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Abstract

A set S  V is a complementary connected dominating set if S is a dominating set of G and  the
induced subgraph< V - S > is connected. The complementary connected domination number
cc(G) is the minimum cardinality taken over all complementary connected dominating sets in G.
The chromatic number is the minimum number of colours required to colour all the vertices such
that adjacent vertices do not receive the same colour and is denoted by.  In this paper we
characterize all cubic graphs on 8, 10, 12 vertices for which cc==3.
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1 Introduction

Let G = (V, E) be a simple undirected graph. The degree of any vertex u in G is the number of
edges incident with u and is denoted by d (u). The minimum and maximum degree of a vertex is
denoted by (G) and (G) respectively. Pn denotes the path on n vertices. The vertex connectivity
(G) of a graph G is the minimum number of vertices whose removal results in a disconnected graph.
A colouring of a graph is an assignment of colours to its vertices so that no two adjacent vertices have
the same colour. An n-colouring of a graph G uses n colours. The chromatic number  is defined to be
the minimum n for which G has an n-colouring.  If (G) = k but (H) < k for every proper subgraph H
of G, then G is k-critical. A subset S of V is called a dominating set in G if every vertex in V-S is
adjacent to atleast one vertex in S. The minimum cardinality taken over all dominating sets in G is
called the domination number of G and is denoted by.

A Set S  V is a complementary connected dominating set if S is a dominating set of G and  the
induced subgraph < V- S > is connected. The complementary connected domination number cc(G) is
the minimum cardinality taken over all complementary connected dominating sets in G. The
chromatic number is the minimum number of colours required to colour all the vertices such that
adjacent vertices do not receive the same colour and is denoted by .

In [16], Volkman studied graphs for which  = 1.  He also   investigated graphs for which  =
0 [15].  In [12],J. Paulraj Joseph and S. Arumugam investigated graphs for which  = c.  In   [13],
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J. Paulraj Joseph analyzed graphs for which the chromatic numbers are equal to domination
parameters. In [5], G. Mahadevan A. Selvam Avadyappan and A. Mydeen bibi characterized all cubic
graphs on 8, 10, 12 vertices for which 2 = =3.  In [6, 7], G. Mahadevan and J. Paulraj Joseph
characterized all cubic graphs on 8, 10, 12 vertices for which  =  = 3.  In this paper we characterize
all cubic graphs on 8, 10, 12 vertices for which cc =  = 3.

Theorem 1.1.[10] For any graph G, cc (G)  n - 

Theorem 1.2.[10] For any graph G, cc (G) = n-1 if and only if G is a star. If G is not a star, then cc

(G)  n-2, (n 3)

Theorem 1.3.[1] For any Graph G,  (G)  (G) +1

Theorem 1.4.[2] If G is a graph of order p, with maximum degree , then    p / ( + 1).

Let G = (V, E) be a connected cubic graph of order p with cc =. By Theorem 1.3,  3. Clearly,  ≠
1. We consider cubic graphs for which cc =  = 3. By Theorem 1.4, cc  p/4. Since cc =3, 6 < p ≤
15 and p≠14. Since G is cubic we have p is even and hence the possible values of p are 8, 10 and 12.

2 Cubic graphs of order 8

Theorem 2.1. Let G be a connected cubic graph on 8 vertices. Then cc =  = 3 if and only if G is
isomorphic to any one of the graphs given in Figure 2.1.

Figure 2.1

Proof. Let S = {u, v, w} be a minimum complementary connected dominating set of G and V-S =
{x1,x2,x3,x4,x5 }. Clearly < S > ≠ K3. Hence we consider the following three cases.
Case 1. < S > = K3.

Without loss of generality, let u be adjacent to x1, x2 and x3. Then v is adjacent to atleast one of the
vertices of N (u) = {x1, x2, x3}.

Subcase (a). Let v be adjacent to only one vertex of N(u).

Without loss of generality, let v be adjacent to x1. Then v is adjacent to x4 and x5. Now w is
adjacent to x1 or not adjacent to x1. If w is adjacent to x1, then w is adjacent to x2 and x3(or equivalently
x4 and x5), or x2 (or equivalently x3) and x4 (or equivalently x5). If w is adjacent to x2 and x3, then x2 is
not adjacent to x3. Hence x2 must be adjacent to x4(or equivalently x5) and then x5 is adjacent to x3 and
x4, which is a contradiction. Hence no such graph exists. If w is adjacent to x2 and x4, then x2 is not
adjacent to x4. Hence x2 is adjacent to x3 or x5. Then in both the cases no graph exists. If w is not
adjacent to x1. Without loss of generality, let w be adjacent to x2, x3 and x4. Then x2 is adjacent to x3 or
x1 or x4 or x5. If x2 is adjacent to x3 or x1 or x4, then no graph exists. If x2 is adjacent to x5, then x4 is
adjacent to x5 or x3 or x1. Then also no graph exists.
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Subcase (b). Let v be adjacent to two vertices of N(u) say x1 and x2.

