Labeling of finite union of paths

K. Murugan, A. Subramanian
Department of Mathematics, The M.D.T.Hindu College, Tirunelveli-627 010, Tamilnadu, INDIA.
E-mail:murugan_mdt@yahoo.com, asmani1963@gmail.com

Abstract

In this paper we study the skolem difference mean labeling of finite union of paths.

Keywords: Skolem difference mean labeling, Skolem difference mean graphs, finite union of graphs.
AMS Subject Classification (2010): 05C78.

1 Introduction

Throughout this paper we consider only finite, undirected, simple graphs. Let G be a graph with p vertices and q edges. For all terminologies and notations we follow [2]. The following definitions are necessary for the present study. There are several types of labeling and a detailed survey can be found in [3]. The concept of skolem difference mean labeling was introduced in [4] and the results proved in [1] motivated the author to study the skolem difference mean labeling of finite union of paths.
Definition 1.1. A path is a walk if all the points and lines are distinct. A path on n vertices is denoted by P_{n}.
Definition 1.2. Let G_{1} and G_{2} be two graphs having point sets V_{1} and V_{2} and line sets X_{1} and X_{2} respectively. Then their union $G_{1} U G_{2}$ has $V=V_{1} U V_{2}$ and $X=X_{1} U X_{2}$.
Definition 1.3. A graph labeling is an assignment of integers to the vertices or edges or both, subject to certain conditions.
Definition 1.4. A graph $G(V, E)$ with p vertices and q edges is said to have skolem difference mean labeling if it is possible to label the vertices $x \varepsilon V$ with distinct elements $f(x)$ from $1,2,3 \ldots p+q$ in such a way that the edge $e=u v$ is labeled with $\frac{|f(u)-f(v)|}{2}$ if $|f(u)-f(v)|$ is even and $\frac{|f(u)-f(v)|+1}{2}$ if $|f(u)-f(v)|$ is odd and the resulting labels of the edges are distinct and from $1,2,3 \ldots q$. A graph that admits skolem difference mean labeling is called skolem difference mean graph.
The skolem difference mean labelings of the path P_{6} is given in Figure 1.

.Figure 1: Skolem difference mean labeling of P_{6}.

2 Main Results

Theorem 2.1. The graph $m P_{n}$ is skolem difference mean for all $m \geq 1$ and $n>1$.
Proof. Let G be the graph $m P_{n}$

Let $V(G)=\left\{v_{i j} / l \triangleleft \leq m, l \triangleleft \leq n\right\}$ and $E(G)=\left\{v_{i j} v_{i j+1} / l \triangleleft \leq m, l \unlhd \leq n-1\right\}$ Define $f: V(G) \rightarrow\{1,2 \ldots 2 m n-m\}$ as follows．Let $m \geq 1$ be odd or even．
Case（i）．n is odd．
$v_{i 2 j+l}=2 m n-m-n(i-1)-2 j ; 1 \triangleleft \leq m, 0 \leftrightarrows \leq \frac{n-1}{2} \quad v_{i 2 j}=m+(n-2)(\mathrm{i}-1)+2(\mathrm{j}-1) ; 1 \leq \mathrm{m}, 1 \leftrightarrows \leq \frac{n-1}{2}$
Case（ii）．n is even．
$v_{i 2 j+1}=2 m n-m-(n-1)(i-1)-2 j ; 1 \unlhd \leftrightarrows m, 0 \leftrightarrows<\frac{n}{2} \quad v_{i 2 j}=m+(n-1)(i-1)+2(j-1) ; 1 \triangleleft \measuredangle m, 1 \rightrightarrows \leq$
$\frac{n}{2}$
In both the cases the induced edge labels are distinct and from $1,2 \ldots m n-m$ ．Hence the theorem．
The skolem difference mean labelings of the graphs $4 P_{5}$ and $5 P_{4}$ are given in Figure 2.

