Characterization of complementary connected domination number of a graph

G. Mahadevan
Department of Mathematics,
Gandhigram Rural Institute-Deemed University, Gandhigram-624302. INDIA.
E-Mail: gmaha2003@yahoo.co.in.
\section*{A. Selvam Avadayappan}
Department of Mathematics, V.H.N.S.N.College, Virudhunagar, INDIA.
E-Mail: selvam_avadayappan@yahoo.co.in.

A.Mydeenbibi

Research Scholar, Mother Teresa Women's University, Kodaikanal, INDIA.
E-Mail: amydeen2006@yahoo.co.in.

Abstract

A set $S \subseteq V$ is a complementary connected dominating set if S is a dominating set of G and the induced subgraph $\langle V-S>$ is connected. The complementary connected domination number $\gamma_{c c}(G)$ is the minimum cardinality taken over all complementary connected dominating sets in G. The chromatic number is the minimum number of colours required to colour all the vertices such that adjacent vertices do not receive the same colour and is denoted by χ. In this paper we characterize all cubic graphs on $8,10,12$ vertices for which $\gamma_{c c}=\chi=3$.

Keywords: Complementary connected domination number, Chromatic number.
AMS Subject Classification (2010): 05C.

1 Introduction

Let $G=(V, E)$ be a simple undirected graph. The degree of any vertex u in G is the number of edges incident with u and is denoted by $d(u)$. The minimum and maximum degree of a vertex is denoted by $\delta(G)$ and $\Delta(G)$ respectively. P_{n} denotes the path on n vertices. The vertex connectivity $\kappa(G)$ of a graph G is the minimum number of vertices whose removal results in a disconnected graph. A colouring of a graph is an assignment of colours to its vertices so that no two adjacent vertices have the same colour. An n-colouring of a graph G uses n colours. The chromatic number χ is defined to be the minimum n for which G has an n-colouring. If $\chi(G)=k$ but $\chi(H)<k$ for every proper subgraph H of G, then G is k-critical. A subset S of V is called a dominating set in G if every verte x in $V-S$ is adjacent to atleast one vertex in S. The minimum cardinality taken over all dominating sets in G is called the domination number of G and is denoted by γ.

A Set $S \subseteq V$ is a complementary connected dominating set if S is a dominating set of G and the induced subgraph $\langle V-S\rangle$ is connected. The complementary connected domination number $\gamma_{c c}(G)$ is the minimum cardinality taken over all complementary connected dominating sets in G. The chromatic number is the minimum number of colours required to colour all the vertices such that adjacent vertices do not receive the same colour and is denoted by χ.

In [16], Volkman studied graphs for which $\gamma=\beta_{1}$. He also investigated graphs for which $\gamma=$ α_{0} [15]. In [12],J. Paulraj Joseph and S. Arumugam investigated graphs for which $\gamma=\gamma_{c}$. In [13],
J. Paulraj Joseph analyzed graphs for which the chromatic numbers are equal to domination parameters. In [5], G. Mahadevan A. Selvam Avadyappan and A. Mydeen bibi characterized all cubic graphs on $8,10,12$ vertices for which $\gamma_{2}=\chi=3$. In [6, 7], G. Mahadevan and J. Paulraj Joseph characterized all cubic graphs on $8,10,12$ vertices for which $\gamma=\chi=3$. In this paper we characterize all cubic graphs on $8,10,12$ vertices for which $\gamma_{c c}=\chi=3$.

Theorem 1.1.[10] For any graph $G, \gamma_{c c}(G) \leq n-\delta$
Theorem 1.2.[10] For any graph $G, \gamma_{c c}(G)=n-1$ if and only if G is a star. If G is not a star, then $\quad \gamma_{c c}$ (G) $\leq n-2,(n \geq 3)$

Theorem 1.3.[1] For any Graph $G, \chi(G) \leq \Delta(G)+1$
Theorem 1.4.[2] If G is a graph of order p, with maximum degree Δ, then $\gamma \geq\lceil p /(\Delta+1)\rceil$.
Let $G=(V, E)$ be a connected cubic graph of order p with $\gamma_{c c}=\chi$. By Theorem 1.3, $\chi \leq 3$. Clearly, $\chi \neq$ 1. We consider cubic graphs for which $\gamma_{c c}=\chi=3$. By Theorem 1.4, $\gamma_{c c} \geq\lceil p / 4\rceil$. Since $\gamma_{c c}=3,6<p \leq$ 15 and $p \neq 4$. Since G is cubic we have p is even and hence the possible values of p are 8,10 and 12 .

2 Cubic graphs of order 8

Theorem 2.1. Let G be a connected cubic graph on 8 vertices. Then $\gamma_{c c}=\chi=3$ if and only if G is isomorphic to any one of the graphs given in Figure 2.1.

Figure 2.1
Proof. Let $S=\{u, v, w\}$ be a minimum complementary connected dominating set of G and $V-S=$ $\left\{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right\}$. Clearly $\langle S\rangle \neq K_{3}$. Hence we consider the following three cases.
Case 1. $\langle S\rangle=\bar{K}_{3}$.
Without loss of generality, let u be adjacent to x_{1}, x_{2} and x_{3}. Then v is adjacent to atleast one of the vertices of $\mathrm{N}(\mathrm{u})=\left\{x_{1}, x_{2}, x_{3}\right\}$.
Subcase (a). Let v be adjacent to only one vertex of $N(u)$.
Without loss of generality, let v be adjacent to x_{1}. Then v is adjacent to x_{4} and x_{5}. Now w is adjacent to x_{1} or not adjacent to x_{1}. If w is adjacent to x_{1}, then w is adjacent to x_{2} and x_{3} (or equivalently x_{4} and x_{5}), or x_{2} (or equivalently x_{3}) and x_{4} (or equivalently x_{5}). If w is adjacent to x_{2} and x_{3}, then x_{2} is not adjacent to x_{3}. Hence x_{2} must be adjacent to x_{4} (or equivalently x_{5}) and then x_{5} is adjacent to x_{3} and x_{4}, which is a contradiction. Hence no such graph exists. If w is adjacent to x_{2} and x_{4}, then x_{2} is not adjacent to x_{4}. Hence x_{2} is adjacent to x_{3} or x_{5}. Then in both the cases no graph exists. If w is not adjacent to x_{1}. Without loss of generality, let w be adjacent to x_{2}, x_{3} and x_{4}. Then x_{2} is adjacent to x_{3} or x_{1} or x_{4} or x_{5}. If x_{2} is adjacent to x_{3} or x_{1} or x_{4}, then no graph exists. If x_{2} is adjacent to x_{5}, then x_{4} is adjacent to x_{5} or x_{3} or x_{1}. Then also no graph exists.