Without loss of generality, let v be adjacent to x4. Now w is adjacent to x1 (or equivalently x2) or
not adjacent to x1 (or equivalently x2). If w is adjacent to x1, then x2 is adjacent to x3 (or equivalently
x4) or w or x5. Then in all the cases, {u,v,w} is not a complementary connected dominating set, which
is a contradiction. If w is not adjacent to x1, then without loss of generality, let w be adjacent to x3, x4

and x5. Now x5 is adjacent to x3 and x4 (or) x1 and x2 (or) x1 and x4 (or equivalently x2 and x3). In all the
cases, {u,v,w} is not a complementary connected dominating set, which is a contradiction.

Subcase (c). Let v be adjacent to all the vertices of N(u).
Now x2 is adjacent to x1(or equivalently x3), or w (or equivalently x4 or x5). Since G is cubic, x2

cannot be adjacent to x1(or equivalently x3). Hence x2 must be adjacent to w. If x2 is adjacent to w then
w is adjacent to x1 and x3 (or) x4 and x5 (or) x1 and x5. Since G is cubic, w cannot be adjacent to x1 and
x3. Also w cannot be adjacent to x1 and x5. Hence w must be adjacent to x4 and x5. Then x1 must be
adjacent to x4 and x5 is adjacent to x3 and x4. Consequently, {u,v,w} is not a complementary connected
dominating set, which is a contradiction.

Case 2. <S> = K2K1.

Let uv be an edge. Without loss of generality, let u be adjacent to x1 and x2. Now w is adjacent to
x1, x2 and anyone of {x3,x4,x5}(or) w is adjacent to x1(or equivalently x2) and any two of {x3,x4,x5}. If w
is adjacent to x1, x2 and x3, then x4 is adjacent to x1(or equivalently x2) or not adjacent to x1(or
equivalently x2). If x4 is not adjacent to x1 (or equivalently x2), then x4 is adjacent to x3, v and x5. Also
x5 is adjacent to x1 and x2 is adjacent to x3. Hence G  G1. If x4 is adjacent to x1, then x5 is adjacent to
x4 or not adjacent to x4. If x5 is adjacent to x4, then x4 is adjacent to v and x2 is adjacent to x3.Hence G 
G1. If x4 is adjacent to x1, then x5 is adjacent to x4, x2 and x3. Hence G  G1. If x4 is adjacent to x1, then
x5 is not adjacent to x4. Also x5 is adjacent to x2, x3 and v, and x3 is adjacent to x4 and x4 is adjacent to v.
Hence G  G1. If w is adjacent to x1, x2 and x3, then x5 is adjacent to x1 or not adjacent to x1. If x5 is
adjacent to x1, x2 and x4, then x3 is adjacent to x2 and v. Also x4 is adjacent to v. Hence G  G1. If x5 is
not adjacent to x1, then x5 is adjacent to any three of {x3, x4, v, x2}. Let x5 be adjacent to x3, x4 and v.
Also x4 is adjacent to x1 and x2 is adjacent to {x3, v}. Hence G  G1.

Case 3. <S> = P3.

Let v be adjacent to u and w. Without loss of generality, let v be adjacent to x1 and u be adjacent to
{x1, x2}. Now x2 is adjacent to u, w and anyone of {x3, x4, x5}or w and any two of {x3,x4,x5}. If x2 is
adjacent to u, w and x3 then x4 is adjacent to w (or equivalently u) or not adjacent to w (or equivalently
u). If x4 is adjacent to w (or equivalently u), then x5 is adjacent to x4 or not adjacent to x4. If x5 is
adjacent to x1, x3 and x4, then x4 is adjacent to x3 and x3 is adjacent to x2. Hence G  G1. If x5 is not
adjacent to x4, then x5 is adjacent to x1, x2 and x3, so that {u,v,w} is not a complementary connected
dominating set, which is a contradiction. If x4 is not adjacent to w (or equivalently u), then x4 is
adjacent to x5, x3 and x1. Also x3 is adjacent to {x2, w} and x5 is adjacent to {x1, w}. Hence G  G1. If
x2 is adjacent to w, x3 and x4, then x5 is adjacent to w (or) not adjacent to w. If x5 is adjacent to {w, x1,
x4}, then x3 is adjacent to {x4, u}. Hence G  G1. If x5 is not adjacent to w, then x5 is adjacent to any
three of {x1, u, x3, x4}. Let x5 be adjacent to x1, u, x3. Also x4 is adjacent to x3 and x5. Hence G  G3. 