Figure 2：Skolem difference mean labelings of the graphs $4 P_{5}$ and $5 P_{4}$ ．
Theorem 2．2．The graph $m P_{n} U n P_{m}$ is skolem difference mean for all $\mathrm{m}, \mathrm{n}>1$ ．
Proof．Let G be the graph $m P_{n} U n P_{m}$
Let $V(G)=\left\{v_{i j}, u_{i j} / l \triangleleft \leq m, l 千 \leq n\right\}$ and

Define $f: V(G)) \rightarrow\{1,2 \ldots 4 m n-m-n\}$ as follows：
Case（i）．Both m and n are odd．
$v_{i 2 j+1}=4 m n-m-n i-2 j ; 1 \leq \leq m, 0 \leq j \leq \frac{n-1}{2}$
$v_{i 2 j}=m+n-2+(n-2)(i-1)+2 j ; 1 \triangleleft \leq m, 1 孔 \leq \frac{n-1}{2}$
$u_{i 2 j+1}=3 m n-n-m i-2 j ; 1 \triangleleft \leq n, 0 \leftrightarrows \leq \frac{m-1}{2}$
$u_{i 2 j=}=m+n-2+m(n-2)+(m-2)(i-1)+2 j ; 1$ 勺́nn， 1 夕 $\leq \frac{m-1}{2}$
Case（ii）．n is odd and m is odd or even．Without loss of generality let us take m as even．
$v_{i 2 j+1}=4 m n-m-n i-2 j ; 1 \leq 4 \leq m, 0 \triangleleft \leq \frac{n-1}{2}$
$v_{i 2 j}=m+n-2+(n-2)(i-1)+2 j ; 1 \triangleleft \leq n, 1 乌 \leq \frac{n-1}{2}$
$u_{i 2 j+1}=3 m n-n+1-(m-1) i-2 j ; 1 \triangleleft \leq n, 1$ 勺ை $\leq \frac{m}{2}$
$\left.u_{i 2 j}=m+(n-2)(m-1)+2 n-4+(m-1)(i-1)+2 j ; 1\right\lrcorner \leq n, 1 孔 \leq \frac{m}{2}$

Case（iii）．m and n are even．
$v_{i 2 j+1}=4 m n-m-n-(n-1)(i-1)-2 j ; 1 \triangleleft \leq m, 0 \triangleleft<\frac{n}{2}$
$v_{i 2 j}=m+n-2+(n-1)(i-1)+2 j ; 1 \triangleleft \leq m, 1 \triangleleft \leq \frac{n}{2}$
$u_{i 2 j+1}=3 m n-n-(m-1)(i-1)-2 j ; 1 \triangleleft \leftrightarrows n, 0 \leftrightarrows<\frac{m}{2}$
$u_{i 2 j}=m n+m+(m-1)(i-1)+2 j ; 1 \triangleleft \leq n, 0 \triangleleft<\frac{m}{2}$
In all the cases the edge labels are $1,2,3 \ldots 2 m n-m-n$ ．Hence the graph $m P_{n} U n P_{m}$ is skolem difference mean for all values of m and n ．

The skolem difference mean labelings of the graphs $3 P_{5} U 5 P_{3}, 4 P_{5} U 5 P_{4}$ and $4 P_{6} U 6 P_{4}$ are given in Figures 3， 4 and 5.

Figure 3：Skolem difference mean labelings of the graph $3 \mathrm{P}_{5} \mathrm{U} 5 \mathrm{P}_{3}$