Subcase (b). Let v be adjacent to two vertices of $N(u)$ say x_{1} and x_{2}.
Without loss of generality, let v be adjacent to x_{4}. Now w is adjacent to x_{1} (or equivalently x_{2}) or not adjacent to x_{1} (or equivalently x_{2}). If w is adjacent to x_{1}, then x_{2} is adjacent to x_{3} (or equivalently x_{4}) or w or x_{5}. Then in all the cases, $\{u, v, w\}$ is not a complementary connected dominating set, which is a contradiction. If w is not adjacent to x_{1}, then without loss of generality, let w be adjacent to x_{3}, x_{4} and x_{5}. Now x_{5} is adjacent to x_{3} and x_{4} (or) x_{1} and x_{2} (or) x_{1} and x_{4} (or equivalently x_{2} and x_{3}). In all the cases, $\{u, v, w\}$ is not a complementary connected dominating set, which is a contradiction.
Subcase (c). Let v be adjacent to all the vertices of $N(u)$.
Now x_{2} is adjacent to x_{1} (or equivalently x_{3}), or w (or equivalently x_{4} or x_{5}). Since G is cubic, x_{2} cannot be adjacent to x_{1} (or equivalently x_{3}). Hence x_{2} must be adjacent to w. If x_{2} is adjacent to w then w is adjacent to x_{1} and x_{3} (or) x_{4} and x_{5} (or) x_{1} and x_{5}. Since G is cubic, w cannot be adjacent to x_{1} and x_{3}. Also w cannot be adjacent to x_{1} and x_{5}. Hence w must be adjacent to x_{4} and x_{5}. Then x_{1} must be adjacent to x_{4} and x_{5} is adjacent to x_{3} and x_{4}. Consequently, $\{u, v, w\}$ is not a complementary connected dominating set, which is a contradiction.
Case 2. $\langle S\rangle=K_{2} \cup K_{1}$.
Let $u v$ be an edge. Without loss of generality, let u be adjacent to x_{1} and x_{2}. Now w is adjacent to x_{1}, x_{2} and anyone of $\left\{x_{3}, x_{4}, x_{5}\right\}$ (or) w is adjacent to x_{1} (or equivalently x_{2}) and any two of $\left\{x_{3}, x_{4}, x_{5}\right\}$. If w is adjacent to x_{1}, x_{2} and x_{3}, then x_{4} is adjacent to x_{1} (or equivalently x_{2}) or not adjacent to x_{1} (or equivalently x_{2}). If x_{4} is not adjacent to x_{1} (or equivalently x_{2}), then x_{4} is adjacent to x_{3}, v and x_{5}. Also x_{5} is adjacent to x_{1} and x_{2} is adjacent to x_{3}. Hence $G \cong G_{1}$. If x_{4} is adjacent to x_{1}, then x_{5} is adjacent to x_{4} or not adjacent to x_{4}. If x_{5} is adjacent to x_{4}, then x_{4} is adjacent to v and x_{2} is adjacent to x_{3}.Hence $G \cong$ G_{1}. If x_{4} is adjacent to x_{1}, then x_{5} is adjacent to x_{4}, x_{2} and x_{3}. Hence $G \cong G_{1}$. If x_{4} is adjacent to x_{1}, then x_{5} is not adjacent to x_{4}. Also x_{5} is adjacent to x_{2}, x_{3} and v, and x_{3} is adjacent to x_{4} and x_{4} is adjacent to v. Hence $G \cong G_{1}$. If w is adjacent to x_{1}, x_{2} and x_{3}, then x_{5} is adjacent to x_{1} or not adjacent to x_{1}. If x_{5} is adjacent to x_{1}, x_{2} and x_{4}, then x_{3} is adjacent to x_{2} and v. Also x_{4} is adjacent to v. Hence $G \cong G_{1}$. If x_{5} is not adjacent to x_{1}, then x_{5} is adjacent to any three of $\left\{x_{3}, x_{4}, v, x_{2}\right\}$. Let x_{5} be adjacent to x_{3}, x_{4} and v. Also x_{4} is adjacent to x_{1} and x_{2} is adjacent to $\left\{x_{3}, v\right\}$. Hence $G \cong G_{1}$.
Case 3. $\langle S\rangle=P_{3}$.
Let v be adjacent to u and w. Without loss of generality, let v be adjacent to x_{1} and u be adjacent to $\left\{x_{1}, x_{2}\right\}$. Now x_{2} is adjacent to u, w and anyone of $\left\{x_{3}, x_{4}, x_{5}\right\}$ or w and any two of $\left\{x_{3}, x_{4}, x_{5}\right\}$. If x_{2} is adjacent to u, w and x_{3} then x_{4} is adjacent to w (or equivalently u) or not adjacent to w (or equivalently u). If x_{4} is adjacent to w (or equivalently u), then x_{5} is adjacent to x_{4} or not adjacent to x_{4}. If x_{5} is adjacent to x_{1}, x_{3} and x_{4}, then x_{4} is adjacent to x_{3} and x_{3} is adjacent to x_{2}. Hence $G \cong G_{1}$. If x_{5} is not adjacent to x_{4}, then x_{5} is adjacent to x_{1}, x_{2} and x_{3}, so that $\{u, v, w\}$ is not a complementary connected dominating set, which is a contradiction. If x_{4} is not adjacent to w (or equivalently u), then x_{4} is adjacent to x_{5}, x_{3} and x_{1}. Also x_{3} is adjacent to $\left\{x_{2}, w\right\}$ and x_{5} is adjacent to $\left\{x_{1}, w\right\}$. Hence $G \cong G_{1}$. If x_{2} is adjacent to w, x_{3} and x_{4}, then x_{5} is adjacent to w (or) not adjacent to w. If x_{5} is adjacent to $\left\{w, x_{1}\right.$, $\left.x_{4}\right\}$, then x_{3} is adjacent to $\left\{x_{4}, u\right\}$. Hence $G \cong G_{1}$. If x_{5} is not adjacent to w, then x_{5} is adjacent to any three of $\left\{x_{1}, u, x_{3}, x_{4}\right\}$. Let x_{5} be adjacent to x_{1}, u, x_{3}. Also x_{4} is adjacent to x_{3} and x_{5}. Hence $G \cong G_{3}$.