3 Cubic graphs of order 10

Throughout this section, G is a connected cubic graph on 10 vertices with V(G)={u, v, w, x1, x2, x3,
x4, x5, x6, x7}. Let S = {u, v, w} be a minimum complementary connected dominating set. Let S1 = N
(u) = {x1, x2, x3}. Clearly <S> ≠ K3 or P3. Hence <S> = K2 K1 or K3. If <S> =K2 K1 then vw be
the edge in <S>. Let x6 and x7 be the two remaining vertices adjacent to v and also x4 and x5 are the
remaining two vertices adjacent to w. Let S2= {x6, x7} and S3 = {x4, x5}.
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Lemma 3.1. Let G be a connected cubic graph on 10 vertices with V(G)={u, v, w, x1, x2, x3, x4, x5, x6,

x7}. Let S = {u, v, w} be a minimum complementary connected dominating set. Let S1 = N (u) = {x1,
x2, x3}. If<S> =K2K1 and <S1> = P3, then G is isomorphic to G1 given in Figure 3.1.

Figure 3.1

Proof. Without loss of generality, Let <S1> = P3 = {x1, x2, x3}. We consider the following three
cases.

Case 1. <S2> = <S3> = K2.

Without loss of generality, let x1 be adjacent to x7. Since G is cubic, x3 is adjacent to x4 and x5 is
adjacent to x6. Hence G  G1.

Case 2. <S2> = K2 and <S3> = K2.

Let x5 is adjacent to x6 and x7 or x1 and x3 or x6 (or equivalently x7) and x1(or equivalently x6). In all
the above situation S fails to be a complementary connected dominating set, which is a contradiction.
Hence no graph exists.

Case 3. <S2> = <S3> = K2.

Since G is cubic, without loss of generality let x1 be adjacent to x6. Also x6 is adjacent to x4 (or
equivalently x5) and x5 is adjacent to x3 and x7 and also x7 is adjacent to x4. Hence G  G1. 

Lemma 3.2. If <S>= K2K1 and <S1> =K3, then G is isomorphic to any one of the graphs given in
Figure 3.2.

Figure 3.2
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Proof. We consider the following three cases.

Case 1. <S2> = <S3> = K2.

Since G is cubic, the three vertices in S1 are to be incident with 6 edges. But the four vertices in S2

and S3 can be incident with four edges. This is a contradiction. Hence no graph exists in this case.

Case 2. <S2> = K2 and <S3> = K2.

Now x1 is adjacent to x6 and x7 or x4 and x5 or x6 (or equivalently x5). If x1 is adjacent to x6 and x7

then {u, v, w} is not a complementary connected dominating set, which is a contradiction. Hence no
graph exists. If x1 is adjacent to x4 and x5, then x2 is adjacent to x6 and x7, or x4 and x5, x6 (or
equivalently x7) and x4 (or equivalently x5). If x2 is adjacent to x6 and x4, then x3 is adjacent to x5 and
x7. Hence G  G2. If x1 is adjacent to x6 and x4 then x2 is adjacent to x7 and x5 or x4 and x5. If x2 is
adjacent to x7 and x5, then x3 is adjacent to x4 and x5. Hence G  G2. If x2 is adjacent to x4 and x5, then
x3 is adjacent to x5 and x7. Hence G  G2.

Case 3. <S2> = <S3> = K2.

x1 is adjacent to x6 and x7 (or equivalently x4 and x5) or x6 (or equivalently x7) and x4 (or
equivalently x7) and x4 (or equivalently x5). If x1 is adjacent to x6 and x7, then x2 is adjacent to x4 and x5

or x6(or equivalently x7) and x4 (or equivalently x5). If x2 is adjacent to x4 and x5, then x3 is adjacent to
x6 (or equivalently x7) and x4 (or equivalently x5) and then x5 is adjacent to x7 and G  G2. If x2 is
adjacent to x6 and x4, then x5 is adjacent to x7 and x3 and also x3 is adjacent to x4. Hence G  G3. If x1 is
adjacent to x4 and x6, then x2 is adjacent to x4 and x6 or x5 and x7(or) x4 and x5 (or equivalently x6 and
x7) or x4 and x7 (or equivalently x5 and x6). If x2 is adjacent to x4 and x6, then x3 is adjacent to x5 and x7