Figure 4：Skolem difference mean labelings of the graph $4 P_{5} U 5 P_{4}$

Figure 5: Skolem difference mean labelings of the graph $4 P_{6} U 6 P_{4}$
Theorem 2.3. The graph $(m-1) P_{n} U(n-1) P_{m}$ is skolem difference mean for all $m, n>1$.
Proof. Let G be the graph $(m-1) P_{n} U(n-1) P_{m}$. Let $V(G)=\left\{v_{i j}, u_{k l} / 1 \triangleleft \leq m-1,1 \triangleleft \leq n, 1 \triangleleft \measuredangle n-1,1 \triangleleft \leq m\right.$ and $E(G)=\left\{v_{i j} v_{i j+1}, u_{k l} u_{k l+1} / 1 \triangleleft \leq m-1,1 \triangleleft \leq n-1,1 \triangleleft \measuredangle n-1,1 \triangleleft \leq m-1\right\}$
Define $f: V(G)) \rightarrow\{1,2 \ldots 4 m n-3 m-3 n+2\}$ as follows
Case (i). n and m are odd.
$v_{i 2 j+1}=4 m n-3 m-3 n+2-n(i-1)-2 j ; 1$ ப $\leq n-1,0 \triangleleft \leq \frac{n-1}{2}$
$v_{i 2 j}=m+n-4+(n-2)(i-1)+2 j ; 1 \triangleleft \leq n-1,1 \triangleleft \leq \frac{n-1}{2}$
$u_{i 2 j+1}=3 m n-3 m-2 n+2-m(i-1)-2 j ; 1 \triangleleft \leq n-1,0 \triangleleft \leq \frac{m-1}{2}$
$u_{i 2 j}=2(n-m)+(m-2) n+(m-2) i+2 j ; 1 \triangleleft \leq n-1,1 \triangleleft \leq \frac{m-1}{2}$
Case (ii). n is even and m is odd or even. Without loss of generality let us take m as odd.
$v_{i 2 j+1}=4 m n-3 m-3 n+2-(n-1)(i-1)-2 j ; 1$ צ́sm-1, $0 \npreceq<\frac{n}{2}$
$v_{i 2 j}=m+n-4+(n-1)(i-1)+2 j ; 1 \triangleleft \leq m-1,1 \rightrightarrows \leq \frac{n}{2}$
$u_{i 2 j+1}=3 m n-2 m-2 n+1-m(i-1)-2 j ; 1 \triangleleft \leq n-1,0 \leftrightarrows \leq \frac{m-1}{2}$
$u_{i 2 j}=m(n-1)-1+(m-2) i+2 j ; 1 \triangleleft \leq n-1,1 \triangleleft \leq \frac{m-1}{2}$
Case (iii). n and m are even.
$v_{i 2 j+1}=4 m n-3 m-3 n+2-(n-1)(i-1)-2 j ; 1 \triangleleft \leq m-1,0 \triangleleft-\frac{n}{2}$
$v_{i 2 j}=m+n-4+(n-1)(i-1)+2 j ; 1 \triangleleft \leq m-1,1 \triangleleft<\frac{n}{2}$
$u_{i 2 j+1}=3 m n-2 m-2 n+1-(m-1)(i-1)-2 j ; 1 \triangleleft \leq n-1,0 \leftrightarrows<\frac{m}{2}$
$u_{\mathrm{i} 2 \mathrm{j}}=\mathrm{m}(\mathrm{n}-1)-2+(\mathrm{m}-1) \mathrm{i}+2 \mathrm{j} ; 1 \leq \leq \mathrm{n}-1,1 \unlhd \leq \frac{m}{2}$
In all the cases the edge labels are $1,2,3 \ldots 2 m n-2 m-2 n+2$. Hence the graph $(m-1) P_{n} U(n-1) P_{m}$ is skolem difference mean for all the values of m and n.

The skolem difference mean labelings of the graphs $2 P_{5} U 4 P_{3}, 4 P_{4} U 3 P_{5}$ and $3 P_{8} U 7 P_{4}$ are given in Figures 6, 7 and 8.

Figure 6: Skolem difference mean labelings of the graph $2 P_{5} U 4 P_{3}$.

