N\left(x_{i}^{(2)}\right)\right)\right|=4$ in G_{1}^{\prime}.
$N\left(x_{i}^{(7)}\right)=\left\{x_{i+2}^{(7)}, x_{i+n-2}^{(7)}, x_{i}^{(8)}, x_{i}^{(6)}\right\}$ in G_{1}^{\prime} and $\left|N\left(x_{i}^{(7)}\right)\right|=4$ in G_{1}^{\prime}.
$N\left(N\left(x_{i}^{(7)}\right)\right)=\left\{x_{i+2}^{(2)}, x_{i+n-2}^{(2)}, x_{i+n-1}^{(1)}, x_{i+n-1}^{(3)}\right\}$ in G_{1} and $\left|N\left(N\left(x_{i}^{(7)}\right)\right)\right|=4$ in G_{1}.
d_{2} of each vertex in $C^{(2)}$, where $C^{(2)}$ is the cycle induced by the vertices $\left\{x_{i}^{(2)} / 0 \leq i \leq n-1\right\}$ in G_{2}.
$d_{2}\left(x_{i}^{(2)}\right)$ in $G_{2}=d_{2}\left(x_{i}^{(2)}\right)$ in $G_{1}+\left|N\left(x_{i}^{(7)}\right)\right|$ in $G_{1}^{\prime}+\left|N\left(N\left(x_{i}^{(2)}\right)\right)\right|$ in $G_{1}^{\prime}=12+4+4=20=5(5-1)$, for $0 \leq i \leq n-1$.
d_{2} of each vertex in $C^{(7)}$, where $C^{(7)}$ is the cycle induced by the vertices $\left\{x_{i}^{(7)} / 0 \leq i \leq n-1\right\}$ in G_{2}.
$d_{2}\left(x_{i}^{(7)}\right)$ in $G_{2}=d_{2}\left(x_{i}^{(7)}\right)$ in $G_{1}^{\prime}+\left|N\left(x_{i}^{(2)}\right)\right|$ in $G_{1}+\left|N\left(N\left(x_{i}^{(7)}\right)\right)\right|$ in $G_{1}=12+4+4=20=5(5-1)$, for $0 \leq i \leq n-1$.
Next consider the edge $x_{i}^{(3)} x_{i+1}^{(6)}$, for $0 \leq i \leq n-1$.
$N\left(x_{i}^{(3)}\right)=\left\{x_{i+2}^{(3)}, x_{i+n-2}^{(3)}, x_{i}^{(4)}, x_{i}^{(2)}\right\}$ in G_{1} and $\left|N\left(x_{i}^{(3)}\right)\right|=4$ in G_{1}.
$N\left(N\left(x_{i}^{(3)}\right)\right)=\left\{x_{i+n-2}^{(6)}, x_{i+n-1}^{(6)}, x_{i}^{(5)}, x_{i}^{(7)}\right\}$ in G_{1}^{\prime} and $\left|N\left(N\left(x_{i}^{(3)}\right)\right)\right|=4$ in G_{1}^{\prime}.
$N\left(x_{i+1}^{(6)}\right)=\left\{x_{i+2}^{(6)}, x_{i}^{(6)}, x_{i+1}^{(5)}, x_{i+1}^{(7)}\right\}$ in G_{1}^{\prime} and $\left|N\left(x_{i+1}^{(6)}\right)\right|=4$ in G_{1}^{\prime}.
$N\left(N\left(x_{i+1}^{(6)}\right)\right)=\left\{x_{i+n-1}^{(3)}, x_{i+1}^{(3)}, x_{i+1}^{(4)}, x_{i+1}^{(2)}\right\}$ in G_{1} and $\left|N\left(N\left(x_{i+1}^{(6)}\right)\right)\right|=4$ in G_{1}.
d_{2} of each vertex in $C^{(3)}$, where $C^{(3)}$ is the cycle induced by the vertices $\left\{x_{i}^{(3)} / 0 \leq i \leq n-1\right\}$ in G_{2}.
$d_{2}\left(x_{i}^{(3)}\right)$ in $G_{2}=d_{2}\left(x_{i}^{(3)}\right)$ in $G_{1}+\left|N\left(x_{i+1}^{(6)}\right)\right|$ in $G_{1}^{\prime}+\left|N\left(N\left(x_{i}^{(3)}\right)\right)\right|$ in $G_{1}^{\prime} .=12+4+4=20=5(5-1)$, for $0 \leq i \leq n-1$.
d_{2} of each vertex in $C^{(6)}$, where $C^{(6)}$ is the cycle induced by the vertices $\left\{x_{i}^{(6)} / 0 \leq i \leq n-1\right\}$ in G_{2}.
$d_{2}\left(x_{i+1}^{(6)}\right)$ in $G_{2}=d_{2}\left(x_{i+1}^{(6)}\right)$ in $G_{1}^{\prime}+\left|N\left(x_{i}^{(3)}\right)\right|$ in $G_{1}+\left|N\left(N\left(x_{i+1}^{(6)}\right)\right)\right|$ in $G_{1}=12+4+4=20=5(5-1)$, for $0 \leq i \leq n-1$.