and then x7 is adjacent to x5 which is a contradiction. Hence no graph exists. If x2 is adjacent to x5 and
x7, then x3 is adjacent to x6 and x4, or x7 and x5 or x6 and x5(or equivalently x4 and x5). If x3 is adjacent
to x6 and x4, then x5 is adjacent to x7 which is a contradiction and no graph exists. If x3 is adjacent to x7

and x5, then x4 is adjacent to x6 which is a contradiction and no graph exists. If x3 is adjacent to x5 and
x6, then x4 is adjacent to x7 and hence G  G3. If x2 is adjacent to x4 and x5, then x3 is adjacent to x6 and
x7 and then x7 is adjacent to x5. Hence G  G2. If x2 is adjacent to x4 and x7, then x3 is adjacent to x6 and
x5 or x5 and x7. If x3 is adjacent to x5 and x6, then x5 is adjacent to x7. Hence G  G4. If x3 is adjacent to
x7 and x5, then x5 is adjacent to x6. Hence G  G4. 

Lemma 3.3. If <S> = K2 K1 and <S1> = K2K1, then G is isomorphic to either G5 given in Figure
3.1 or G5 given in Figure 3.3.

Figure 3.3
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Proof. Let x1x2 be the edge in <S1>. We consider the following three cases.

Case 1. <S2> = <S3> = K2.

Now x3 is adjacent to x6 and x7 (or equivalently x4 and x5) or x4 and x6 (or equivalently x5 and x7). If
x3 is adjacent to x6 and x7, then x2 is adjacent to x4 (or equivalently x5). This implies that x1 is adjacent
to x5, which is a contradiction. Hence no graph exists. If x3 is adjacent to x4 and x6, then x1 is adjacent
to x5(or equivalently x7). And then x2 is adjacent to x7. Hence G  G5.

Case 2. <S2> =K2 and <S3> = K2

Since G is cubic x3 is adjacent to x4 and x5 or x6 (or equivalently x7) and x4(or equivalently x5). If x3

is adjacent to x4 and x5, then x4 is adjacent to x1 (or equivalently x2) or x6 (or equivalently x7).  If x4 is
adjacent to x1, then x5 is adjacent to x6 or equivalently x7) and x7 is adjacent to x2. Hence G  G1. If x4

is adjacent to x6, then x5 is adjacent to x1(or equivalently x2) and then x2 is adjacent to x7. Hence G G1.
If x3 is adjacent to x6 and x4, then x5 is adjacent to x1 and x2 or x1 (or equivalently x2 ) and x7. If x5 is
adjacent to x1 and x2, then x4 is adjacent to x7 which is contradiction. Hence no graph exists. If x5 is
adjacent to x1 and x7, then x2 is adjacent to x4. Hence G  G1.

Case 3. <S2> = <S3> = K2.

Now x3 is adjacent to x4 and x5 (or equivalently x6 and x7) or x4 and x6 (or equivalently x5 and x7). If
x3 is adjacent to x4 and x5 which is a contradiction. Hence no graph exists. If x3 is adjacent to x4 and x6,
then x5 is adjacent to x6 and x7 or x1 and x6 or x1 and x7. If x5 is adjacent to x6 and x7, then x7 is adjacent
to x1 (or equivalently x2) and then x2 is adjacent to x4. Hence G  G1. If x5 is adjacent to x1 and x6 then
x7 is adjacent to x2 and x4. . Hence G  G1. If x5 is adjacent to x1 and x7 then x2 is adjacent to x6 or x7. If
x2 is adjacent to x6, then x7 is adjacent to x4. Hence G  G1. If x2 is adjacent to x7, then x6 is adjacent to
x4, which is a contradiction. Hence no graph exists. 

Lemma 3.4. There is no connected cubic graph on 10 vertices with <S> = K3 and <S1> =P3.

Proof. If <S> = K3, then v can be adjacent to two of the three vertices not in N(u). It is adjacent to
two vertices say x4 and x5. Let S2 = {x4, x5}, then w be adjacent to two other vertices say x6, x7. Let S3

= {x6, x7}. Let <S1> = P3 = x1x2x3. We consider the following three cases.

Case 1. <S2> = <S3> = K2

Now x1 is adjacent to anyone of {x4, x5, v} (or equivalently any one of {x6, x7, w}). Since G is
cubic, without loss of generality let x1 be adjacent to v, and x3 be adjacent to w. Then the remaining
five vertices must be incident with one vertex, which is a contradiction. Hence no graph exists.

