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Abstract

Theall-ones problenis an NP-complete problem introduced by Sutner [11], with wide applica-
tions in linear cellular automata. In this paper, we solvedlh@nes problenior some of the widely
studied architectures like binomial trees, butterfly, and benes networks.
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1 Introduction

TheAll-Ones Problenwas introduced by Sutner [11] where he also discussed wide applications of
the all-ones problemin linear cellular automata. The problem has been studied under various names
by various authors in different papers. Takkones problentan be stated as follows: Suppose each
square of am x n chessboard is equipped with an indicator light and a button. If the button of a square
is pressed, the light of that square will change from off to on, and vice versa; the same happens to
the lights of all the edge-adjacent squares. Initially all lights are off. Now, we consider the following
qguestions: is it possible to press a sequence of buttons in such a way that in the end all lights are on?
This is referred to as the all-ones problem. If there is such a solution, how can we find it? And finally,
how can we find a solution that presses as few buttons as possible? This is referred tmizsntioen
all-ones problem.

The above questions can be posed for any arbitrary graph. In this chapter, we consider connected,
simple, undirected graphs only. One can deal with disconnected graphs, component by component. For
all notations and terminology used in this chapter, we refer to [2]. An equivalent version of the all-ones
problem was proposed by Peled [8], where it was called the Lamp Lighting problem. The rule of the
all-ones problenis calledo™ rule on graphs, which means that a button lights not only its neighbours
but also its own light. If a button lights only its neighbours but not its own light, this rule on graphs is
calledo rule.

There have been many publications on the All-Ones Problem [1, 6, 12]. Using linear algebra, Sutner
[13] proved that it is always possible to light every lamp in any graplrbyrule. A graph-theoretic
proof was given by Erikisson et al. [7]. In [9] Sutner proved that ktieimum all-ones problens
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NP-completen general. Li et al. [3] have proved that the problerNiB-completeeven when restricted
to bipartite graphs. Li et al. [5] have given a linear time algorithm for finding optimal solutions for trees.

2 Notations

LetG = (V, E) be a simple, connected graph. L&{ = n and|E| = m. The open neighbourhood
of a vertexv is {u € V : u is adjacent tw} and is denoted bw (v). The closed neighbourhood
of a vertexv is {v} U N(v) and is denoted byV[v]. The degree of a vertexin G is the number of
neighbours ob in G. Theall-ones problenis equivalent to the following dominating set problem [4]
from a graph-theoretic point of view.

A set S of vertices isindependentf no two vertices inS are adjacent irG. A cliqueis a graph
where all the vertices are mutually adjacent. A maximal clique (independent g&tjsafne in which
we cannot add a vertex and still have a clique(independent sét) For anyX C V if G[V\X] has
more than one connected component, we sayXhit aseparatorof G. A setS of vertices in a graph
G is adominating seif every vertex, not inS, is adjacent to at least one vertexSn

Definition 2.1. Given a graph G = (V, E), where V' and E denote the vertex-set and the edge-set of G
respectively, the all-ones problemis to find a subset S C V with the property that every vertex in S has
an even number of neighbours in S, while every vertex in V'\\S has an odd number of neighbours in S.
Since this implies that every vertex is dominated by an odd number of vertices in S (including the vertex
itself if it belongs to S), the solution set S is called an odd dominating set or a O D-set of G. If we are
able to find such a set with minimum cardinality, then such an S is said to be a solution to the minimum

all-ones problem and is called a minimum all-ones dominating set or typically a M OD-set of G.

3 Binomial Trees

In this section we solve the minimum all-ones problem for the binomial trees.

A binomial tree of height O is a single vertex. For All> 0, a binomial tree of height is a tree
formed by joining the roots of two binomial trees of height- 1 with a new edge and designating one
of these roots to be the root of the new tree. A binomial tree of heidfas2” vertices.
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Figure 1: MOD-set 0B, and Bs.

Lemma 3.1.Let B,, (n > 2) be a binomial tree which contains two binomial trees of height n — 1 with
roots u and v respectively. If S is a solution to the minimum all-ones problem (M O D-set) of B, then

both u and v cannot lie in S.

Proof. Suppose lies in S. By definition of binomial treey lies in someB;. Consider the vertex of
degree in that B,, adjacent ta: and let us call itv. Let the pendant vertex adjacentitadbe = (refer
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Figure 1). Sincer is of degred, eitherw or x should lie inS. Sinceu lies in S, in either caseyw will be
evenly dominated by which is a contradiction. By a similar argument we can provethaso cannot
liein S. |

Lemma 3.2.Let B,, be a binomial tree which contains two binomial trees of height n — 1 say B],_, and
Bgfl with M O D-sets S1 and Ss respectively. Then the M O D-set for B,, is S = S1 U Ss.

Proof. Let W be any other odd-dominating set 8,. SupposelV; = W N V(B,_;) andWy =
W NV (B!_,). Then by Lemma 3.1, the roots &, _, andB,/_, cannot lie inWW. HencelV; andW,
will necessarily be odd-dominating sets®Bf_, and B/_, respectively. Sinc&; andS; are M OD-
sets of B/, and B)!_, respectively,S1| < |Wi| and|S2| < |Wa|. Hence|S1 U Sa| < [W7 U Wy|
proving that|S| < |W]. [ |

Theorem 3.3.The solution to the minimum all-ones problem for a binomial tree B,, is the set of all its

pendant vertices.