Next consider the edge $x_{i}^{(4)} x_{i}^{(5)}$, for $0 \leq i \leq n-1$.
$N\left(x_{i}^{(4)}\right)=\left\{x_{i+1}^{(4)}, x_{i+n-1}^{(4)}, x_{i}^{(3)}, x_{i+n-1}^{(1)}\right\}$ in G_{1} and $\left|N\left(x_{i}^{(4)}\right)\right|=4$ in G_{1}.
$N\left(N\left(x_{i}^{(4)}\right)\right)=\left\{x_{i+1}^{(5)}, x_{i+n-1}^{(5)}, x_{i+1}^{(6)}, x_{i}^{(8)}\right\}$ in G_{1}^{\prime} and $\left|N\left(N\left(x_{i}^{(4)}\right)\right)\right|=4$ in G_{1}^{\prime}.
$N\left(x_{i}^{(5)}\right)=\left\{x_{i+2}^{(5)}, x_{i+n-2}^{(5)}, x_{i}^{(6)}, x_{i+1}^{(8)}\right\}$ in G_{1}^{\prime} and $\left|N\left(x_{i}^{(5)}\right)\right|=4$ in G_{1}^{\prime}.
$N\left(N\left(x_{i}^{(5)}\right)\right)=\left\{x_{i+2}^{(4)}, x_{i+n-2}^{(4)}, x_{i+n-1}^{(3)}, x_{i}^{(1)}\right\}$ in G_{1} and $\left|N\left(N\left(x_{i}^{(5)}\right)\right)\right|=4$ in G_{1}.
d_{2} of each vertex in $C^{(4)}$, where $C^{(4)}$ is the cycle induced by the vertices $\left\{x_{i}^{(4)} / 0 \leq i \leq n-1\right\}$ in G_{2}.
$d_{2}\left(x_{i}^{(4)}\right)$ in $G_{2}=d_{2}\left(x_{i}^{(4)}\right)$ in $G_{1}+\left|N\left(x_{i}^{(5)}\right)\right|$ in $G_{1}^{\prime}+\left|N\left(N\left(x_{i}^{(4)}\right)\right)\right|$ in $G_{1}^{\prime}=12+4+4=20=5(5-1)$, for $0 \leq i \leq n-1$.
d_{2} of each vertex in $C^{(5)}$, where $C^{(5)}$ is the cycle induced by the vertices $\left\{x_{i}^{(5)} / 0 \leq i \leq n-1\right\}$ in G_{2}.
$d_{2}\left(x_{i}^{(5)}\right)$ in $G_{2}=d_{2}\left(x_{i}^{(5)}\right)$ in $G_{1}^{\prime}+\left|N\left(x_{i}^{(4)}\right)\right|$ in $G_{1}+\left|N\left(N\left(x_{i}^{(5)}\right)\right)\right|$ in $G_{1}=12+4+4=20=5(5-1)$, for $(0 \leq i \leq n-1)$.
In G_{2}, for $1 \leq t \leq 8, d_{2}\left(x_{i}^{(t)}\right)=5(5-1)$, for $0 \leq i \leq n-1$.
Therefore, G_{2} is a $d(5,2,5(5-1))$-regular graph on $n \times 2^{5-2}$ vertices with the vertex set
$V\left(G_{2}\right)=\left\{x_{i}^{(t)} / 1 \leq t \leq 2^{5-2}, 0 \leq i \leq n-1\right\}$ and the edge set
$E\left(G_{2}\right)=E\left(G_{1}\right) \cup E\left(G_{1}^{\prime}\right) \cup\left\{x_{i}^{(1)} x_{i+1}^{(8)}, x_{i}^{(2)} x_{i}^{(7)}, x_{i}^{(3)} x_{i+1}^{(6)}, x_{i}^{(4)} x_{i}^{(5)} / 0 \leq i \leq n-1\right\}$ is of girth five.
That is, the result is true for $r=5$.
Assume that the result is true for $r=m+3$. There exists a $(m+3,2,(m+3)(m+2))$-regular graph on $n \times 2^{m+1}$ vertices with the vertex set $V\left(G_{m}\right)=\left\{x_{i}^{(t)} / 1 \leq t \leq 2^{m+1}, 0 \leq i \leq n-1\right\}$ and the edge set $E\left(G_{m}\right)=E\left(G_{m-1}\right) \cup E\left(G_{m-1}^{\prime}\right) \bigcup_{t=1}^{2^{m}}\left\{x_{i}^{(t)} x_{i+t(\bmod 2)}^{2^{m+1}-t+1} / 0 \leq i \leq n-1\right\}$ of girth 5 .