Case 2. <S2> = K2 and <S3> =K2.

Let x4 x5 be the edge in S2. If v is adjacent to x6 (or equivalently x7) then x7 is adjacent to x1 and x3

(or) x4 and x5 (or) x4 (or equivalently x5) and x1(or equivalently x3).

Subcase (a). If x7 is adjacent to x1 and x3 then x6 is adjacent to x4 (or equivalently x5) and w is adjacent
to x5, which is a contradiction. Hence no graph exists.

Subcase (b). If x7 is adjacent to x1 and x4, then x5 is adjacent to x6 or w. If x5 is adjacent to x6 then w is
adjacent to x3, which is a contradiction. Hence no graph exists. If x5 is adjacent to w then x3 is adjacent
to x6, which is a contradiction. Hence no graph exists.

Subcase (c). If x7 is adjacent to x5 and x4 then x6 is adjacent to x1(or equivalently x3). Then w is
adjacent to x3, which is a contradiction. Hence no graph exists.

Case 3. <S2> = <S3> = K2.

Now v is adjacent to x1 (or equivalently x3) or x6 (or equivalently x7) which is impossible. Hence no
graph exists. 
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Lemma 3.5. If < S > = K3 and <S1> = K2 K1, then G  G5 given in Figure 3.3 or G  G1 given in
Figure 3.1

Proof. Let x1x2 be the edge in <S1>. We consider the following three cases.

Case 1. <S2> = <S3> = K2.
x1 is adjacent to any one of the vertices {x4, x5, v} (or equivalently any one of {x6, x7, w}) without

loss of generality, let x2 be adjacent to w. Then it can be verified that no cubic graph exists satisfying
the hypothesis.

Case 2. < S2> = K2 and <S3> = K2.
Now x1 is adjacent to   any one of {v, x4, x5} (or) w (or) x6 (or equivalently x7). If x1 is adjacent to v,

then w is adjacent to x3 or x4 (or equivalently x5) or x2. If w is adjacent to x3 then x2 is adjacent to x7

and then x6 is adjacent to x3 and x4 and also x7 is adjacent to x5. Hence by Lemma 3.3, G  G5. If w is
adjacent to x4, then x6 is adjacent to x2 and x3 and then x3 is adjacent to x7 and also x7 is adjacent to x5.
Hence G  G5, which falls under Lemma 3.3. If w is adjacent to x2, then x5 is adjacent to x3 or x6 (or
equivalently x7). If x5 is adjacent to x3, then x3 is adjacent to x6 and x5 which is a contradiction. Hence
no graph exists. If x5 is adjacent to x6, then x7 is adjacent to x3 and x4 which is contradiction. Hence no
graph exists. If x1 is adjacent to w, then x2 is adjacent to x4 and then x7 is adjacent to x5 and x3 and also
x6 is adjacent to x3 and v. Hence G  G5, which falls under Lemma 3.3.If x1 is adjacent to x6, then x6 is
adjacent to any one of {v, x4, x5} or x3 or x2. If x6 is adjacent to v, then w is adjacent to x3 or x2 or x4 (or
equivalently x5). If w is adjacent to x3, then x2 is adjacent to x4 (or equivalently x5) or x7. If x2 is
adjacent to x4, then x7 is adjacent to x3 and x5. Hence G  G5, which falls under Lemma 3.3. .If x2 is
adjacent to x7, then x7 is adjacent to x4 (or equivalently x5) and then x3 is adjacent to x5. Hence GG1,
as in Figure 3.1. which falls under Lemma 3.1.. If w is adjacent to x2,or x4 we get a contradiction and
hence no graph exists. If x6 is adjacent to x3, then x3 is adjacent to x4 and then x3 is adjacent to x4 and
then x2 is adjacent to w and x7 is adjacent to v. Hence G  G1 given in Figure 3.1. If x6 is adjacent to x2

then also we get a contradiction and hence no graph exists.

Case 3. <S2> = <S3> =K2

If x1 be adjacent to v ( or equivalently w ) or x4 ( or equivalently x5 ) { or equivalently x6 ( or
equivalently x7 ) }. In all the cases no new graph exists. 

Lemma 3.6. There is no connected cubic graph on 10 vertices with < S > =K3 and <S1>=K3.

Proof. We consider the following three cases.

Case 1. < S2>= < S3> = K2.

Let x4x5 be the edge in <S2> and x6x7 be the edge in <S3>. Now x1 is adjacent to any two of
{v,x4,x5} (or equivalently any two of { w ,x6, x7}) or any of { v,x4,x5 } and anyone of {w, x6 ,x7}. In all
the above cases,{u,v,w} is not a complementary connected dominating set ,which is a contradiction.