3 Cubic graphs of order 10

Throughout this section, G is a connected cubic graph on 10 vertices with $V(G)=\left\{u, v, w, x_{1}, x_{2}, x_{3}\right.$, $\left.x_{4}, x_{5}, x_{6}, x_{7}\right\}$. Let $S=\{u, v, w\}$ be a minimum complementary connected dominating set. Let $S_{1}=N$ $(u)=\left\{x_{1}, x_{2}, x_{3}\right\}$. Clearly $\langle S\rangle \neq K_{3}$ or P_{3}. Hence $\langle S\rangle=K_{2} \cup K_{1}$ or \bar{K}_{3}. If $\langle S\rangle=K_{2} \cup K_{1}$ then $v w$ be the edge in $\langle S\rangle$. Let x_{6} and x_{7} be the two remaining vertices adjacent to v and also x_{4} and x_{5} are the remaining two vertices adjacent to w. Let $S_{2}=\left\{x_{6}, x_{7}\right\}$ and $S_{3}=\left\{x_{4}, x_{5}\right\}$.

Lemma 3.1. Let G be a connected cubic graph on 10 vertices with $V(G)=\left\{u, v, w, x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right.$, $\left.x_{7}\right\}$. Let $S=\{u, v, w\}$ be a minimum complementary connected dominating set. Let $S_{1}=N(u)=\left\{x_{1}\right.$, $\left.x_{2}, x_{3}\right\}$. If $\langle S\rangle=K_{2} \cup K_{1}$ and $\left\langle S_{1}\right\rangle=P_{3}$, then G is isomorphic to G_{1} given in Figure 3.1.

Figure 3.1
Proof. Without loss of generality, Let $\left\langle S_{1}\right\rangle=P_{3}=\left\{x_{1}, x_{2}, x_{3}\right\}$. We consider the following three cases.

Case 1. $\left\langle S_{2}\right\rangle=\left\langle S_{3}\right\rangle=K_{2}$.
Without loss of generality, let x_{1} be adjacent to x_{7}. Since G is cubic, x_{3} is adjacent to x_{4} and x_{5} is adjacent to x_{6}. Hence $G \cong G_{1}$.
Case 2. $\left\langle S_{2}\right\rangle=K_{2}$ and $\left\langle S_{3}\right\rangle=\bar{K}_{2}$.
Let x_{5} is adjacent to x_{6} and x_{7} or x_{1} and x_{3} or x_{6} (or equivalently x_{7}) and x_{1} (or equivalently x_{6}). In all the above situation S fails to be a complementary connected dominating set, which is a contradiction. Hence no graph exists.
Case 3. $\left\langle S_{2}\right\rangle=\left\langle S_{3}\right\rangle=\bar{K}_{2}$.
Since G is cubic, without loss of generality let x_{1} be adjacent to x_{6}. Also x_{6} is adjacent to x_{4} (or equivalently x_{5}) and x_{5} is adjacent to x_{3} and x_{7} and also x_{7} is adjacent to x_{4}. Hence $G \cong G_{1}$.
Lemma 3.2. If $\langle S\rangle=K_{2} \cup K_{1}$ and $\left\langle S_{1}\right\rangle=\bar{K}_{3}$, then G is isomorphic to any one of the graphs given in Figure 3.2.

Figure 3.2

Proof. We consider the following three cases.
Case 1. $\left\langle S_{2}\right\rangle=\left\langle S_{3}\right\rangle=K_{2}$.
Since G is cubic, the three vertices in S_{1} are to be incident with 6 edges. But the four vertices in S_{2} and S_{3} can be incident with four edges. This is a contradiction. Hence no graph exists in this case.
Case 2. $\left\langle S_{2}\right\rangle=K_{2}$ and $\left\langle S_{3}\right\rangle=\bar{K}_{2}$.
Now x_{1} is adjacent to x_{6} and x_{7} or x_{4} and x_{5} or x_{6} (or equivalently x_{5}). If x_{1} is adjacent to x_{6} and x_{7} then $\{u, v, w\}$ is not a complementary connected dominating set, which is a contradiction. Hence no graph exists. If x_{1} is adjacent to x_{4} and x_{5}, then x_{2} is adjacent to x_{6} and x_{7}, or x_{4} and x_{5}, x_{6} (or equivalently x_{7}) and x_{4} (or equivalently x_{5}). If x_{2} is adjacent to x_{6} and x_{4}, then x_{3} is adjacent to x_{5} and x_{7}. Hence $G \cong G_{2}$. If x_{1} is adjacent to x_{6} and x_{4} then x_{2} is adjacent to x_{7} and x_{5} or x_{4} and x_{5}. If x_{2} is adjacent to x_{7} and x_{5}, then x_{3} is adjacent to x_{4} and x_{5}. Hence $G \cong G_{2}$. If x_{2} is adjacent to x_{4} and x_{5}, then x_{3} is adjacent to x_{5} and x_{7}. Hence $G \cong G_{2}$.

Case 3. $\left\langle S_{2}\right\rangle=\left\langle S_{3}\right\rangle=\bar{K}_{2}$.
x_{1} is adjacent to x_{6} and x_{7} (or equivalently x_{4} and x_{5}) or x_{6} (or equivalently x_{7}) and x_{4} (or equivalently x_{7}) and x_{4} (or equivalently x_{5}). If x_{1} is adjacent to x_{6} and x_{7}, then x_{2} is adjacent to x_{4} and x_{5} or x_{6} (or equivalently x_{7}) and x_{4} (or equivalently x_{5}). If x_{2} is adjacent to x_{4} and x_{5}, then x_{3} is adjacent to x_{6} (or equivalently x_{7}) and x_{4} (or equivalently x_{5}) and then x_{5} is adjacent to x_{7} and $G \cong G_{2}$. If x_{2} is adjacent to x_{6} and x_{4}, then x_{5} is adjacent to x_{7} and x_{3} and also x_{3} is adjacent to x_{4}. Hence $G \cong G_{3}$. If x_{1} is adjacent to x_{4} and x_{6}, then x_{2} is adjacent to x_{4} and x_{6} or x_{5} and x_{7} (or) x_{4} and x_{5} (or equivalently x_{6} and x_{7}) or x_{4} and x_{7} (or equivalently x_{5} and x_{6}). If x_{2} is adjacent to x_{4} and x_{6}, then x_{3} is adjacent to x_{5} and x_{7} and then x_{7} is adjacent to x_{5} which is a contradiction. Hence no graph exists. If x_{2} is adjacent to x_{5} and x_{7}, then x_{3} is adjacent to x_{6} and x_{4}, or x_{7} and x_{5} or x_{6} and x_{5} (or equivalently x_{4} and x_{5}). If x_{3} is adjacent to x_{6} and x_{4}, then x_{5} is adjacent to x_{7} which is a contradiction and no graph exists. If x_{3} is adjacent to x_{7} and x_{5}, then x_{4} is adjacent to x_{6} which is a contradiction and no graph exists. If x_{3} is adjacent to x_{5} and x_{6}, then x_{4} is adjacent to x_{7} and hence $G \cong G_{3}$. If x_{2} is adjacent to x_{4} and x_{5}, then x_{3} is adjacent to x_{6} and x_{7} and then x_{7} is adjacent to x_{5}. Hence $G \cong G_{2}$. If x_{2} is adjacent to x_{4} and x_{7}, then x_{3} is adjacent to x_{6} and x_{5} or x_{5} and x_{7}. If x_{3} is adjacent to x_{5} and x_{6}, then x_{5} is adjacent to x_{7}. Hence $G \cong G_{4}$. If x_{3} is adjacent to x_{7} and x_{5}, then x_{5} is adjacent to x_{6}. Hence $G \cong G_{4}$.
Lemma 3.3. If $\langle S\rangle=K_{2} \cup K_{1}$ and $\left\langle S_{1}\right\rangle=K_{2} \cup K_{1}$, then G is isomorphic to either G_{5} given in Figure 3.1 or G_{5} given in Figure 3.3.