That is, $d_{2}\left(x_{i}^{(t)}\right)=(m+3)(m+2)$ for $1 \leq t \leq 2^{m+1}$ and $d\left(x_{i}^{(t)}\right)=m+3$ for $0 \leq i \leq n-1$.
Take another copy of G_{m} as G_{m}^{\prime} with the vertex set $V\left(G_{m}^{\prime}\right)=\left\{x_{i}^{(t)} / 2^{m+1}+1 \leq t \leq 2^{m+2}\right.$, $0 \leq i \leq n-1\}$ and each $x_{i}^{(t)}, 2^{m+1}+1 \leq t \leq 2^{m+2}$ corresponds to $x_{i}^{(t)}, 1 \leq t \leq 2^{m+1}$ for $0 \leq i \leq n-1$.

The desired graph G_{m+1} has the vertex set $V\left(G_{m+1}\right)=V\left(G_{m}\right) \cup V\left(G_{m}^{\prime}\right)$ and the edge set $E\left(G_{m+1}\right)=E\left(G_{m}\right) \cup E\left(G_{m}^{\prime}\right) \bigcup_{t=1}^{2^{m+1}}\left\{x_{i}^{(t)} x_{i+t(\bmod 2)}^{2^{m+2}-t+1} / 0 \leq i \leq n-1\right\}$. Now the resulting graph G_{m+1} is a $(m+4)$-regular graph having $n \times 2^{m+2}$ vertices with girth 5 .

Consider the edges $\bigcup_{t=1}^{2^{m+1}}\left\{x_{i}^{(t)} x_{i+t(\bmod 2)}^{2^{m+2}-t+1} / 0 \leq i \leq n-1\right\} . d_{2}$ of each vertex in $C^{(t)}, 1 \leq t \leq 2^{m+1}$ where $C^{(t)}$ is the cycle induced by the vertices $\left\{x_{i}^{(t)} / 0 \leq i \leq n-1\right\}$ in G_{m+1}.
$d_{2}\left(x_{i}^{(t)}\right)$ in $G_{m+1}=d_{2}\left(x_{i}^{(t)}\right)$ in $G_{m}+\left|N\left(x_{i+t(\bmod 2)}^{2^{m+2}-t+1}\right)\right|$ in $G_{m}^{\prime}+\left|N\left(N\left(x_{i}^{(t)}\right)\right)\right|$ in $G_{m}^{\prime}=(m+3)(m+$ $2)+(m+3)+(m+3)=(m+3)(m+2+1+1)=(m+3)(m+4)$, for $0 \leq i \leq n-1$.
d_{2} of each vertex in $C^{\left(2^{m+2}-t+1\right)}, 2^{m+1}+1 \leq t \leq 2^{m+2}$, where $C^{\left(2^{m+2}-t+1\right)}$ is the cycle induced by the vertices $\left\{x_{i}^{\left(2^{m+2}-t+1\right)} / 0 \leq i \leq n-1\right\}$ in G_{m+1}.
$d_{2}\left(x_{i+t(\bmod 2)}^{2^{m+2}-t+1}\right)$ in $G_{m+1}=d_{2}\left(x_{i+t(\bmod 2)}^{2^{m+2}-t+1}\right)$ in $G_{m}^{\prime}+\left|N\left(x_{i}^{(t)}\right)\right|$ in $G_{m}+\left|N\left(N\left(x_{i+t(\bmod 2)}^{2^{m+2}-t+1}\right)\right)\right|$ in G_{m} $=(m+3)(m+2)+(m+3)+(m+3)=(m+3)(m+4)$, for $1 \leq i \leq n-1$.