Case 2. < S2> = K2 and < S3 >= K2.
Let w be adjacent to any one of {x1,x2,x3}. Let w be adjacent to x1. In this case also {u,v,w} is not a

complementary connected dominating set, which is a contradiction.

Case 3. < S2> = <S3> = K2.
In this case, v is adjacent to x1 (or equivalently x3) or x6 (or equivalently x7). In the cases, {u, v, w}

is not a complementary connected dominating set, which is a contradiction. 

Theorem 3.7. Let G is connected cubic graph on 10 vertices. Then γcc = χ = 3 if and only if G is
isomorphic to any one of graphs given in Figures 3.3, 3.2 and 3.3.

Proof. If G is any one of the graphs given in Figure 3.1, 3.2 and 3.3, then clearly cc =  = 3.
Conversely if cc =  = 3, then the proof follows from the Lemmas 3.1 to 3.6. 
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4 Cubic graphs on 12 vertices

Let G be a connected cubic graph on 12 vertices with V(G)={u, v, w, x1, x2, x3, x4, x5, x6, x7, x8, x9}.
Let S = {u, v, w} be a complementary connected dominating set.

Let <S1> = N (u) = {x1, x2, x3}. Let <S2> = N (v) = {x4, x5, x6} and <S3> =N (w) ={x7, x8,
x9}.Then we consider the following cases:

Case 1: < S1> = < S2> = < S3>=P3.

Case 2: < S1> = < S2> = P3 and < S3> = K2K1.

Case 3: < S1> = < S2> = P3, and < S3> = K3

Case 4: < S1> = P3 and < S2> = <S3> =K2K1.

Case 5: < S1> = P3 and < S2> = K3, and < S3> = K2K1.

Case 6: < S1> = P3 and < S2> = < S3> = K3.

Case 7: < S1> = < S2> = K2K1, < S3> = K3.

Case 8: < S1> = < S2> = < S3> = K2K1.

Case 9: < S1> = < S2> = < S3> =K3.

Case 10: < S1> = K2K1, < S2> = < S3> = K3.

Lemma 4.1. If < S1> = < S2> = < S3> = P3, then G is isomorphic to G1 given in Figure 4.1.

Figure 4.1

Proof. Let< S1> = P3 = x1 x2 x3, < S2> = P3 = x4x5 x6 and < S3> = P3 = x7 x8 x9.Without loss of
generality, let x1 be adjacent to x4. Since G is cubic, x3 must be adjacent to x7 or x9. Without loss of
generality, let x3 be adjacent to x4. Then x6 must be adjacent to x9. Hence G  G1. 

Lemma 4.2. If < S1> = < S2> = P3 and < S3> = K2K1 then G is isomorphic to the graph G2 given in
Figure 4.2.

Proof. Let < S1> = P3 = x1 x2 x3, < S2> = P3 = x4 x5 x6. Let x7x8 be the edge in < S3>. Now x7 is
adjacent to anyone of {x1, x3, x4, x6}. Without loss of generality, let x7 be adjacent to x1. Then x8 is
adjacent to x3 or anyone of {x4, x6}. If x8 is adjacent to x3 then x9 must be adjacent to x4 and x6, which
is a contradiction. Hence no graph exists. If x8 is adjacent to x4, then x9 must be adjacent to x3 and x6.
Hence G  G2. 
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Figure 4.2

Lemma 4.3. There exists no connected cubic graph on 12 vertices with < S1> = < S2> = P3 and
< S3> = K3.
Proof. Let<S1> = P3 = x1, x2, x3, < S2> = P3 = x4, x5, x6. Now x7 is adjacent to one of {x1, x3} and one
of {x4, x6} (or) x7 is adjacent to x1 and x3 (or equivalently x4 and x6). In both the cases cubic graph does
not exists. 

Lemma 4.4. If < S1> = P3 and < S2> = < S3> = K2 K1, then G isomorphic to the graph G2 given in
Figure 4.2.

Proof. Let < S1> = x1, x2, x3. Let x4x5 be the edge in < S2> and x7x8 be the edge in < S3>. We
consider the following two cases.
Case 1. Let x1 be adjacent to any one of {x4, x5, x7, x8}. Without loss of generality, let x1 be adjacent to
x4. Since G is cubic x3 is adjacent to x9 or x7(or equivalently x8). If x3 is adjacent to x9 is adjacent to x5

or x6. If x9 is adjacent to x5, then x6 is adjacent to x7 and x8 which is a contradiction. Hence no graph
exists. If x9 is adjacent to x6, then x6 is adjacent to (or equivalently x8) and x5 is adjacent to x8. Hence G
 G2 given in Figure 4.2. If x3 is adjacent to x7 ( or equivalently x8 ) then since G is cubic, x8 must be
adjacent to x6 and x9 is adjacent to x5 and x6. Hence G  G2 given in Figure 4.2.