\mathbf{G}_{5}

Figure 3.3

Proof. Let $x_{1} x_{2}$ be the edge in $\left\langle S_{1}\right\rangle$. We consider the following three cases.
Case 1. $\left\langle S_{2}\right\rangle=\left\langle S_{3}\right\rangle=K_{2}$.
Now x_{3} is adjacent to x_{6} and x_{7} (or equivalently x_{4} and x_{5}) or x_{4} and x_{6} (or equivalently x_{5} and x_{7}). If x_{3} is adjacent to x_{6} and x_{7}, then x_{2} is adjacent to x_{4} (or equivalently x_{5}). This implies that x_{1} is adjacent to x_{5}, which is a contradiction. Hence no graph exists. If x_{3} is adjacent to x_{4} and x_{6}, then x_{1} is adjacent to x_{5} (or equivalently x_{7}). And then x_{2} is adjacent to x_{7}. Hence $G \cong G_{5}$.
Case 2. $\left\langle S_{2}\right\rangle=K_{2}$ and $\left\langle S_{3}\right\rangle=\bar{K}_{2}$
Since G is cubic x_{3} is adjacent to x_{4} and x_{5} or x_{6} (or equivalently x_{7}) and x_{4} (or equivalently x_{5}). If x_{3} is adjacent to x_{4} and x_{5}, then x_{4} is adjacent to x_{1} (or equivalently x_{2}) or x_{6} (or equivalently x_{7}). If x_{4} is adjacent to x_{1}, then x_{5} is adjacent to x_{6} or equivalently x_{7}) and x_{7} is adjacent to x_{2}. Hence $G \cong G_{1}$. If x_{4} is adjacent to x_{6}, then x_{5} is adjacent to x_{1} (or equivalently x_{2}) and then x_{2} is adjacent to x_{7}. Hence $G \cong G_{1}$. If x_{3} is adjacent to x_{6} and x_{4}, then x_{5} is adjacent to x_{1} and x_{2} or x_{1} (or equivalently x_{2}) and x_{7}. If x_{5} is adjacent to x_{1} and x_{2}, then x_{4} is adjacent to x_{7} which is contradiction. Hence no graph exists. If x_{5} is adjacent to x_{1} and x_{7}, then x_{2} is adjacent to x_{4}. Hence $G \cong G_{1}$.
Case 3. $\left\langle S_{2}\right\rangle=\left\langle S_{3}\right\rangle=\bar{K}_{2}$.
Now x_{3} is adjacent to x_{4} and x_{5} (or equivalently x_{6} and x_{7}) or x_{4} and x_{6} (or equivalently x_{5} and x_{7}). If x_{3} is adjacent to x_{4} and x_{5} which is a contradiction. Hence no graph exists. If x_{3} is adjacent to x_{4} and x_{6}, then x_{5} is adjacent to x_{6} and x_{7} or x_{1} and x_{6} or x_{1} and x_{7}. If x_{5} is adjacent to x_{6} and x_{7}, then x_{7} is adjacent to x_{1} (or equivalently x_{2}) and then x_{2} is adjacent to x_{4}. Hence $G \cong G_{1}$. If x_{5} is adjacent to x_{1} and x_{6} then x_{7} is adjacent to x_{2} and x_{4}. Hence $G \cong G_{1}$. If x_{5} is adjacent to x_{1} and x_{7} then x_{2} is adjacent to x_{6} or x_{7}. If x_{2} is adjacent to x_{6}, then x_{7} is adjacent to x_{4}. Hence $G \cong G_{1}$. If x_{2} is adjacent to x_{7}, then x_{6} is adjacent to x_{4}, which is a contradiction. Hence no graph exists.
Lemma 3.4. There is no connected cubic graph on 10 vertices with $\langle S\rangle=\bar{K}_{3}$ and $\left\langle S_{1}\right\rangle=P_{3}$.
Proof. If $\langle S\rangle=\bar{K}_{3}$, then v can be adjacent to two of the three vertices not in $N(u)$. It is adjacent to two vertices say x_{4} and x_{5}. Let $S_{2}=\left\{x_{4}, x_{5}\right\}$, then w be adjacent to two other vertices say x_{6}, x_{7}. Let S_{3} $=\left\{x_{6}, x_{7}\right\}$. Let $\left\langle S_{1}\right\rangle=P_{3}=x_{1} x_{2} x_{3}$. We consider the following three cases.
Case 1. $\left\langle S_{2}\right\rangle=\left\langle S_{3}\right\rangle=K_{2}$
Now x_{1} is adjacent to anyone of $\left\{x_{4}, x_{5}, v\right\}$ (or equivalently any one of $\left\{x_{6}, x_{7}, w\right\}$). Since G is cubic, without loss of generality let x_{1} be adjacent to v, and x_{3} be adjacent to w. Then the remaining five vertices must be incident with one vertex, which is a contradiction. Hence no graph exists.
Case 2. $\left\langle S_{2}\right\rangle=K_{2}$ and $\left\langle S_{3}\right\rangle=\bar{K}_{2}$.
Let $x_{4} x_{5}$ be the edge in S_{2}. If v is adjacent to x_{6} (or equivalently x_{7}) then x_{7} is adjacent to x_{1} and x_{3} (or) x_{4} and x_{5} (or) x_{4} (or equivalently x_{5}) and x_{1} (or equivalently x_{3}).
Subcase (a). If x_{7} is adjacent to x_{1} and x_{3} then x_{6} is adjacent to x_{4} (or equivalently x_{5}) and w is adjacent to x_{5}, which is a contradiction. Hence no graph exists.
Subcase (b). If x_{7} is adjacent to x_{1} and x_{4}, then x_{5} is adjacent to x_{6} or w. If x_{5} is adjacent to x_{6} then w is adjacent to x_{3}, which is a contradiction. Hence no graph exists. If x_{5} is adjacent to w then x_{3} is adjacent to x_{6}, which is a contradiction. Hence no graph exists.
Subcase (c). If x_{7} is adjacent to x_{5} and x_{4} then x_{6} is adjacent to x_{1} (or equivalently x_{3}). Then w is adjacent to x_{3}, which is a contradiction. Hence no graph exists.
Case 3. $\left\langle S_{2}\right\rangle=\left\langle S_{3}\right\rangle=\bar{K}_{2}$.
Now v is adjacent to x_{1} (or equivalently x_{3}) or x_{6} (or equivalently x_{7}) which is impossible. Hence no graph exists.