Figure 7: Skolem difference mean labelings of the graph $4 P_{4} U 3 P_{5}$

Figure 8: Skolem difference mean labelings of the graph $3 \mathrm{P}_{8} \mathrm{U} 7 \mathrm{P}_{4}$

Theorem 2.4. The graph $n P_{n} U m P_{m}$ is skolem difference mean for all $m, n>1$.
Proof. Let G be the graph $n P_{n} U m P_{m}$
Let $V(G)=\left\{v_{i j}, u_{k l} / l \measuredangle, j \measuredangle n, l \measuredangle k, l \measuredangle n\right\}$ and

Define $f: V(G)) \rightarrow\left\{1,2,3 \ldots 2 n^{2}+2 m^{2}-n-m\right\}$ as follows.
Case (i). n and m are odd.
$v_{i 2 j+1}=2 n^{2}+2 m^{2}-n-m-n(i-1)-2 j ; 1 \triangleleft \leq n, 0 \triangleleft \leq \frac{n-1}{2}$
$v_{i 2 j}=m+n-2+(n-2)(i-1)+2 j ; 1 \triangleleft \leq n, 1$ 勺ை $\leq \frac{n-1}{2}$
$u_{i 2 j+1}=n^{2}+2 m^{2}-n-m-m(i-1)-2 j ; 1$ ஷism, $0 \leftrightarrows \leq \frac{m-1}{2}$
$u_{i 2 j}=m+2 n-4+(n-2)(n-1)+(m-2)(i-1)+2 j ; 1 \triangleleft \leq m, 1 \triangleleft \leq \frac{m-1}{2}$
Case (ii). n is odd and m is odd or even.
Without loss of generality let us take m as even.
$v_{i 2 j+1}=2 n^{2}+2 m^{2}-n-m-n(i-1)-2 j ; 1 \triangleleft \leq n, 0 \triangleleft \leq \frac{n-1}{2}$
$v_{i 2 j}=m+n-2+(n-2)(i-1)+2 j ; 1 \triangleleft \leq n, 1 \rightrightarrows \leq \frac{n-1}{2}$
$u_{i 2 j+1}=n^{2}+2 m^{2}-n-m-(m-1)(i-1)-2 j ; 1 \triangleleft \leq n, 0 \leftrightarrows \leq \frac{m}{2}$
$u_{i 2 j}=m+2 n-4+(n-2)(n-1)+(m-1)(i-1)+2 j ; 1 \triangleleft \leq m, 1 \triangleleft \leq \frac{m}{2}$
Case (iii). n and m are even.
$v_{i 2 j+1}=2 n^{2}+2 m^{2}-n-m-(n-1)(i-1)-2 j ; 1 \triangleleft \leftrightarrows n, 0 \leftrightarrows<\frac{n}{2}$
$v_{i 2 j}=m+n-2+(n-1)(i-1)+2 j ; 1 \triangleleft \leq n, 1 \triangleleft \leq \frac{n}{2}$
$u_{i 2 j+1}=m+3 n-2+(n-2)(n-1)+(m-1)(i-1)+2 j ; 1 \triangleleft \leq m, 0 \unlhd<\frac{m}{2}$
$u_{i 2 j}=n^{2}+2 m^{2}-m+2-(m-1)(i-1)-2 j ; 1 \triangleleft \leq m, 1 \triangleleft \leq \frac{m}{2}$
Hence the graph $n P_{n} U m P_{m}$ is skolem difference mean for all the values of m and n.

The skolem difference mean labelings of the graphs $3 P_{3} U 7 P_{7}, 7 P_{7} U 4 P_{4}$ and $4 P_{4} U 6 P_{6}$ are given in Figures 9, 10 and 11.

Figure 9: Skolem difference mean labelings of the graph $3 \mathrm{P}_{3} \mathrm{U} 7 \mathrm{P}_{7}$

Figure 10: Skolem difference mean labelings of the graph $7 \mathrm{P}_{7} \mathrm{U} 4 \mathrm{P}_{4}$

Figure 11: Skolem difference mean labelings of the graph $4 P_{4} U 6 P_{6}$.

