International Journal of Mathematics and Soft Computing Vol.2, No.2 (2012), 25 - 33.

(r, 2, r(r-1))-regular graphs

N. R. Santhi Maheswari Department of Mathematics, G.Venkataswamy Naidu College, Kovilpatti, INDIA. E-mail: nrsmaths@yahoo.com

> C. Sekar Department of Mathematics, Aditanar College of Arts and Science, Tiruchendur-628216, INDIA. E-mail: sekar.acas@gmail.com

Abstract

A graph G is called (r, 2, r(r-1))-regular if each vertex in the graph G is at a distance one away from exactly r number of vertices and at a distance two away from exactly r(r-1) number of vertices. That is, d(v) = r and $d_2(v) = r(r-1)$, for all v in G. In this paper, we prove that for any r > 0, r-regular graph with girth at least five is (r, 2, r(r-1))-regular and vice versa and also suggest a method to construct (r, 2, r(r-1))-regular graph on $n \times 2^{r-2}$ vertices.

Keywords: Distance degree regular graph, (d, k)-regular graph, girth, diameter, semiregular, (r, 2, k)-regular.

AMS Subject Classification(2010): 05C12.

1 Introduction

In this paper, we consider only finite, simple, connected graphs. We follow graph theoretic terminology proposed in the works of J. A. Bondy and U.S.R. Murty [4] and Harary [6]. We denote the vertex set and the edge set of a graph G by V(G) and E(G) respectively. The degree of a vertex v is the number of edges incident at v. A graph G is regular if all its vertices have the same degree.

For a connected graph G, the distance d(u, v) between two vertices u and v is the length of a shortest (u, v) path. Therefore, the degree of a vertex v is the number of vertices at a distance 1 from v, and it is denoted by d(v). The set of all verticees at a distance one from v is called the neighbourhood of v and is denoted by N(v). This observation suggests a generalization of degree. That is, $d_d(v)$ is defined as the number of vertices at a distance d from v. Hence $d_1(v) = d(v)$ and $N_d(v)$ denote the set of all vertices that are at a distance d away from v in a graph G. Hence $N_1(v) = N(v)$. Girth of a graph is the smallest cycle in the graph and the diameter of graph $G = max\{d(u, v)/u, v \in V(G)\}$. For any $S \subseteq V(G), G(S)$ is the subgraph of G induced by the vertices of S.

A graph G is called distance d-regular[4] if every vertex of G has the same number of vertices at a distance d from it. We call this graph by (d, k)-regular if every vertex of G has k number of vertices at a distance d from it. That is, a graph G is said to be (d, k) - regular graph if $d_d(v) = k$, for all v in G. The (1, k)-regular graphs are nothing but the k-regular graphs. A graph G is (2, k) - regular if $d_2(v) = k$, for all $v \in G$.

The concept of the semiregular graph was introduced and studied by Alison Northup [2]. A graph G is said to be k-semiregular graph if each vertex of G is at a distance two away from exactly k vertices of G. We observe that (2, k)-regular graphs are k-semiregular graphs. Note that a (2, k)-regular graph may be regular or non-regular. Among the four (2, k)-regular graphs given in Figure 1, (i) and (ii) are regular whereas (iii) and (iv) are non-regular.

In this paper, we consider only regular graphs with (2, k)-regular. We call *r*-regular graph with (2, k)-regular by (r, 2, k)-regular graph. A graph is called (r, 2, k)-regular if d(v) = r and $d_2(v) = k$, for all v in G. If a graph G is (r, 2, k)-regular, then $0 \le k \le r(r-1)$. We have shown that an *r*-regular graph with girth at least five is (r, 2, r(r-1))-regular and vice versa. This result motivates to suggest some methods to construct *r*-regular graphs for any r > 1 with girth at least five.

2 (r, 2, r(r-1))-regular graphs

Definition 2.1. A graph G is called (r, 2, r(r-1))-regular if each vertex in the graph G is at a distance one away from exactly r number of vertices and each vertex in the graph G is at a distance two away from exactly r(r-1) number of vertices. That is, d(v) = r and $d_2(v) = r(r-1)$, for all $v \in V(G)$.

Example 2.2. (i) K_2 is a (1, 2, 1(1 - 1))-regular graph.

(ii) Any cycle C_n $(n \ge 5)$ is (2, 2, 2(2-1))-regular graph.

(iii) (3, 2, 3(3 - 1))-regular graphs are shown in Figure 2.

Figure 2.