Lemma 3.5. If $\langle S\rangle=\bar{K}_{3}$ and $\left\langle S_{1}\right\rangle=K_{2} \cup K_{1}$, then $G \cong G_{5}$ given in Figure 3.3 or $G \cong \mathrm{G}_{1}$ given in Figure 3.1
Proof. Let $x_{1} x_{2}$ be the edge in $\left\langle S_{1}\right\rangle$. We consider the following three cases.
Case 1. $\left\langle S_{2}\right\rangle=\left\langle S_{3}\right\rangle=K_{2}$.
x_{1} is adjacent to any one of the vertices $\left\{x_{4}, x_{5}, v\right\}$ (or equivalently any one of $\left\{x_{6}, x_{7}, w\right\}$) without loss of generality, let x_{2} be adjacent to w. Then it can be verified that no cubic graph exists satisfying the hypothesis.
Case 2. $\left\langle S_{2}\right\rangle=K_{2}$ and $\left\langle S_{3}\right\rangle=\bar{K}_{2}$.
Now x_{1} is adjacent to any one of $\left\{v, x_{4}, x_{5}\right\}$ (or) w (or) x_{6} (or equivalently x_{7}). If x_{1} is adjacent to v, then w is adjacent to x_{3} or x_{4} (or equivalently x_{5}) or x_{2}. If w is adjacent to x_{3} then x_{2} is adjacent to x_{7} and then x_{6} is adjacent to x_{3} and x_{4} and also x_{7} is adjacent to x_{5}. Hence by Lemma 3.3, $G \cong G_{5}$. If w is adjacent to x_{4}, then x_{6} is adjacent to x_{2} and x_{3} and then x_{3} is adjacent to x_{7} and also x_{7} is adjacent to x_{5}. Hence $G \cong G_{5}$, which falls under Lemma 3.3. If w is adjacent to x_{2}, then x_{5} is adjacent to x_{3} or x_{6} (or equivalently x_{7}). If x_{5} is adjacent to x_{3}, then x_{3} is adjacent to x_{6} and x_{5} which is a contradiction. Hence no graph exists. If x_{5} is adjacent to x_{6}, then x_{7} is adjacent to x_{3} and x_{4} which is contradiction. Hence no graph exists. If x_{1} is adjacent to w, then x_{2} is adjacent to x_{4} and then x_{7} is adjacent to x_{5} and x_{3} and also x_{6} is adjacent to x_{3} and v. Hence $G \cong G_{5}$, which falls under Lemma 3.3.If x_{1} is adjacent to x_{6}, then x_{6} is adjacent to any one of $\left\{v, x_{4}, x_{5}\right\}$ or x_{3} or x_{2}. If x_{6} is adjacent to v, then w is adjacent to x_{3} or x_{2} or x_{4} (or equivalently x_{5}). If w is adjacent to x_{3}, then x_{2} is adjacent to x_{4} (or equivalently x_{5}) or x_{7}. If x_{2} is adjacent to x_{4}, then x_{7} is adjacent to x_{3} and x_{5}. Hence $G \cong G_{5}$, which falls under Lemma 3.3. If x_{2} is adjacent to x_{7}, then x_{7} is adjacent to x_{4} (or equivalently x_{5}) and then x_{3} is adjacent to x_{5}. Hence $G \cong G_{1}$, as in Figure 3.1. which falls under Lemma 3.1. If w is adjacent to x_{2}, or x_{4} we get a contradiction and hence no graph exists. If x_{6} is adjacent to x_{3}, then x_{3} is adjacent to x_{4} and then x_{3} is adjacent to x_{4} and then x_{2} is adjacent to w and x_{7} is adjacent to v. Hence $G \cong \mathrm{G}_{1}$ given in Figure 3.1. If x_{6} is adjacent to x_{2} then also we get a contradiction and hence no graph exists.
Case 3. $\left\langle S_{2}\right\rangle=\left\langle S_{3}\right\rangle=\bar{K}_{2}$
If x_{1} be adjacent to v (or equivalently w) or x_{4} (or equivalently x_{5}) \{ or equivalently x_{6} (or equivalently x_{7}) \}. In all the cases no new graph exists.
Lemma 3.6. There is no connected cubic graph on 10 vertices with $\langle S\rangle=\bar{K}_{3}$ and $\left\langle S_{1}\right\rangle=\bar{K}_{3}$.
Proof. We consider the following three cases.
Case 1. $\left\langle S_{2}\right\rangle=\left\langle S_{3}\right\rangle=K_{2}$.
Let $x_{4} x_{5}$ be the edge in $\left\langle S_{2}\right\rangle$ and $x_{6} x_{7}$ be the edge in $\left\langle S_{3}\right\rangle$. Now x_{1} is adjacent to any two of $\left\{v, x_{4}, x_{5}\right\}$ (or equivalently any two of $\left\{w, x_{6}, x_{7}\right\}$) or any of $\left\{v, x_{4}, x_{5}\right\}$ and anyone of $\left\{w, x_{6}, x_{7}\right\}$. In all the above cases, $\{u, v, w\}$ is not a complementary connected dominating set ,which is a contradiction.
Case 2. $\left\langle S_{2}\right\rangle=K_{2}$ and $\left\langle S_{3}\right\rangle=\bar{K}_{2}$.
Let w be adjacent to any one of $\left\{x_{1}, x_{2}, x_{3}\right\}$. Let w be adjacent to x_{1}. In this case also $\{u, v, w\}$ is not a complementary connected dominating set, which is a contradiction.
Case 3. $\left\langle S_{2}\right\rangle=\left\langle S_{3}\right\rangle=\bar{K}_{2}$.
In this case, v is adjacent to x_{1} (or equivalently x_{3}) or x_{6} (or equivalently x_{7}). In the cases, $\{u, v, w\}$ is not a complementary connected dominating set, which is a contradiction.
Theorem 3.7. Let G is connected cubic graph on 10 vertices. Then $\gamma_{c c}=\chi=3$ if and only if G is isomorphic to any one of graphs given in Figures 3.3, 3.2 and 3.3.
Proof. If G is any one of the graphs given in Figure 3.1, 3.2 and 3.3, then clearly $\gamma_{c c}=\chi=3$ Conversely if $\gamma_{c c}=\chi=3$, then the proof follows from the Lemmas 3.1 to 3.6.