In G_{m+1}, for $1 \leq t \leq 2^{m+2}, d_{2}\left(x_{i}^{(t)}\right)=(m+3)(m+4), 0 \leq i \leq n-1$.
Thus, there exists a $(m+4,2,(m+3)(m+4))$-regular graph on $n \times 2^{m+2}$ vertices with the vertex set $V\left(G_{m}\right)=\left\{x_{i}^{(t)} / 1 \leq t \leq 2^{m+2}, 0 \leq i \leq n-1\right\}$ and the edge set $E\left(G_{m+1}\right)=E\left(G_{m}\right) \cup$ $E\left(G_{m}^{\prime}\right) \bigcup_{t=1}^{2^{m+1}}\left\{x_{i}^{(t)} x_{i+t(\bmod 2)}^{2^{m+2}-t+1} / 0 \leq i \leq n-1\right\}$ of girth 5 .

Thus, for $1 \leq t \leq 2^{m+2}, d_{2}\left(x_{i}^{(t)}\right)=(m+3)(m+4)$ for $0 \leq i \leq n-1$ and $\operatorname{deg}\left(x_{i}^{(t)}\right)=m+4$. If the result is true for $r=m+3$, then it is true for $r=m+4$. Therefore, the result is true for all $r>2$.

That is, for any $n \geq 5(n \neq 6,8)$ and for any $r>1$, there is a $(r, 2, r(r-1))$-regular graph on $n \times 2^{r-2}$ vertices with girth 5 .

Corollary 4.2. For any $r>1$, there is a $(r, 2, r(r-1))$-regular graph on $5 \times 2^{r-2}$ vertices.

Example 4.3. Figure 4. illustrates Corollary 4.2 for $n=5$ and $r=3,4$.

(a) $n=5, r=3$ $r(r-1)=6$

(b) $n=5, r=4$ $r(r-1)=12$

Figure 4.

Corollary 4.4. For any $r>1$, there is a $(r, 2, r(r-1))$-regular graph on $7 \times 2^{r-2}$ vertices with girth 5 .

Corollary 4.5. For any $r>1$, there is a $(r, 2, r(r-1))$-regular graph on $9 \times 2^{r-2}$ vertices with girth 5 .
Corollary 4.6. For any $r>1$, there exists a $(r, 2, r(r-1))$-regular graph on $10 \times 2^{r-2}$ vertices with girth 5.

We observe that if the value of n increases then the order of the graph also increases.

5 Construction of $(r, 2, r(r-1))$-regular graphs of girth six

The Peterson graph $P(n, 3)$ has vertex set $\left\{x_{i}^{(1)}, x_{i}^{(2)} / 0 \leq i \leq n-1\right\}$ and the edge set $\left\{x_{i}^{(2)} x_{i+1}^{(2)} / i=\right.$ $0,1,2,3, \cdots n-1\} \cup\left\{x_{i}^{(1)} x_{i}^{(2)} / i=0,1,2,3, \cdots n-1\right\} \cup\left\{x_{i}^{(1)} x_{i+3}^{(1)} / i=0,1,2,3, \cdots n-1\right\}$ where the subscripts are taken modulo n.

Theorem 5.1. For any $n \geq 7, n \neq 9,12,15$ and $r>1$, there is a $(r, 2, r(r-1))$-regular graph on $n \times 2^{r-2}$ vertices with girth six.