3 (r, 2, r(r-1))-regular graphs related with girth

Theorem 3.1. For any r > 1, a graph G is (r, 2, r(r-1))-regular if and only if G is r-regular with girth at least five.

Proof. For any r > 1, let G be a (r, 2, r(r - 1))-regular graph and $v \in V(G)$. Let $N(v) = \{v_1, v_2, v_3, \dots, v_r\}$. Then d(v) = r and $d_2(v) = r(r - 1)$, for all $v \in V(G)$ if and only if G is r-regular graph and N(v) has distinct neighbours if and only if G is r-regular graph with G(N(v)) has no edge and $N(v_i) \cap N(v_j) = \{v\}$, for $1 \le i < j \le r$ if and only if G is r-regular graph which does not contain triangle and four cycle if and only if G is an r-regular graph and has girth at least five.

Note that construction of (r, 2, r(r-1))-regular graph is equivalent to the construction of *r*-regular graphs with girth at least five. With this characterization, we can easily construct (r, 2, r(r-1))-regular graphs.

4 Construction of (r, 2, r(r-1))-regular graphs

Theorem 4.1. For any $n \ge 5$, $(n \ne 6, 8)$ and any r > 1, there exists a (r, 2, r(r-1))-regular graph on $n \times 2^{r-2}$ vertices with girth five.

Proof. Let us prove this result by induction on r. When r = 2, any n-cycle $(n \ge 5)$ is the required graph. Let G be the Peterson graph P(n, 2) with the vertex set $V(G) = \{x_i^{(1)}, x_i^{(2)}/0 \le i \le n-1\}$ and the edge set $E(G) = \{x_i^{(1)}x_i^{(2)}, x_i^{(2)}x_{i+1}^{(2)}, x_i^{(1)}x_{i+2}^{(1)}/0 \le i \le n-1\}$ where the subscripts are taken modulo n. If n = 6, then G is a graph with girth three, and if n = 8, G is a graph with girth four as shown in Figure 3.

Therefore, we cannot take n = 6, 8 for constructing a graph with girth five. For any $n \neq 6, 8$ we have for $0 \le i \le n - 1$,

$$\begin{split} N_2(x_i^{(1)}) &= \{x_{i+n-4}^{(1)}, x_{i+4}^{(1)}, x_{i+2}^{(2)}, x_{i+n-2}^{(2)}, x_{i+n-1}^{(2)}\} \text{ and } d_2(x_i^{(1)}) = 6 = 3(3-1).\\ N_2(x_i^{(2)}) &= \{x_{i+2}^{(2)}, x_{i+n-2}^{(2)}, x_{i+1}^{(1)}, x_{i+2}^{(1)}, x_{i+n-2}^{(1)}, x_{i+n-1}^{(1)}\} \text{ and } d_2(x_i^{(2)}) = 6 = 3(3-1). \end{split}$$

G is a (3, 2, 3(3-1))-regular graph on $n \times 2^{3-2}$ vertices with girth 5.

Step 1: Take another copy of G as G'. Let $V(G') = \{x_i^{(3)}, x_i^{(4)}/0 \le i \le n-1\}$ and $E(G') = \{x_i^{(3)}x_i^{(4)}, x_i^{(4)}x_{i+1}^{(4)}, x_i^{(3)}x_{i+2}^{(3)}/0 \le i \le n-1\}$, the subscripts being taken modulo n. The desired graph G_1 has the vertex set $V(G_1) = V(G) \cup V(G')$ and the edge set $E(G_1) = E(G) \cup E(G') \cup \{x_i^{(1)}x_{i+1}^{(4)}, x_i^{(2)}x_i^{(3)}/0 \le i \le n-1\}$. Now the resulting graph G_1 is a 4-regular graph having $n \times 2^{4-2}$ vertices with girth five.

Now consider the edges $x_i^{(1)}x_{i+1}^{(4)}$, for $0 \le i \le n-1$.

$$N(x_i^{(1)}) = \{x_{i+2}^{(1)}, x_{i+n-2}^{(1)}, x_i^{(2)}\} \text{ in } G \text{ and } |N(x_i^{(1)})| = 3 \text{ in } G, 0 \le i \le n-1 .$$