4 Cubic graphs on 12 vertices

Let G be a connected cubic graph on 12 vertices with $\mathrm{V}(\mathrm{G})=\left\{u, v, w, x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}, x_{8}, x_{9}\right\}$. Let $S=\{u, v, w\}$ be a complementary connected dominating set.

Let $\left\langle S_{1}\right\rangle=N(u)=\left\{x_{1}, x_{2}, x_{3}\right\}$. Let $\left\langle S_{2}\right\rangle=N(v)=\left\{x_{4}, x_{5}, x_{6}\right\}$ and $\left\langle S_{3}\right\rangle=N(w)=\left\{x_{7}, x_{8}\right.$, $\left.x_{9}\right\}$.Then we consider the following cases:
Case 1: $\left\langle S_{1}\right\rangle=\left\langle S_{2}\right\rangle=\left\langle S_{3}\right\rangle=P_{3}$.
Case 2: $\left\langle S_{1}\right\rangle=\left\langle S_{2}\right\rangle=P_{3}$ and $\left\langle S_{3}\right\rangle=K_{2} \cup K_{1}$.
Case 3: $\left\langle S_{1}\right\rangle=\left\langle S_{2}\right\rangle=P_{3}$, and $\left\langle S_{3}\right\rangle=\bar{K}_{3}$
Case 4: $\left\langle S_{1}\right\rangle=P_{3}$ and $\left\langle S_{2}\right\rangle=\left\langle S_{3}\right\rangle=K_{2} \cup K_{1}$.
Case 5: $\left\langle S_{1}\right\rangle=P_{3}$ and $\left\langle S_{2}\right\rangle=\bar{K}_{3}$, and $\left\langle S_{3}\right\rangle=K_{2} \cup K_{1}$.
Case 6: $\left\langle S_{1}\right\rangle=P_{3}$ and $\left\langle S_{2}\right\rangle=\left\langle S_{3}\right\rangle=\bar{K}_{3}$.
Case 7: $\left\langle S_{1}\right\rangle=\left\langle S_{2}\right\rangle=K_{2} \cup K_{1},\left\langle S_{3}\right\rangle=\bar{K}_{3}$.
Case 8: $\left\langle S_{1}\right\rangle=\left\langle S_{2}\right\rangle=\left\langle S_{3}\right\rangle=K_{2} \cup K_{1}$.
Case 9: $\left\langle S_{1}\right\rangle=\left\langle S_{2}\right\rangle=\left\langle S_{3}\right\rangle=\bar{K}_{3}$.
Case 10: $\left\langle S_{1}\right\rangle=K_{2} \cup K_{1},\left\langle S_{2}\right\rangle=\left\langle S_{3}\right\rangle=\bar{K}_{3}$.
Lemma 4.1. If $\left\langle S_{1}\right\rangle=\left\langle S_{2}\right\rangle=\left\langle S_{3}\right\rangle=P_{3}$, then G is isomorphic to G_{1} given in Figure 4.1.

G_{1}
Figure 4.1
Proof. Let $\left\langle S_{1}\right\rangle=P_{3}=x_{1} x_{2} x_{3},\left\langle S_{2}\right\rangle=P_{3}=x_{4} x_{5} x_{6}$ and $\left\langle S_{3}\right\rangle=P_{3}=x_{7} x_{8} x_{9}$. Without loss of generality, let x_{1} be adjacent to x_{4}. Since G is cubic, x_{3} must be adjacent to x_{7} or x_{9}. Without loss of generality, let x_{3} be adjacent to x_{4}. Then x_{6} must be adjacent to x_{9}. Hence $G \cong G_{1}$.

Lemma 4.2. If $\left\langle S_{1}\right\rangle=\left\langle S_{2}\right\rangle=P_{3}$ and $\left\langle S_{3}\right\rangle=K_{2} \cup K_{1}$ then G is isomorphic to the graph G_{2} given in Figure 4.2.
Proof. Let $\left\langle S_{1}\right\rangle=P_{3}=x_{1} x_{2} x_{3},\left\langle S_{2}\right\rangle=P_{3}=x_{4} x_{5} x_{6}$. Let $x_{7} x_{8}$ be the edge in $\left\langle S_{3}\right\rangle$. Now x_{7} is adjacent to anyone of $\left\{x_{1}, x_{3}, x_{4}, x_{6}\right\}$. Without loss of generality, let x_{7} be adjacent to x_{1}. Then x_{8} is adjacent to x_{3} or anyone of $\left\{x_{4}, x_{6}\right\}$. If x_{8} is adjacent to x_{3} then x_{9} must be adjacent to x_{4} and x_{6}, which is a contradiction. Hence no graph exists. If x_{8} is adjacent to x_{4}, then x_{9} must be adjacent to x_{3} and x_{6}. Hence $G \cong G_{2}$.

Figure 4.2
Lemma 4.3. There exists no connected cubic graph on 12 vertices with $\left\langle S_{1}\right\rangle=\left\langle S_{2}\right\rangle=P_{3}$ and $\left\langle S_{3}\right\rangle=\bar{K}_{3}$.
Proof. Let $\left\langle S_{1}\right\rangle=P_{3}=x_{1}, x_{2}, x_{3},\left\langle S_{2}\right\rangle=P_{3}=x_{4}, x_{5}, x_{6}$. Now x_{7} is adjacent to one of $\left\{x_{1}, x_{3}\right\}$ and one of $\left\{x_{4}, x_{6}\right\}$ (or) x_{7} is adjacent to x_{1} and x_{3} (or equivalently x_{4} and x_{6}). In both the cases cubic graph does not exists.

