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Abstract

Theall-ones problemis an NP-complete problem introduced by Sutner [11], with wide applica-

tions in linear cellular automata. In this paper, we solve theall-ones problemfor some of the widely

studied architectures like binomial trees, butterfly, and benes networks.
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1 Introduction

TheAll-Ones Problemwas introduced by Sutner [11] where he also discussed wide applications of

the all-ones problemin linear cellular automata. The problem has been studied under various names

by various authors in different papers. Theall-ones problemcan be stated as follows: Suppose each

square of ann× n chessboard is equipped with an indicator light and a button. If the button of a square

is pressed, the light of that square will change from off to on, and vice versa; the same happens to

the lights of all the edge-adjacent squares. Initially all lights are off. Now, we consider the following

questions: is it possible to press a sequence of buttons in such a way that in the end all lights are on?

This is referred to as the all-ones problem. If there is such a solution, how can we find it? And finally,

how can we find a solution that presses as few buttons as possible? This is referred to as theminimum

all-ones problem.

The above questions can be posed for any arbitrary graph. In this chapter, we consider connected,

simple, undirected graphs only. One can deal with disconnected graphs, component by component. For

all notations and terminology used in this chapter, we refer to [2]. An equivalent version of the all-ones

problem was proposed by Peled [8], where it was called the Lamp Lighting problem. The rule of the

all-ones problemis calledσ+ rule on graphs, which means that a button lights not only its neighbours

but also its own light. If a button lights only its neighbours but not its own light, this rule on graphs is

calledσ rule.

There have been many publications on the All-Ones Problem [1, 6, 12]. Using linear algebra, Sutner

[13] proved that it is always possible to light every lamp in any graph byσ+ rule. A graph-theoretic

proof was given by Erikisson et al. [7]. In [9] Sutner proved that theMinimum all-ones problemis
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NP-completein general. Li et al. [3] have proved that the problem isNP-completeeven when restricted

to bipartite graphs. Li et al. [5] have given a linear time algorithm for finding optimal solutions for trees.

2 Notations

Let G = (V,E) be a simple, connected graph. Let|V | = n and|E| = m. The open neighbourhood

of a vertexv is {u ∈ V : u is adjacent tov} and is denoted byN(v). The closed neighbourhood

of a vertexv is {v} ∪ N(v) and is denoted byN [v]. The degree of a vertexv in G is the number of

neighbours ofv in G. Theall-ones problemis equivalent to the following dominating set problem [4]

from a graph-theoretic point of view.

A set S of vertices isindependentif no two vertices inS are adjacent inG. A clique is a graph

where all the vertices are mutually adjacent. A maximal clique (independent set) ofG is one in which

we cannot add a vertex and still have a clique(independent set) inG. For anyX ⊆ V if G[V \X] has

more than one connected component, we say thatX is aseparatorof G. A setS of vertices in a graph

G is adominating setif every vertex, not inS, is adjacent to at least one vertex inS.

Definition 2.1. Given a graph G = (V,E), where V and E denote the vertex-set and the edge-set of G

respectively, the all-ones problemis to find a subset S ⊆ V with the property that every vertex in S has

an even number of neighbours in S, while every vertex in V \S has an odd number of neighbours in S.

Since this implies that every vertex is dominated by an odd number of vertices in S (including the vertex

itself if it belongs to S), the solution set S is called an odd dominating set or a OD-set of G. If we are

able to find such a set with minimum cardinality, then such an S is said to be a solution to the minimum

all-ones problem and is called a minimum all-ones dominating set or typically a MOD-set of G.

3 Binomial Trees

In this section we solve the minimum all-ones problem for the binomial trees.

A binomial tree of height 0 is a single vertex. For allh > 0, a binomial tree of heighth is a tree

formed by joining the roots of two binomial trees of heighth− 1 with a new edge and designating one

of these roots to be the root of the new tree. A binomial tree of heightn has2n vertices.

Figure 1: MOD-set ofB2 andB3.

Lemma 3.1.Let Bn (n > 2) be a binomial tree which contains two binomial trees of height n− 1 with

roots u and v respectively. If S is a solution to the minimum all-ones problem (MOD-set) of Bn, then

both u and v cannot lie in S.

Proof. Supposeu lies in S. By definition of binomial tree,u lies in someB2. Consider the vertex of

degree2 in thatB2, adjacent tou and let us call itw. Let the pendant vertex adjacent tow bex (refer
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Figure 1). Sincex is of degree1, eitherw or x should lie inS. Sinceu lies inS, in either case,w will be

evenly dominated byS which is a contradiction. By a similar argument we can prove thatv also cannot

lie in S.

Lemma 3.2.Let Bn be a binomial tree which contains two binomial trees of height n−1 say B′
n−1 and

B′′
n−1 with MOD-sets S1 and S2 respectively. Then the MOD-set for Bn is S = S1 ∪ S2.

Proof. Let W be any other odd-dominating set ofBn. SupposeW1 = W ∩ V (B′
n−1) andW2 =

W ∩ V (B′′
n−1). Then by Lemma 3.1, the roots ofB′

n−1 andB′′
n−1 cannot lie inW. HenceW1 andW2

will necessarily be odd-dominating sets ofB′
n−1 andB′′

n−1 respectively. SinceS1 andS2 areMOD-

sets ofB′
n−1 andB′′

n−1 respectively,|S1| ≤ |W1| and |S2| ≤ |W2| . Hence|S1 ∪ S2| ≤ |W1 ∪W2|
proving that|S| ≤ |W | .