N. R. Santhi Maheswari and C. Sekar

$$\begin{split} N(N(x_i^{(1)})) &= \{x_{i+n-2}^{(4)}, x_{i+n-1}^{(4)}, x_i^{(3)}\} \text{ in } G' \text{ and } |N(N(x_i^{(1)}))| = 3 \text{ in } G', 0 \leq i \leq n-1. \\ N(x_{i+1}^{(4)}) &= \{x_i^{(4)}, x_{i+2}^{(4)}, x_{i+1}^{(3)}\} \text{ in } G' \text{ and } |N(x_{i+1}^{(4)})| = 3 \text{ in } G', 0 \leq i \leq n-1. \\ N(N(x_{i+1}^{(4)})) &= \{x_{i+n-1}^{(1)}, x_{i+1}^{(1)}, x_{i+1}^{(2)}\} \text{ in } G \text{ and } |N(N(x_{i+1}^{(4)}))| = 3 \text{ in } G, 0 \leq i \leq n-1. \end{split}$$

 d_2 of each vertex in $C^{(1)}$, where $C^{(1)}$ is the cycle induced by the vertices $\{x_i^{(1)}/0 \le i \le n-1\}$ in G_1 .

$$\begin{split} &d_2(x_i^{(1)}) \text{ in } G_1 = d_2(x_i^{(1)}) \text{ in } G + |N(x_{i+1}^{(4)})| \text{ in } G' + |N(N(x_i^{(1)}))| \text{ in } G' = 6 + 3 + 3 = 12 = 4(4 - 1), \\ &(0 \leq i \leq n - 1). \\ &d_2 \text{ of each vertex in } C^{(4)}, \text{ where } C^{(4)} \text{ is the cycle induced by the vertices } \{x_i^{(4)}/0 \leq i \leq n - 1\} \text{ in } G_1. \end{split}$$

$$d_2(x_{i+1}^{(4)}) \text{ in } G_1 = (d_2(x_{i+1}^{(4)})) \text{ in } G' + |N(x_i^{(1)})| \text{ in } G + |N(N(x_{i+1}^{(4)}))| \text{ in } G = 6 + 3 + 3 = 12 = 4(4-1),$$

$$0 \le i \le n-1.$$

Next consider the edges $x_i^{(2)} x_i^{(3)}$, for $0 \le i \le n-1$.

$$\begin{split} N(x_i^{(2)}) &= \{x_{i+1}^{(2)}, x_{i+n-1}^{(2)}, x_i^{(1)}\} \text{ in } G \text{ and } |N(x_i^{(2)})| = 3 \text{ in } G, 0 \leq i \leq n-1. \\ N(N(x_i^{(2)})) &= \{x_{i+1}^{(3)}, x_{i+n-1}^{(3)}, x_{i+1}^{(4)}\} \text{ in } G' \text{ and } |N(N(x_i^{(2)}))| = 3 \text{ in } G', 0 \leq i \leq n-1. \\ N(x_i^{(3)}) &= \{x_{i+2}^{(3)}, x_{i+n-2}^{(3)}, x_i^{(4)}\} \text{ in } G' \text{ and } |N(x_i^{(3)})| = 3 \text{ in } G', 0 \leq i \leq n-1. \\ N(N(x_i^{(3)})) &= \{x_{i+2}^{(2)}, x_{i+n-2}^{(2)}, x_{i+n-1}^{(1)}\} \text{ in } G \text{ and } |N(N(x_i^{(3)})| = 3 \text{ in } G, 0 \leq i \leq n-1. \end{split}$$

 d_2 of each vertex in $C^{(2)}$, where $C^{(2)}$ is the cycle induced by the vertices $\{x_i^{(2)}/0 \le i \le n-1\}$ in G_1 .

 $d_2(x_i^{(2)}) \text{ in } G_1 = d_2(x_i^{(2)}) \text{ in } G + |N(x_i^{(3)})| \text{ in } G' + |N(N(x_i^{(2)}))| \text{ in } G' = 6 + 3 + 3 = 12 = 4(4 - 1), \\ 0 \le i \le n - 1.$

 d_2 of each vertex in $C^{(3)}$, where $C^{(3)}$ is the cycle induced by the vertices $\{x_i^{(3)}/0 \le i \le n-1\}$ in G_1 . $d_2(x_i^{(3)})$ in $G_1 = d_2(x_i^{(3)})$ in $G' + |N(x_i^{(2)})|$ in $G + |N(N(x_i^{(3)})|$ in $G = 6 + 3 + 3 = 12 = 4(4 - 1), 0 \le i \le n-1.$

In G_1 , for $1 \le t \le 4$, $d_2(x_i^{(t)}) = 4(4-1)$, for $0 \le i \le n-1$. G_1 is d(4, 4(4-1))-regular on $n \times 2^{4-2}$ vertices with the vertex set. $V(G_1) = \{x_i^{(t)}/1 \le t \le 2^{4-2}, 0 \le i \le n-1\}$ and the edge set $E(G_1) = E(G) \cup E(G') \cup \{x_i^{(1)}x_{i+1}^{(4)}, x_i^{(2)}x_i^{(3)}/0 \le i \le n-1\}$ of girth 5.