Proof. The proof is by induction om. Consider the case = 2. Bs is isomorphic toP;. Hence the
MOD-set of B, are its two terminal vertices. Using Lemma 3.2 repeatedly by induction, one can easily
find the required\/ O D-set of B, for all n. [ |

4 Butterfly networks

In this section, we solve the minimum all-ones problem for butterfly architectures.

The vertices of the: - dimensional butterfly networkBF,,) are the pairgr, x), wherer is a non-
negative integef) < r < n called the rank, and = z;xs...z, IS a binary string of lengtm. A
vertex(r,z), 0 < r < n — 1, is joined to the verticeér + 1,x) and(r + 1, x129...2, Tr 11 Tr+2...Tp)-
The edges of the forn(r, x), (r + 1,z)) are called straight edges, edges of the fgfmz), (r +
1, x129...2, T 12, 42..., ) ) @re called cross edges and the edges connecting vertices on; ranéts
i+ 1 are called level edges. The Butterfly netwoil3 ;) has(n + 1)2" vertices.

ConsiderBFy,;. It contains twok-dimensional butterflies sapF;, and BF}. Let B = {v €
V(BFy41)/v ¢ V(BF]) andv ¢ V(BF]/)}. The vertices inB can be partitioned into ordered pairs
(z,y) lying on the samé-cycle such thatl(x) = d(y) = 2 andd(z,y) = 2. We call such an ordered
pair of vertices ag-distant,2-degree vertices or D D-pair” in short. Also if (z,y) is a2D D-pair,
thenN(z) = N(y). See Figure 2.

Figure 2: A 2DD-pair ofBF; and BF3;.
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Lemma 4.1.If (x, y) is a 2D D-pair of BF}, 1, then either v andy € S orx andy ¢ S.

Proof. Let N(z) = N(y) = {a, b} such thatu € V(BF]) andb € V(BF}'). Suppose only one vertex
of the2D D-pair (x, y) lies in S. Without loss of generality say € S andy ¢ S. Sincez € S, either
botha andb € S or botha andb ¢ S asz has to be odd-dominated Isy

Case l:a € Sandb € S.

Theny is evenly-dominated by which contradicts our hypothesis th&is an odd-dominating set.
Case 2:aandb ¢ S

In this casey is hot dominated by at all, contradicting our hypothesis thétis a solution set. R

Lemma 4.2.Let (z,y) be a 2D D-pair of BFj,11 and N(z) = N(y) = {a,b} such that a € V(BF))
andb € V(BF/). Ifv andy ¢ S, then eithera € S orb € S.

Proof. (z,y) is a2DD-pair of BF}1. Suppose if botlu andb € S, thenx andy will be dominated
by an even number of vertices i If both ¢ andb ¢ S, then, bothz andy are not dominated by at
all. |

Theorem 4.3.V(BF,) is the only solution to the all-ones problem of the r-dimensional butterfly BF,.

Proof. The proof is by induction on the dimensierof BF,.. Forr = 1, the proof is trivial. Assume
that the result is true for = k. ConsiderBF} . It contains twok-dimensional butterflies sag F,
andBF]'. Let S, S’;.and S”, be the solution sets to the minimum all-ones problemAaf,,,, BF,
and BF}! respectively. By induction hypothesiS; = V(BF]) andS” = V(BEF}/). Now let (z1,y1),
(x2,v2) ...(Tn,yn) Wheren = 2k, be the2D D-pairs of BFy, . By Lemma 4.1, if(x;, y;) is a2DD-
pair of BF. 1 thenz; andy; € S orz; andy; ¢ S. Suppose there exist2d) D-pair (z;, y;) such that
x; andy; ¢ S. Then by Lemma 4.2, either; € S or b; € S. Without loss of generality let; € S and
b; ¢ S. Now supposé; € V(BF)'). Then,z; andy; are not inS implies thatb; is being dominated
by vertices of BF}! only. This in turn implies that” C V(BF]/)\b; which is a contradiction to our
induction hypothesis that” = V(BF)). |

5 Benes networks

Ther -dimensional Benes network consists of back-to-back butterflies, denotB¢hyThe B(r)
has2r + 1 levels, each witt2r vertices. The first and last levels in tfi&r) form two butterfliesBE,
respectively, while the middle level is shared by these butterfly networks.rTmensional Benes
network hagn + 1)2"*! vertices anch2"2 edges.

The level zero to level vertices in the network form arrdimensional butterfly. The middle level
of the Benes network is shared by these butterfliesAlimensional Benes is denoted Byr). Figure
3 shows aB(2) network. A Benes network is bipartite. No twecycles of B(r) have a common edge.
The edge set oB(r) is disjoint union of4-cycles.
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Figure 3:Diamond representation B{2).
Theorem 5.1.V (B(r)) is the only solution to the all-ones problem of the r-dimensional Benes B(r).

Proof. The benes network consists of back-to-back butterflies. Hence similar to the butterfly networks,
we identify all the2D D-pairs of the benes networks. Tracing the same steps as in Theorem 4.3, we
obtain the desired result. [ |
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