Theorem 2.5. The graph $(n-1) P_{n} U(m-1) P_{m}$ is skolem difference mean for all the values of m and n.
Proof. Let G be the graph $(n-1) P_{n} U(m-1) P_{m}$
Let $V(G)=\left\{v_{i i}, u_{k l} / 1 \triangleleft \leq n-1,1 \triangleleft \leq n, 1 \triangleleft \leq m-1,1 \triangleleft \leq m\right\}$ and
$\mathrm{E}(\mathrm{G})=\left\{\mathrm{v}_{\mathrm{ij}} \mathrm{V}_{\mathrm{ij}+1} / 1 \unlhd \leq \mathrm{n}-1,1 乌 \leq \mathrm{n}-1\right\} \mathrm{U}\left\{\mathrm{u}_{\mathrm{kl}} \mathrm{u}_{\mathrm{kl+1}} / 1 \mathrm{k} \leq \mathrm{m}-1,1 \unlhd \leq \mathrm{m}-1\right\}$.
Define $f: V(G)) \rightarrow\left\{1,2 \ldots 2 n^{2}+2 m^{2}-3 n-3 m+2\right\}$ as follows:
Case (i). n and m are odd.
$v_{i 2 j+1}=2 n^{2}+2 m^{2}-3 n-3 m+2-n(i-1)-2 j ; 1 \triangleleft \leq n-1,0 \triangleleft \leq \frac{n-1}{2}$
$v_{i 2 j}=n+m-4+(n-2)(i-1)+2 j ; 1 \triangleleft \leq n-1,1 \triangleleft \leq \frac{n-1}{2}$
$u_{i 2 j+1}=n^{2}+2 m^{2}-2 n-3 m+2-m(i-1)-2 j ; 1 \triangleleft \leq m-1,0 \leftrightarrows \leq \frac{m-1}{2}$
$u_{i 2 j}=n^{2}+m-2 n-2+(m-2)(i-1)+2 j ; 1 \triangleleft \leq m-1,1 \leftrightarrows \leq \frac{m-1}{2}$
Case (ii). n is odd and m is odd or even.
Without loss of generality let us take m as even.
$v_{i 2 j+l}=2 n^{2}+2 m^{2}-3 n-3 m+2-n(i-1)-2 j ; 1 \triangleleft \measuredangle n-1,0 \triangleleft \leq \frac{n-1}{2}$
$v_{i 2 j}=n+m-4+(n-2)(i-1)+2 j ; 1 \triangleleft \leq n-1,1 \rightrightarrows \leq \frac{n-1}{2}$
$u_{i 2 j+1}=n^{2}+2 m^{2}-2 n-3 m+2-(m-1)(i-1)-2 j ; 1$ ப́ $m-1,0$ ̧ூ $<\frac{m}{2}$
$u_{i 2 j}=n^{2}-2 n+m-2+(m-1)(i-1)+2 j ; 1 \triangleleft \leq m-1,1 \triangleleft \leq \frac{m}{2}$
Case (iii). n and m are even.
$v_{i 2 j+1}=2 n^{2}+2 m^{2}-3 n-3 m+2-(n-1)(i-1)-2 j ; 1$ ப $\leq n-1,0 \triangleleft-\frac{n}{2}$
$v_{i 2 j}=n+m-4+(n-1)(i-1)+2 j ; 1 \triangleleft \leq n-1,1 \triangleleft \leq \frac{n}{2}$
$u_{i 2 j+1}=n^{2}+2 m^{2}-n-3 m+1-(m-1)(i-1)-2 j ; 1 \triangleleft \leq m-1,0 \triangleleft<\frac{m}{2}$
$u_{i 2 j}=n^{2}-n+m-3+(m-1)(i-1)+2 j ; 1 \triangleleft \leq m-1,1 \triangleleft \leq \frac{m}{2}$
In all the cases the edge labels are $1,2,3 \ldots n^{2}+m^{2}-2 n-2 m+2$.
Hence, the graph $(n-1) P_{n} U(m-1) P_{m}$ is skolem difference mean for all the values of m and n.