That is, the result is true for r = 4.

Step 2: Take another copy of G_1 as G'_1 with the vertex set $V(G'_1) = \{x_i^{(t)}/2^{4-2} + 1 \le t \le 2^{4-1}, 0 \le i \le n-1\}$ and each $x_i^{(t)}$, $2^{4-2} + 1 \le t \le 2^{4-1}$ corresponds to $x_i^{(t)}$, $1 \le t \le 2^{4-2}$ for $0 \le i \le n-1$. The desired graph G_2 has the vertex set $V(G_2) = V(G_1) \cup V(G'_1)$ and the edge set $E(G_2) = E(G_1) \cup E(G'_1) \cup \{x_i^{(1)}x_{i+1}^{(8)}, x_i^{(2)}x_i^{(7)}, x_i^{(3)}x_{i+1}^{(6)}, x_i^{(4)}x_i^{(5)}\}$. Now the resulting graph G_2 is a 5-regular graph having $n \times 2^{5-2}$ vertices with girth 5. Consider the edges $x_i^{(1)}x_{i+1}^{(8)}$ for $0 \le i \le n-1$.

$$N(x_i^{(1)}) = \{x_{i+2}^{(1)}, x_{i+n-1}^{(1)}, x_i^{(2)}, x_{i+1}^{(4)}\} \text{ in } G_1 \text{ and } |N(x_i^{(1)})| = 4 \text{ in } G_1.$$

28

$$\begin{split} N(N(x_i^{(1)})) &= \{x_{i+n-2}^{(8)}, x_{i+n-1}^{(7)}, x_{i+1}^{(5)}\} \text{ in } G_1' \text{ and } |N(N(x_i^{(1)}))| = 4 \text{ in } G_1'. \\ N(x_{i+1}^{(8)}) &= \{x_i^{(8)}, x_{i+2}^{(8)}, x_{i+1}^{(7)}, x_i^{(5)}\} \text{ in } G_1' \text{ and } |N(x_{i+1}^{(8)})| = 4 \text{ in } G_1'. \\ N(N(x_{i+1}^{(8)})) &= \{x_{i+1}^{(1)}, x_{i+n-1}^{(1)}, x_i^{(2)}, x_i^{(4)}\} \text{ in } G_1 \text{ and } |N(N(x_{i-1}^{(8)}))| = 4 \text{ in } G_1. \end{split}$$

 d_2 of each vertex in $C^{(1)}$, where $C^{(1)}$ is the cycle induced by the vertices $\{x_i^{(1)}/0 \le i \le n-1\}$ in G_2 .

$$d_2(x_i^{(1)}) \text{ in } G_2 = d_2(x_i^{(1)}) \text{ in } G_1 + |N(x_{i+1}^{(8)})| \text{ in } G_1' + |N(N(x_i^{(1)}))| \text{ in } G_1' = 12 + 4 + 4 = 20 = 5(5-1), \\ 0 \le i \le n-1.$$

 d_2 of each vertex in $C^{(8)}$, where $C^{(8)}$ is the cycle induced by the vertices $\{x_i^{(8)}/0 \le i \le n-1\}$ in G_2 .

$$d_2(x_{i+1}^{(8)}) \text{ in } G_2 = (d_2(x_{i+1}^{(8)} \text{ in } G'_1 + |N(x_i^{(1)})| \text{ in } G_1 + |(N(N(x_{i+1}^{(8)}))| \text{ in } G_1 = 12 + 4 + 4 = 20 = 5(5-1), \\ 0 \le i \le n-1.$$

Next consider the edge $x_i^{(2)} x_i^{(7)}$, for $0 \le i \le n-1$.