Case 2. Let x1 be adjacent to any one of {x6, x9}. Without loss of generality, let x1 be adjacent to x6.
Now x4 is adjacent to x3 or x7(or equivalently x8) or x9. Since G is cubic, x4 is not adjacent to x3. If x4 is
adjacent to x7, then x5 is adjacent to x8 or x9. If x5 is adjacent to x8, then x9 is adjacent to x3 and x6,
which is a contradiction. Hence no graph exists. If x5 is adjacent to x9, then x9 is adjacent to x3 or x6. If
x9 is adjacent to x3 or x6. If x9 is adjacent to x3, then x6 is adjacent to x8. Hence G  G2 given in Figure
4.2. If x9 is adjacent to x6, then x3 is adjacent to x8. Hence G  G2 given in Figure 4.2. If x4 is adjacent
to x9, then x5 is adjacent to x8 and then x3 is adjacent to x7 and also x6 is adjacent to x9. Hence G  G2

given in Figure 4.2. 

Lemma 4.5. If < S1> = P3 and < S2> = K3 and < S3> = K2 K1, then G is isomorphic to G2 given in
Figure 4.2.
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x3
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G2
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Proof. If < S1> = x1x2x3. Let x7 x8 be the edge in < S3>. Since G is cubic, x1 must be adjacent to any
one of {x4, x5, x6}. Without loss of generality let x1 be adjacent to x4. We consider the following three
cases.

Case 1. x4 is adjacent to x3. In this case, x5 is adjacent to x7 (or equivalently x8) and x9 and then x6 is
adjacent to x8 and x9 which is a contradiction. Hence no graph exists.

Case 2. x4 is adjacent to x7 (or equivalently x8). In this case, x9 is adjacent to x3 and x5 (or equivalently
x6) (or) x9 is adjacent to x5 and x6. Since G is cubic, x9 cannot be adjacent to both x3 and x5. If x9 is
adjacent to x5 and x6, then x5 is adjacent to x3 or x5. If x5 is adjacent to x3, then x6 is adjacent to x8.
Hence G G2 given in Figure 4.2. If x5 is adjacent to x8, then x3 is adjacent to x6. Hence G  G2 given
in Figure 4.2.

Case 3. x4 is adjacent to x9. Since G is cubic, x3 must be adjacent to any one of {x5, x6}. Let x3 be
adjacent to x5. Now x6 is adjacent to both x7 and x8 (or) x6 is adjacent to one of {x7, x8} and x9. If x6 is
adjacent to x7 and x8, then x5 is adjacent to x9, which is a contradiction. Hence no graph exists. If x6 is
adjacent to x7 and x9, then x5 is adjacent to x8. Hence, G G2 given in Figure 4.2. 

Lemma 4.6. If < S1> = P3 and < S2> = < S3> = K3, then G is isomorphic to G2 given in Figure 4.2.

Proof. Let < S1> = x1 x2 x3. Now x1 is adjacent to anyone of {x4, x5, x6, x7, x8, x9}, without loss of
generality, let x1 be adjacent to x4. Since G is cubic, x4 is adjacent to anyone of {x7, x8, x9}. Now
without loss of generality, let x4 be adjacent to x7. Then x7 is adjacent to x3 or anyone of {x5, x6}. If x7 is
adjacent to x3, then x5 is adjacent to x8 and x9. Then x6 is adjacent to x8 and x9, which is a contradiction.
Hence no graph exists. If x7 is adjacent to x5 (or equivalently x6), then x5 is adjacent to x8(or
equivalently x9). If x5 is adjacent to x8, x3 is adjacent to x9 and x6 is adjacent to x8 and x9. Hence G 
G2 given in Figure 4.2. 

Lemma 4.7. If < S1> = < S2> = K2 K1, and < S3> = K3, then G is isomorphic to G2 given in
Figure 4.2.

Proof. Let x1x2 be the edge in <S1> and x4x5 be the edge in <S2>. Then x1 is adjacent to any one of
{x4, x5} (or) x6 (or) any one of {x7, x8, x9}. In all the cases, it can be verified that G is isomorphic to G2

given in Figure 4.2. 