The skolem difference mean labelings of the graphs $2 P_{3} U 4 P_{5}, 2 P_{3} U 5 P_{6}$ and $3 P_{4} U 7 P_{8}$ are given in Figures 12, 13 and 14.

Figure 12: Skolem difference mean labelings of the graph $2 P_{3} U 4 P_{5}$

Figure 13: Skolem difference mean labelings of the graph $2 P_{3} U 5 P_{6}$

Figure 14: Skolem difference mean labelings of the graph $3 P_{4} U 7 P_{8}$
Theorem 2.6. $\bigcup_{i=2}^{n} P i$ is skolem difference mean for all the values of n.
Proof. Let $V\left(\bigcup_{i=2}^{n} P i\right)=\left\{\mathrm{u}_{\mathrm{ij}} / 2 \dot{\leq} \leq n, 1 乌 \dot{\leq}\right\}$ and $E\left(\bigcup_{i=2}^{n} P i\right)=\left\{\mathrm{u}_{\mathrm{ij}} \mathrm{u}_{\mathrm{ij}+1} / 2 \dot{\leq} \leq n, 1 \Varangle \dot{\leq}-1\right\}$
Define $f: \mathrm{V}\left(\bigcup_{i=2}^{n} P i\right) \rightarrow\left\{1,2,3 \ldots \mathrm{n}^{2}-1\right\}$ as follows.
$\mathrm{f}\left(\mathrm{u}_{\mathrm{i} 2 \mathrm{j}+1}\right)=\mathrm{n}^{2}-2-(\mathrm{i}+1)\left(\frac{i-1}{2}-1\right)-2 \mathrm{j}$; when i is odd; $0 \leftrightarrows \leq \frac{i-1}{2}$

$$
\left.\left.\begin{array}{rl}
& =\mathrm{n}^{2}-1-\mathrm{i}\left(\frac{i}{2}-1\right)-2 \mathrm{j} ; \text { when } \mathrm{i} \text { is even; } 0 \leq \frac{i}{2} \\
\mathrm{f}\left(\mathrm{u}_{\mathrm{i} 2 \mathrm{j}}\right) & =\mathrm{n}+(\mathrm{i}-1)\left(\frac{i-1}{2}-1\right)+2 \mathrm{j} \text {; when } \mathrm{i} \text { is odd; } 0 \leq \frac{i-1}{2} \\
& =\mathrm{n}-1+(\mathrm{i}-2)\left(\frac{i-2}{2}\right)+2 \mathrm{j} \text { when } \mathrm{i} \text { is even; } 0 \leq \frac{i}{2}
\end{array}\right\} \text { Then the induced edge labels are } 1,2,3 \ldots \frac{n(n-1)}{2}\right)
$$

Hence, the graph $\bigcup_{i=2}^{n} P i$ is skolem difference mean for all the values of n.
The skolem difference mean labelings of $\bigcup_{i=2}^{8} P i$ is given in Fgure 15.

Acknowledgement

The authors are thankful to the referee for valuable comments and suggestions.

References

[1] V.Balaji, D.S.T. Ramesh and A. Subramanian, Skolem mean labeling, Bulletin of Pure and Applied Sciences, Vol.26E(No.2)(2007), 245-248.
[2] Frank Harary, Graph Theory, Narosa Publishing House, New Delhi (2001).
[3] Joseph A. Gallian, A Dynamic Survey of Graph Labeling, The Electronic Journal of Combinatorics, 15(2008), \#DS6.
[4] K. Murugan, A. Subramanian, Skolem difference mean labeling of H-graphs, International Journal of Mathematics and Soft Computing, Vol.1, No. 1 (2011), 115-129.