$$\begin{split} N(x_i^{(2)}) &= \{x_{i+1}^{(2)}, x_{i+n-1}^{(2)}, x_i^{(1)}, x_i^{(3)}\} \text{ in } G_1 \text{ and } |N(x_i^{(2)})| = 4 \text{ in } G_1. \\ N(N(x_i^{(2)})) &= \{x_{i+1}^{(7)}, x_{i+n-1}^{(7)}, x_{i+1}^{(8)}, x_{i+1}^{(6)}\} \text{ in } G_1' \text{ and } |N(N(x_i^{(2)}))| = 4 \text{ in } G_1'. \\ N(x_i^{(7)}) &= \{x_{i+2}^{(7)}, x_{i+n-2}^{(7)}, x_i^{(8)}, x_i^{(6)}\} \text{ in } G_1' \text{ and } |N(x_i^{(7)})| = 4 \text{ in } G_1'. \\ N(N(x_i^{(7)})) &= \{x_{i+2}^{(2)}, x_{i+n-2}^{(2)}, x_{i+n-1}^{(1)}, x_{i+n-1}^{(3)}\} \text{ in } G_1 \text{ and } |N(N(x_i^{(7)}))| = 4 \text{ in } G_1. \end{split}$$

 d_2 of each vertex in $C^{(2)}$, where $C^{(2)}$ is the cycle induced by the vertices $\{x_i^{(2)}/0 \le i \le n-1\}$ in G_2 .

$$d_2(x_i^{(2)}) \text{ in } G_2 = d_2(x_i^{(2)}) \text{ in } G_1 + |N(x_i^{(7)})| \text{ in } G_1' + |N(N(x_i^{(2)}))| \text{ in } G_1' = 12 + 4 + 4 = 20 = 5(5-1),$$
 for $0 \le i \le n-1$.

 d_2 of each vertex in $C^{(7)}$, where $C^{(7)}$ is the cycle induced by the vertices $\{x_i^{(7)}/0 \le i \le n-1\}$ in G_2 .

$$d_2(x_i^{(7)}) \text{ in } G_2 = d_2(x_i^{(7)}) \text{ in } G'_1 + |N(x_i^{(2)})| \text{ in } G_1 + |N(N(x_i^{(7)}))| \text{ in } G_1 = 12 + 4 + 4 = 20 = 5(5-1),$$
 for $0 \le i \le n-1$.

Next consider the edge $x_i^{(3)} x_{i+1}^{(6)}$, for $0 \le i \le n-1$.

$$\begin{split} N(x_i^{(3)}) &= \{x_{i+2}^{(3)}, x_{i+n-2}^{(3)}, x_i^{(4)}, x_i^{(2)}\} \text{ in } G_1 \text{ and } |N(x_i^{(3)})| = 4 \text{ in } G_1. \\ N(N(x_i^{(3)})) &= \{x_{i+n-2}^{(6)}, x_{i+n-1}^{(5)}, x_i^{(7)}\} \text{ in } G_1' \text{ and } |N(N(x_i^{(3)}))| = 4 \text{ in } G_1'. \\ N(x_{i+1}^{(6)}) &= \{x_{i+2}^{(6)}, x_i^{(6)}, x_{i+1}^{(5)}, x_{i+1}^{(7)}\} \text{ in } G_1' \text{ and } |N(x_{i+1}^{(6)})| = 4 \text{ in } G_1'. \\ N(N(x_{i+1}^{(6)})) &= \{x_{i+n-1}^{(3)}, x_{i+1}^{(3)}, x_{i+1}^{(4)}, x_{i+1}^{(2)}\} \text{ in } G_1 \text{ and } |N(N(x_{i+1}^{(6)}))| = 4 \text{ in } G_1. \\ d_2 \text{ of each vertex in } C^{(3)}, \text{ where } C^{(3)} \text{ is the cycle induced by the vertices } \{x_i^{(3)}/0 \le i \le n-1\} \text{ in } G_2 \end{split}$$

 $d_2(x_i^{(3)}) \text{ in } G_2 = d_2(x_i^{(3)}) \text{ in } G_1 + |N(x_{i+1}^{(6)})| \text{ in } G_1' + |N(N(x_i^{(3)}))| \text{ in } G_1'. = 12 + 4 + 4 = 20 = 5(5-1),$ for $0 \le i \le n-1$.

$$d_2$$
 of each vertex in $C^{(6)}$, where $C^{(6)}$ is the cycle induced by the vertices $\{x_i^{(6)}/0 \le i \le n-1\}$ in G_2 .
 $d_2(x_{i+1}^{(6)})$ in $G_2 = d_2(x_{i+1}^{(6)})$ in $G'_1 + |N(x_i^{(3)})|$ in $G_1 + |N(N(x_{i+1}^{(6)}))|$ in $G_1 = 12 + 4 + 4 = 20 = 5(5-1)$, for $0 \le i \le n-1$.