Proof. Replace $P(n, 2)$ with $P(n, 3)$ in Theorem 4.1. The result follows.

Remark 5.2. When $n=15$, we get a $(r, 2, r(r-1))$-regular graph of order $n \times 2^{r-2}$ with girth 5 . If
$n=9,12$, then we have graphs with girth 3,4 respectively as shown in Figure 5.

Figure 5.

6 Construction of $(r, 2, r(r-1))$-regular graphs of girth seven

Consider the Peterson graph $P(n, 4)$, which has the vertex set $\left\{x_{i}^{(1)}, x_{i}^{(2)} / 0 \leq i \leq n-1\right\}$ and the edge set $\left\{x_{i}^{(2)} x_{i+1}^{(2)} / i=0,1,2,3, \cdots n-1\right\} \cup\left\{x_{i}^{(1)} x_{i}^{(2)} / i=0,1,2,3, \cdots n-1\right\} \cup\left\{x_{i}^{(1)} x_{i+4}^{(1)} / i=\right.$ $0,1,2,3, \cdots n-1\}$ (where the subscripts are taken modulo n).

Theorem 6.1. For any $n \geq 9, n \neq 12,16,20,24$ and any $r>1$, there is a $(r, 2, r(r-1))$-regular graph on $n \times 2^{r-2}$ vertices with girth seven.

Proof. Take $P(n, 4)$ instead of taking $P(n, 2)$ in Theorem 4.1. The result follows.

Remark 6.2. When $n=20,24$, we get a $(r, 2, r(r-1))$-regular graph of order $n \times 2^{r-2}$ with girth 5, 6 respectively. If $n=12,16$, then we have graphs with girth 3,4 respectively as shown in Figure 6.

Figure 6.

Consider the generalized Peterson graph $P(n, k)$, for $n \geq 5$ and $(2 \leq k<n / 2)$, having vertex set $V(G)=\left\{x_{i}^{(1)}, x_{i}^{(2)} / 0 \leq i \leq n-1\right\}$ and the edge set $\left\{x_{i}^{(2)} x_{i+1}^{(2)} / 0 \leq i \leq n-1\right\} \cup\left\{x_{i}^{(1)} x_{i}^{(2)} / 0 \leq i \leq\right.$ $n-1\} \cup\left\{x_{i}^{(1)} x_{i+k}^{(1)} / 0 \leq i \leq n-1\right\}$, where the subscripts are taken modulo n.

Theorem 6.3. For any $n \geq 5$ and $2 \leq k<n / 2(n \neq(2+t) k$ where $1 \leq t \leq 2)$ and for any $r \geq 2$, there is a $(r, 2, r(r-1))$-regular graph on $\left(n \times 2^{r-2}\right)$ vertices with girth $k+3$. In particular, when $n=(2+t) k, 2<t \leq k$ there exist a $(r, 2, r(r-1))$-regular graph of order $n \times 2^{r-2}$ with girth $(2+t)$.

Proof. We take the generalized Peterson graph $P(n, k)$, when $n \geq 5$ and $1 \leq k<n / 2$ instead of taking $P(n, 2)$ in Theorem 4.1.

Remark 6.4. If $n=(2+t) k, t=1,2$, then we have graphs with girth 3 and 4 respectively. Therefore, we cannot have a $(r, 2, r(r-1))$-regular graph for $n=(2+t) k$, for $t=1,2$ by this construction.

References

[1] Y. Alavi, G.Chartrand, F.R.K. Chung, P. Erdos, R.L. Graham, Ortrud R. Oellermann, Highly irregular graphs, J. Graph Theory, 11(2)(1987), 235-249.
[2] Alison Northup, A Study of semiregular graphs, Preprint, (2002).
[3] G.S. Bloom, J.K. Kennedy, L.V. Quintas, Distance degree regular graphs, The Theory and Applications of Graphs, Wiley, New York, (1981), 95-108.
[4] J. A. Bondy, U.S.R. Murty, Graph Theory with Application, MacMillan, London (1979).
[5] G. Chartrand, P. Erdos, O. R. Oellermann, How to define an irregular graph, College Math. J., 19(1988), 36-42.
[6] F. Harary, Graph Theory, Addison - Wesley, (1969).