Lemma 4.4. If $\left\langle S_{1}\right\rangle=P_{3}$ and $\left\langle S_{2}\right\rangle=\left\langle S_{3}\right\rangle=K_{2} \cup K_{1}$, then G isomorphic to the graph G_{2} given in Figure 4.2.
Proof. Let $\left\langle S_{1}\right\rangle=x_{1}, x_{2}, x_{3}$. Let $x_{4} x_{5}$ be the edge in $\left\langle S_{2}\right\rangle$ and $x_{7} x_{8}$ be the edge in $\left\langle S_{3}\right\rangle$. We consider the following two cases.
Case 1. Let x_{1} be adjacent to any one of $\left\{x_{4}, x_{5}, x_{7}, x_{8}\right\}$. Without loss of generality, let x_{1} be adjacent to x_{4}. Since G is cubic x_{3} is adjacent to x_{9} or x_{7} (or equivalently x_{8}). If x_{3} is adjacent to x_{9} is adjacent to x_{5} or x_{6}. If x_{9} is adjacent to x_{5}, then x_{6} is adjacent to x_{7} and x_{8} which is a contradiction. Hence no graph exists. If x_{9} is adjacent to x_{6}, then x_{6} is adjacent to (or equivalently x_{8}) and x_{5} is adjacent to x_{8}. Hence G $\cong G_{2}$ given in Figure 4.2. If x_{3} is adjacent to x_{7} (or equivalently x_{8}) then since G is cubic, x_{8} must be adjacent to x_{6} and x_{9} is adjacent to x_{5} and x_{6}. Hence $G \cong G_{2}$ given in Figure 4.2.
Case 2. Let x_{1} be adjacent to any one of $\left\{x_{6}, x_{9}\right\}$. Without loss of generality, let x_{1} be adjacent to x_{6}. Now x_{4} is adjacent to x_{3} or x_{7} (or equivalently x_{8}) or x_{9}. Since G is cubic, x_{4} is not adjacent to x_{3}. If x_{4} is adjacent to x_{7}, then x_{5} is adjacent to x_{8} or x_{9}. If x_{5} is adjacent to x_{8}, then x_{9} is adjacent to x_{3} and x_{6}, which is a contradiction. Hence no graph exists. If x_{5} is adjacent to x_{9}, then x_{9} is adjacent to x_{3} or x_{6}. If x_{9} is adjacent to x_{3} or x_{6}. If x_{9} is adjacent to x_{3}, then x_{6} is adjacent to x_{8}. Hence $G \cong G_{2}$ given in Figure 4.2. If x_{9} is adjacent to x_{6}, then x_{3} is adjacent to x_{8}. Hence $G \cong G_{2}$ given in Figure 4.2. If x_{4} is adjacent to x_{9}, then x_{5} is adjacent to x_{8} and then x_{3} is adjacent to x_{7} and also x_{6} is adjacent to x_{9}. Hence $G \cong G_{2}$ given in Figure 4.2.

Lemma 4.5. If $\left\langle S_{1}\right\rangle=P_{3}$ and $\left\langle S_{2}\right\rangle=\bar{K}_{3}$ and $\left\langle S_{3}\right\rangle=K_{2} \cup K_{1}$, then G is isomorphic to G_{2} given in Figure 4.2.