Next consider the edge $x_i^{(4)} x_i^{(5)}$, for $0 \le i \le n-1$.

$$\begin{split} N(x_i^{(4)}) &= \{x_{i+1}^{(4)}, x_{i+n-1}^{(4)}, x_i^{(3)}, x_{i+n-1}^{(1)}\} \text{ in } G_1 \text{ and } |N(x_i^{(4)})| = 4 \text{ in } G_1. \\ N(N(x_i^{(4)})) &= \{x_{i+1}^{(5)}, x_{i+n-1}^{(5)}, x_i^{(6)}, x_i^{(8)}\} \text{ in } G_1' \text{ and } |N(N(x_i^{(4)}))| = 4 \text{ in } G_1'. \\ N(x_i^{(5)}) &= \{x_{i+2}^{(5)}, x_{i+n-2}^{(5)}, x_i^{(6)}, x_{i+1}^{(8)}\} \text{ in } G_1' \text{ and } |N(x_i^{(5)})| = 4 \text{ in } G_1'. \end{split}$$

N. R. Santhi Maheswari and C. Sekar

$$\begin{split} N(N(x_i^{(5)})) &= \{x_{i+2}^{(4)}, x_{i+n-2}^{(4)}, x_{i+n-1}^{(3)}, x_i^{(1)}\} \text{ in } G_1 \text{ and } |N(N(x_i^{(5)}))| = 4 \text{ in } G_1. \\ d_2 \text{ of each vertex in } C^{(4)}, \text{ where } C^{(4)} \text{ is the cycle induced by the vertices } \{x_i^{(4)}/0 \leq i \leq n-1\} \text{ in } G_2. \\ d_2(x_i^{(4)}) \text{ in } G_2 &= d_2(x_i^{(4)}) \text{ in } G_1 + |N(x_i^{(5)})| \text{ in } G_1' + |N(N(x_i^{(4)}))| \text{ in } G_1' = 12 + 4 + 4 = 20 = 5(5 - 1), \\ \text{for } 0 \leq i \leq n-1. \\ d_2 \text{ of each vertex in } C^{(5)}, \text{ where } C^{(5)} \text{ is the cycle induced by the vertices } \{x_i^{(5)}/0 \leq i \leq n-1\} \text{ in } G_2. \end{split}$$

 $d_2(x_i^{(5)}) \text{ in } G_2 = d_2(x_i^{(5)}) \text{ in } G'_1 + |N(x_i^{(4)})| \text{ in } G_1 + |N(N(x_i^{(5)}))| \text{ in } G_1 = 12 + 4 + 4 = 20 = 5(5 - 1),$ for $(0 \le i \le n - 1)$.

In G_2 , for $1 \le t \le 8$, $d_2(x_i^{(t)}) = 5(5-1)$, for $0 \le i \le n-1$. Therefore, G_2 is a d(5, 2, 5(5-1))-regular graph on $n \times 2^{5-2}$ vertices with the vertex set $V(G_2) = \{x_i^{(t)}/1 \le t \le 2^{5-2}, 0 \le i \le n-1\}$ and the edge set $E(G_2) = E(G_1) \cup E(G'_1) \cup \{x_i^{(1)}x_{i+1}^{(8)}, x_i^{(2)}x_i^{(7)}, x_i^{(3)}x_{i+1}^{(6)}, x_i^{(4)}x_i^{(5)}/0 \le i \le n-1\}$ is of girth five. That is, the result is true for r = 5.

Assume that the result is true for r = m + 3. There exists a (m + 3, 2, (m + 3)(m + 2))-regular graph on $n \times 2^{m+1}$ vertices with the vertex set $V(G_m) = \{x_i^{(t)}/1 \le t \le 2^{m+1}, 0 \le i \le n - 1\}$ and the edge set $E(G_m) = E(G_{m-1}) \cup E(G'_{m-1}) \bigcup_{t=1}^{2^m} \{x_i^{(t)} x_{i+t(mod2)}^{2^{m+1}-t+1}/0 \le i \le n - 1\}$ of girth 5.

That is, $d_2(x_i^{(t)}) = (m+3)(m+2)$ for $1 \le t \le 2^{m+1}$ and $d(x_i^{(t)}) = m+3$ for $0 \le i \le n-1$.

Take another copy of G_m as G'_m with the vertex set $V(G'_m) = \{x_i^{(t)}/2^{m+1} + 1 \le t \le 2^{m+2}, 0 \le i \le n-1\}$ and each $x_i^{(t)}, 2^{m+1} + 1 \le t \le 2^{m+2}$ corresponds to $x_i^{(t)}, 1 \le t \le 2^{m+1}$ for $0 \le i \le n-1$.