Theorem 3.3.The solution to the minimum all-ones problem for a binomial tree Bn is the set of all its

pendant vertices.

Proof. The proof is by induction onn. Consider the casen = 2. B2 is isomorphic toP4. Hence the

MOD-set ofB2 are its two terminal vertices. Using Lemma 3.2 repeatedly by induction, one can easily

find the requiredMOD-set ofBn for all n.

4 Butterfly networks

In this section, we solve the minimum all-ones problem for butterfly architectures.

The vertices of then - dimensional butterfly network(BFn) are the pairs(r, x), wherer is a non-

negative integer0 ≤ r ≤ n called the rank, andx = x1x2...xn is a binary string of lengthn. A

vertex(r, x), 0 ≤ r ≤ n − 1, is joined to the vertices(r + 1, x) and(r + 1, x1x2...xrxr+1xr+2...xn).
The edges of the form((r, x), (r + 1, x)) are called straight edges, edges of the form((r, x), (r +
1, x1x2...xrxr+1xr+2...xn)) are called cross edges and the edges connecting vertices on ranksi and

i + 1 are called leveli edges. The Butterfly network(BFn) has(n + 1)2n vertices.

ConsiderBFk+1. It contains twok-dimensional butterflies sayBF ′
k and BF ′′

k . Let B = {v ∈
V (BFk+1)/v /∈ V (BF ′

k) andv /∈ V (BF ′′
k )}. The vertices inB can be partitioned into ordered pairs

(x, y) lying on the same4-cycle such thatd(x) = d(y) = 2 andd(x, y) = 2. We call such an ordered

pair of vertices as2-distant,2-degree vertices or a “2DD-pair” in short. Also if (x, y) is a2DD-pair,

thenN(x) = N(y). See Figure 2.

Figure 2: A 2DD-pair ofBF2 andBF3.
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Lemma 4.1.If (x, y) is a 2DD-pair of BFk+1, then either x and y ∈ S or x and y /∈ S.

Proof. Let N(x) = N(y) = {a, b} such thata ∈ V (BF ′
k) andb ∈ V (BF ′′

k ). Suppose only one vertex

of the2DD-pair (x, y) lies in S. Without loss of generality sayx ∈ S andy /∈ S. Sincex ∈ S, either

botha andb ∈ S or botha andb /∈ S asx has to be odd-dominated byS.

Case 1:a ∈ S andb ∈ S.

Theny is evenly-dominated byS which contradicts our hypothesis thatS is an odd-dominating set.

Case 2:a andb /∈ S

In this case,y is not dominated byS at all, contradicting our hypothesis thatS is a solution set.

Lemma 4.2.Let (x, y) be a 2DD-pair of BFk+1 and N(x) = N(y) = {a, b} such that a ∈ V (BF ′
k)

and b ∈ V (BF ′′
k ). If x and y /∈ S, then either a ∈ S or b ∈ S.

Proof. (x, y) is a2DD-pair of BFk+1. Suppose if botha andb ∈ S, thenx andy will be dominated

by an even number of vertices inS. If both a andb /∈ S, then, bothx andy are not dominated byS at

all.

Theorem 4.3.V (BFr) is the only solution to the all-ones problem of the r-dimensional butterfly BFr.

Proof. The proof is by induction on the dimensionr of BFr. For r = 1, the proof is trivial. Assume

that the result is true forr = k. ConsiderBFk+1. It contains twok-dimensional butterflies sayBF ′
k

andBF ′′
k . Let S, S′,andS′′, be the solution sets to the minimum all–ones problem forBFk+1, BF ′

k

andBF ′′
k respectively. By induction hypothesis,S′ = V (BF ′

k) andS′′ = V (BF ′′
k ). Now let (x1, y1),

(x2, y2) ...(xn, yn) wheren = 2k, be the2DD-pairs ofBFk+1. By Lemma 4.1, if(xi, yi) is a2DD-

pair ofBFk+1 thenxi andyi ∈ S or xi andyi /∈ S. Suppose there exists a2DD-pair (xi, yi) such that

xi andyi /∈ S. Then by Lemma 4.2, eitherai ∈ S or bi ∈ S. Without loss of generality letai ∈ S and

bi /∈ S. Now supposebi ∈ V (BF ′′
k ). Then,xi andyi are not inS implies thatbi is being dominated

by vertices ofBF ′′
k only. This in turn implies thatS′′ ⊆ V (BF ′′

k )\bi which is a contradiction to our

induction hypothesis thatS′′ = V (BF ′′
k ).

5 Benes networks

Ther -dimensional Benes network consists of back-to-back butterflies, denoted byB(r). TheB(r)
has2r + 1 levels, each with2r vertices. The first and last levels in theB(r) form two butterfliesBFr

respectively, while the middle level is shared by these butterfly networks. Ther-dimensional Benes

network has(n + 1)2n+1 vertices andn2n+2 edges.

The level zero to levelr vertices in the network form anr-dimensional butterfly. The middle level

of the Benes network is shared by these butterflies Anr-dimensional Benes is denoted byB(r). Figure

3 shows aB(2) network. A Benes network is bipartite. No two4-cycles ofB(r) have a common edge.

The edge set ofB(r) is disjoint union of4-cycles.
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Figure 3:Diamond representation ofB(2).

Theorem 5.1.V (B(r)) is the only solution to the all-ones problem of the r-dimensional Benes B(r).

Proof. The benes network consists of back-to-back butterflies. Hence similar to the butterfly networks,

we identify all the2DD-pairs of the benes networks. Tracing the same steps as in Theorem 4.3, we

obtain the desired result.
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