Proof. If $\left\langle S_{1}\right\rangle=x_{1} x_{2} x_{3}$. Let $x_{7} x_{8}$ be the edge in $\left\langle S_{3}\right\rangle$. Since G is cubic, x_{1} must be adjacent to any one of $\left\{x_{4}, x_{5}, x_{6}\right\}$. Without loss of generality let x_{1} be adjacent to x_{4}. We consider the following three cases.
Case 1. x_{4} is adjacent to x_{3}. In this case, x_{5} is adjacent to x_{7} (or equivalently x_{8}) and x_{9} and then x_{6} is adjacent to x_{8} and x_{9} which is a contradiction. Hence no graph exists.
Case 2. x_{4} is adjacent to x_{7} (or equivalently x_{8}). In this case, x_{9} is adjacent to x_{3} and x_{5} (or equivalently x_{6}) (or) x_{9} is adjacent to x_{5} and x_{6}. Since G is cubic, x_{9} cannot be adjacent to both x_{3} and x_{5}. If x_{9} is adjacent to x_{5} and x_{6}, then x_{5} is adjacent to x_{3} or x_{5}. If x_{5} is adjacent to x_{3}, then x_{6} is adjacent to x_{8}. Hence $G \cong G_{2}$ given in Figure 4.2. If x_{5} is adjacent to x_{8}, then x_{3} is adjacent to x_{6}. Hence $G \cong G_{2}$ given in Figure 4.2.
Case 3. x_{4} is adjacent to x_{9}. Since G is cubic, $x 3$ must be adjacent to any one of $\left\{x_{5}, x_{6}\right\}$. Let x_{3} be adjacent to x_{5}. Now x_{6} is adjacent to both x_{7} and x_{8} (or) x_{6} is adjacent to one of $\left\{x_{7}, x_{8}\right\}$ and x_{9}. If x_{6} is adjacent to x_{7} and x_{8}, then x_{5} is adjacent to x_{9}, which is a contradiction. Hence no graph exists. If x_{6} is adjacent to x_{7} and x_{9}, then x_{5} is adjacent to x_{8}. Hence, $G \cong G_{2}$ given in Figure 4.2.
Lemma 4.6. If $\left\langle S_{1}\right\rangle=P_{3}$ and $\left\langle S_{2}\right\rangle=\left\langle S_{3}\right\rangle=\bar{K}_{3}$, then G is isomorphic to G_{2} given in Figure 4.2.
Proof. Let $\left\langle S_{1}\right\rangle=x_{1} x_{2} x_{3}$. Now x_{1} is adjacent to anyone of $\left\{x_{4}, x_{5}, x_{6}, x_{7}, x_{8}, x_{9}\right\}$, without loss of generality, let x_{1} be adjacent to x_{4}. Since G is cubic, x_{4} is adjacent to anyone of $\left\{x_{7}, x_{8}, x_{9}\right\}$. Now without loss of generality, let x_{4} be adjacent to x_{7}. Then x_{7} is adjacent to x_{3} or anyone of $\left\{x_{5}, x_{6}\right\}$. If x_{7} is adjacent to x_{3}, then x_{5} is adjacent to x_{8} and x_{9}. Then x_{6} is adjacent to x_{8} and x_{9}, which is a contradiction. Hence no graph exists. If x_{7} is adjacent to x_{5} (or equivalently x_{6}), then x_{5} is adjacent to x_{8} (or equivalently x_{9}). If x_{5} is adjacent to x_{8}, x_{3} is adjacent to x_{9} and x_{6} is adjacent to x_{8} and x_{9}. Hence $G \cong$ G_{2} given in Figure 4.2.
Lemma 4.7. If $\left\langle S_{1}\right\rangle=\left\langle S_{2}\right\rangle=K_{2} \cup K_{1}$, and $\left\langle S_{3}\right\rangle=\bar{K}_{3}$, then G is isomorphic to G_{2} given in Figure 4.2.
Proof. Let $x_{1} x_{2}$ be the edge in $\left\langle S_{1}\right\rangle$ and $x_{4} x_{5}$ be the edge in $\left\langle S_{2}\right\rangle$. Then x_{1} is adjacent to any one of $\left\{x_{4}, x_{5}\right\}$ (or) x_{6} (or) any one of $\left\{x_{7}, x_{8}, x_{9}\right\}$. In all the cases, it can be verified that G is isomorphic to G_{2} given in Figure 4.2.
Lemma 4.8. If $\left\langle S_{1}\right\rangle=\left\langle S_{2}\right\rangle=\left\langle S_{3}\right\rangle=K_{2} \cup K_{1}$, then G is isomorphic to G_{2} given in Figure 4.2.
Proof Let $x_{1} x_{2}$ be the edge in $\left\langle S_{1}\right\rangle, x_{4} x_{5}$ be the edge in $\left\langle S_{2}\right\rangle$ and $x_{7} x_{8}$ be the edge in $\left\langle S_{3}\right\rangle$.Then x_{1} is adjacent to any one of $\left\{x_{4}, x_{5}, x_{7}, x_{8}\right\}$ (or) any one of $\left\{x_{6}, x_{9}\right\}$. In all the cases, it can be verified that G is isomorphic to G_{2} given in Figure 4.2.
Lemma 4.9. If $\left\langle S_{1}\right\rangle=\left\langle S_{2}\right\rangle=\left\langle S_{3}\right\rangle=\bar{K}_{3}$, then G is isomorphic to G_{2} given in Figure 4.2.
Proof. In this case, we consider the following two cases, x_{1} is adjacent to any two of $\left\{x_{4}, x_{5}, x_{6}\right\}$ (or equivalently any two of $\left\{x_{7}, x_{8}, x_{9}\right\}$), (or) x_{1} is adjacent to any one of $\left\{x_{4}, x_{5}, x_{6}\right\}$ and any one of $\left\{x_{7}\right.$, $\left.x_{8}, x_{9}\right\}$.In both cases, it can be verified that G is isomorphic to G_{2} given in Figure 4.2.
Lemma 4.10. If $\left\langle S_{1}\right\rangle=K_{2} \cup K_{1},\left\langle S_{2}\right\rangle=\left\langle S_{3}\right\rangle=\bar{K}_{3}$, then G is isomorphic to the graph G_{2} given in Figure 4.2.
Proof. Since G is cubic, x_{1} is adjacent to any one of $\left\{x_{4}, x_{5}, x_{6}, x_{7}, x_{8}, x_{9}\right\}$. Without loss of generality, let x_{1} be adjacent to x_{4}. Then x_{2} is adjacent to x_{4} (or) x_{2} is adjacent to one of $\left\{x_{5}, x_{6}\right\}$ (or) x_{2} is adjacent to anyone of $\left\{x_{7}, x_{8}, x_{9}\right\}$.

In all the cases, it can be verified that G is isomorphic to G_{2} given in Figure 4.2.
Theorem 4.11. Let $G=(V, E)$ be a connected cubic graph on 12 vertices. Then G is isomorphic to any one of the graphs given in Figures 4.1 and 4.2 for which $\gamma_{c c}=\chi=3$.
Proof. If G is any one of the graphs given in Figure 4.1 and 4.2, then clearly $\gamma_{c c}=\chi=3$. Conversely, if $\gamma_{c c}=\chi=3$, then the proof follows from the Lemmas 4.1 to 4.10.

References

[1] F. Harary, Graph Theory, Reading Mass.
[2] W. Haynes Teresa, T. Stephen Hedetniemi, J. Peter Slater, Fundamentals of domination in graphs, Marcel Dekker, 1998, New York.
[3] W. Haynes Teresa, Paired domination in graphs, congr.Numer 150(2001).
[4] W. Haynes Teresa, Induced-Paired domination in graphs, Arts combin 57 (2000), 111-128
[5] G. Mahadevan, A. Selvam Avadyappan, A. Mydeen bibi, Cubic graphs with equal two domination number and chromatic number, International Journal of Information Technology and Knowledge Management, Vol.4,No.2(2011), 379-383.
[6] G. Mahadevan, J. Paulraj Joseph, Cubic graphs with equal domination number and chromatic number, Graph Theory and its applications, Narosa publications, India, 2004, 129-139.
[7] G. Mahadevan, J. Paulraj Joseph, On Cubic graphs with equal domination number and chromatic number, Graphs, Combinatorics, Algorithms and applications, Narosa publications, India, 2005, 97-107.
[8] G. Mahadevan, A. Selvam Avadayappan, A. Mydeen bibi, Extended Results on 2 domination number and chromatic number of a graph, International Journal of Mathematics and Soft computing, Vol.I,No.1(2011), 77-88
[9] G. Mahadevan, On Domination theory and related concepts in graphs, Ph.D. Thesis, 2005, Manonmaniam Sundaranar University, Tirunelveli. India.
[10] J. Paulraj Joseph, G. Mahadevan, Complementary connected domination number and chromatic number of a graph, Mathematical and computational Models, 2003, Allied publications, India.
[11] J. Paulraj Joseph, S. Arumugam, Domination and colouring in Graphs, International Journal of Management and systems, Vol 15, No.1(1999), $37-44$.
[12] J. Paulraj Joseph, S. Arumugam, On graphs with equal domination and connected domination numbers, Disc. Math. 206(1999), $45-49$.
[13] J. Paulraj Joseph, On graphs whose chromatic number equal domination parameters, International Journal of Management and Systems, Vol.17, No.1(2001), $69-76$.
[14] J. Topp and L. Volkmann, On graphs with equal domination and Independent domination numbers. Discrete Math., 96(1991), 75-80.
[15] L. Volkman, On graphs with equal domination and covering numbers, Disc. Math., 51(1994), 211-217.
[16] L. Volkman, On graphs with equal domination and edge independence number, Ars Combinatoria, Vol. 41(1995), 45 -56.