Lemma 4.8. If < S1> = < S2> = < S3> =K2 K1, then G is isomorphic to G2 given in Figure 4.2.

Proof Let x1x2 be the edge in <S1>, x4x5 be the edge in <S2>and x7x8 be the edge in <S3>.Then x1 is
adjacent to any one of {x4, x5, x7, x8} (or) any one of {x6, x9}. In all the cases, it can be verified that G
is isomorphic to G2 given in Figure 4.2. 

Lemma 4.9. If < S1> = < S2> = < S3> = K3, then G is isomorphic to G2 given in Figure 4.2.

Proof. In this case, we consider the following two cases, x1 is adjacent to any two of {x4, x5, x6} (or
equivalently any two of {x7, x8, x9}),  (or) x1 is adjacent to any one of {x4, x5, x6}and any one of { x7,
x8, x9}.In both cases, it can be verified that G is isomorphic to G2 given in Figure 4.2. 

Lemma 4.10. If < S1> = K2 K1, < S2> = < S3> = K3, then G is isomorphic to the graph G2 given
in Figure 4.2.

Proof. Since G is cubic, x1 is adjacent to any one of {x4, x5, x6, x7, x8, x9}. Without loss of generality,
let x1 be adjacent to x4.  Then x2 is adjacent to x4 (or) x2 is adjacent to one of {x5, x6} (or) x2 is adjacent
to anyone of {x7, x8, x9}.

In all the cases, it can be verified that G is isomorphic to G2 given in Figure 4.2. 

Theorem 4.11. Let G= (V, E) be a connected cubic graph on 12 vertices. Then G is isomorphic to any
one of the graphs given in Figures 4.1 and 4.2 for which γcc = χ = 3.

Proof. If G is any one of the graphs given in Figure 4.1 and 4.2, then clearly cc =  = 3. Conversely,
if cc =  = 3, then the proof follows from the Lemmas 4.1 to 4.10. 



Characterization of complementary connected domination number of a graph 129

References

[1] F. Harary, Graph Theory, Reading Mass.

[2] W. Haynes Teresa, T. Stephen Hedetniemi, J. Peter Slater, Fundamentals of domination in
graphs, Marcel Dekker, 1998, New York.

[3] W. Haynes Teresa, Paired domination in graphs, congr.Numer 150(2001).

[4] W. Haynes Teresa, Induced-Paired domination in graphs, Arts combin 57 (2000), 111-128.

[5] G. Mahadevan, A. Selvam Avadyappan, A. Mydeen bibi, Cubic  graphs  with equal two
domination number and chromatic number, International Journal of Information Technology and
Knowledge Management, Vol.4,No.2(2011), 379-383.

[6] G. Mahadevan, J. Paulraj  Joseph, Cubic graphs with equal domination number and chromatic
number, Graph  Theory and its applications,  Narosa publications, India, 2004, 129  139.

[7] G. Mahadevan, J. Paulraj  Joseph, On Cubic graphs with equal domination number and
chromatic number, Graphs, Combinatorics, Algorithms and applications, Narosa publications,
India, 2005, 97-107.

[8] G. Mahadevan, A. Selvam Avadayappan, A. Mydeen bibi, Extended Results on 2 domination
number and chromatic number of a graph, International Journal of Mathematics and Soft
computing, Vol.I,No.1(2011), 77-88.

[9] G. Mahadevan, On Domination theory and related concepts in graphs, Ph.D. Thesis, 2005,
Manonmaniam Sundaranar University, Tirunelveli. India.

[10] J. Paulraj Joseph, G. Mahadevan, Complementary connected domination number and chromatic
number of a graph, Mathematical and computational Models, 2003, Allied publications, India.

[11] J. Paulraj Joseph, S. Arumugam, Domination   and colouring in Graphs, International Journal of
Management and systems, Vol 15, No.1(1999) , 37 – 44.

[12] J. Paulraj Joseph, S. Arumugam, On graphs with equal domination and connected domination
numbers, Disc. Math. 206(1999), 45 – 49.

[13] J. Paulraj  Joseph, On  graphs whose  chromatic   number equal domination parameters,
International Journal of Management and Systems, Vol.17, No.1(2001), 69  76.

[14] J. Topp and L. Volkmann, On graphs with equal domination and Independent domination
numbers. Discrete Math., 96(1991), 75-80.

[15] L. Volkman, On graphs with equal domination and covering numbers, Disc. Math., 51(1994),
211-217.

[16] L. Volkman, On  graphs  with  equal domination  and edge independence  number, Ars
Combinatoria,  Vol. 41(1995), 45 56.