The desired graph G_{m+1} has the vertex set $V(G_{m+1}) = V(G_m) \cup V(G'_m)$ and the edge set $E(G_{m+1}) = E(G_m) \cup E(G'_m) \bigcup_{t=1}^{2^{m+1}} \{x_i^{(t)} x_{i+t(mod2)}^{2^{m+2}-t+1} / 0 \le i \le n-1\}$. Now the resulting graph G_{m+1} is a (m+4)-regular graph having $n \times 2^{m+2}$ vertices with girth 5.

Consider the edges $\bigcup_{t=1}^{2^{m+1}} \{x_i^{(t)} x_{i+t(mod2)}^{2^{m+2}-t+1}/0 \le i \le n-1\}$. d_2 of each vertex in $C^{(t)}$, $1 \le t \le 2^{m+1}$ where $C^{(t)}$ is the cycle induced by the vertices $\{x_i^{(t)}/0 \le i \le n-1\}$ in G_{m+1} .

$$\begin{aligned} &d_2(x_i^{(t)}) \text{ in } G_{m+1} = d_2(x_i^{(t)}) \text{ in } G_m + |N(x_{i+t(mod2)}^{2^{m+2}-t+1})| \text{ in } G'_m + |N(N(x_i^{(t)}))| \text{ in } G'_m = (m+3)(m+2) + (m+3) + (m+3) = (m+3)(m+2+1+1) = (m+3)(m+4), \text{ for } 0 \le i \le n-1. \end{aligned}$$

 d_2 of each vertex in $C^{(2^{m+2}-t+1)}$, $2^{m+1} + 1 \le t \le 2^{m+2}$, where $C^{(2^{m+2}-t+1)}$ is the cycle induced by the vertices $\{x_i^{(2^{m+2}-t+1)}/0 \le i \le n-1\}$ in G_{m+1} .

$$\begin{aligned} &d_2(x_{i+t(mod2)}^{2^{m+2}-t+1}) \text{ in } G_{m+1} = d_2(x_{i+t(mod2)}^{2^{m+2}-t+1}) \text{ in } G'_m + |N(x_i^{(t)})| \text{ in } G_m + |N(N(x_{i+t(mod2)}^{2^{m+2}-t+1}))| \text{ in } G_m \\ &= (m+3)(m+2) + (m+3) + (m+3) = (m+3)(m+4), \text{ for } 1 \le i \le n-1. \end{aligned}$$

In G_{m+1} , for $1 \le t \le 2^{m+2}$, $d_2(x_i^{(t)}) = (m+3)(m+4)$, $0 \le i \le n-1$.

Thus, there exists a (m + 4, 2, (m + 3)(m + 4))-regular graph on $n \times 2^{m+2}$ vertices with the vertex set $V(G_m) = \{x_i^{(t)}/1 \le t \le 2^{m+2}, 0 \le i \le n-1\}$ and the edge set $E(G_{m+1}) = E(G_m) \cup E(G'_m) \bigcup_{t=1}^{2^{m+1}} \{x_i^{(t)}x_{i+t(mod2)}^{2^{m+2}-t+1}/0 \le i \le n-1\}$ of girth 5.

Thus, for $1 \le t \le 2^{m+2}$, $d_2(x_i^{(t)}) = (m+3)(m+4)$ for $0 \le i \le n-1$ and $deg(x_i^{(t)}) = m+4$. If the result is true for r = m+3, then it is true for r = m+4. Therefore, the result is true for all r > 2.

That is, for any $n \ge 5$ $(n \ne 6, 8)$ and for any r > 1, there is a (r, 2, r(r-1))-regular graph on $n \times 2^{r-2}$ vertices with girth 5.

Corollary 4.2. For any r > 1, there is a (r, 2, r(r-1))-regular graph on $5 \times 2^{r-2}$ vertices.

Example 4.3. Figure 4. illustrates Corollary 4.2 for n = 5 and r = 3, 4.

Corollary 4.4. For any r > 1, there is a (r, 2, r(r-1))-regular graph on $7 \times 2^{r-2}$ vertices with girth 5.

Corollary 4.5. For any r > 1, there is a (r, 2, r(r-1))-regular graph on $9 \times 2^{r-2}$ vertices with girth 5.

Corollary 4.6. For any r > 1, there exists a (r, 2, r(r - 1))-regular graph on $10 \times 2^{r-2}$ vertices with girth 5.

We observe that if the value of n increases then the order of the graph also increases.

5 Construction of (r, 2, r(r-1))-regular graphs of girth six

The Peterson graph P(n,3) has vertex set $\{x_i^{(1)}, x_i^{(2)}/0 \le i \le n-1\}$ and the edge set $\{x_i^{(2)}x_{i+1}^{(2)}/i = 0, 1, 2, 3, \dots n-1\} \cup \{x_i^{(1)}x_{i+3}^{(1)}/i = 0, 1, 2, 3, \dots n-1\} \cup \{x_i^{(1)}x_{i+3}^{(1)}/i = 0, 1, 2, 3, \dots n-1\}$ where the subscripts are taken modulo n.

Theorem 5.1. For any $n \ge 7$, $n \ne 9, 12, 15$ and r > 1, there is a (r, 2, r(r-1))-regular graph on $n \times 2^{r-2}$ vertices with girth six.

Proof. Replace P(n, 2) with P(n, 3) in Theorem 4.1. The result follows.

Remark 5.2. When n = 15, we get a (r, 2, r(r-1))-regular graph of order $n \times 2^{r-2}$ with girth 5. If

n = 9, 12, then we have graphs with girth 3, 4 respectively as shown in Figure 5.

6 Construction of (r, 2, r(r-1))-regular graphs of girth seven

Consider the Peterson graph P(n, 4), which has the vertex set $\{x_i^{(1)}, x_i^{(2)}/0 \le i \le n-1\}$ and the edge set $\{x_i^{(2)}x_{i+1}^{(2)}/i = 0, 1, 2, 3, \dots n-1\} \cup \{x_i^{(1)}x_i^{(2)}/i = 0, 1, 2, 3, \dots n-1\} \cup \{x_i^{(1)}x_{i+4}^{(1)}/i = 0, 1, 2, 3, \dots n-1\} \cup \{x_i^{(1)}x_{i+4}^{(1)}/i = 0, 1, 2, 3, \dots n-1\}$ (where the subscripts are taken modulo n).

Theorem 6.1. For any $n \ge 9$, $n \ne 12, 16, 20, 24$ and any r > 1, there is a (r, 2, r(r-1))-regular graph on $n \times 2^{r-2}$ vertices with girth seven.

Proof. Take P(n, 4) instead of taking P(n, 2) in Theorem 4.1. The result follows.

Remark 6.2. When n = 20, 24, we get a (r, 2, r(r - 1))-regular graph of order $n \times 2^{r-2}$ with girth 5, 6 respectively. If n = 12, 16, then we have graphs with girth 3, 4 respectively as shown in Figure 6.

Consider the generalized Peterson graph P(n,k), for $n \ge 5$ and $(2 \le k < n/2)$, having vertex set $V(G) = \{x_i^{(1)}, x_i^{(2)}/0 \le i \le n-1\}$ and the edge set $\{x_i^{(2)}x_{i+1}^{(2)}/0 \le i \le n-1\} \cup \{x_i^{(1)}x_i^{(2)}/0 \le i \le n-1\}$, where the subscripts are taken modulo n.

Theorem 6.3. For any $n \ge 5$ and $2 \le k < n/2$ ($n \ne (2+t)k$ where $1 \le t \le 2$) and for any $r \ge 2$, there is a (r, 2, r(r-1))-regular graph on $(n \times 2^{r-2})$ vertices with girth k + 3. In particular, when $n = (2+t)k, 2 < t \le k$ there exist a (r, 2, r(r-1))-regular graph of order $n \times 2^{r-2}$ with girth (2+t).

Proof. We take the generalized Peterson graph P(n,k), when $n \ge 5$ and $1 \le k < n/2$ instead of taking P(n,2) in Theorem 4.1.

Remark 6.4. If n = (2 + t)k, t = 1, 2, then we have graphs with girth 3 and 4 respectively. Therefore, we cannot have a (r, 2, r(r - 1))-regular graph for n = (2 + t)k, for t = 1, 2 by this construction.

References

- [1] Y. Alavi, G.Chartrand, F.R.K. Chung, P. Erdos, R.L. Graham, Ortrud R. Oellermann, *Highly irregular graphs*, J. Graph Theory, 11(2)(1987), 235-249.
- [2] Alison Northup, A Study of semiregular graphs, Preprint, (2002).
- [3] G.S. Bloom, J.K. Kennedy, L.V. Quintas, *Distance degree regular graphs*, The Theory and Applications of Graphs, Wiley, New York, (1981), 95-108.
- [4] J. A. Bondy, U.S.R. Murty, Graph Theory with Application, MacMillan, London (1979).
- [5] G. Chartrand, P. Erdos, O. R. Oellermann, *How to define an irregular graph*, College Math. J., 19(1988), 36-42.
- [6] F. Harary, Graph Theory, Addison Wesley, (1969).