International Journal of Mathematics and Soft Computing Vol.2, No.1 (2012), 99 – 108.

Labeling of finite union of paths

K. Murugan, A. Subramanian

Department of Mathematics, The M.D.T.Hindu College, Tirunelveli-627 010, Tamilnadu, INDIA. E-mail:murugan_mdt@yahoo.com, asmani1963@gmail.com

Abstract

In this paper we study the skolem difference mean labeling of finite union of paths.

Keywords: Skolem difference mean labeling, Skolem difference mean graphs, finite union of graphs.

AMS Subject Classification (2010): 05C78.

1 Introduction

Throughout this paper we consider only finite, undirected, simple graphs. Let G be a graph with p vertices and q edges. For all terminologies and notations we follow [2]. The following definitions are necessary for the present study. There are several types of labeling and a detailed survey can be found in [3]. The concept of skolem difference mean labeling was introduced in [4] and the results proved in [1] motivated the author to study the skolem difference mean labeling of finite union of paths.

Definition 1.1. A path is a walk if all the points and lines are distinct. A path on n vertices is denoted by P_n .

Definition 1.2. Let G_1 and G_2 be two graphs having point sets V_1 and V_2 and line sets X_1 and X_2 respectively. Then their union G_1UG_2 has $V=V_1UV_2$ and $X=X_1UX_2$.

Definition 1.3. A graph labeling is an assignment of integers to the vertices or edges or both, subject to certain conditions.

Definition 1.4. A graph G(V,E) with p vertices and q edges is said to have skolem difference mean labeling if it is possible to label the vertices x V with distinct elements f(x) from 1,2,3...p+q in such a

way that the edge e=uv is labeled with $\frac{|f(u) - f(v)|}{2}$ if |f(u)-f(v)| is even and $\frac{|f(u) - f(v)| + 1}{2}$ if

|f(u)-f(v)| is odd and the resulting labels of the edges are distinct and from 1,2,3...q. A graph that admits skolem difference mean labeling is called skolem difference mean graph.

The skolem difference mean labelings of the path P_6 is given in Figure 1.

.Figure 1: Skolem difference mean labeling of P_6 .

2 Main Results

Theorem 2.1. The graph mP_n is skolem difference mean for all m 1 and n>1. **Proof.** Let G be the graph mP_n

Let $V(G) = \{v_{ij}/1 \ i \ m, 1 \ j \ n\}$ and $E(G) = \{v_{ij}v_{ij+1}/1 \ i \ m, 1 \ j \ n-1\}$ Define $f:V(G) \quad \{1, 2..., 2mn-m\}$ as follows. Let $m \ 1$ be odd or even. **Case (i).** n is odd.

$$v_{i2j+1} = 2mn - m - n(i-1) - 2j; 1 \ i \ m, \ 0 \ j \ \frac{n-1}{2}$$

$$v_{i2j} = m + (n-2)(i-1) + 2(j-1); 1 \ i \ m, \ 1 \ j \ \frac{n-1}{2}$$
Case (ii). *n* is even.
$$v_{i2j+1} = 2mn - m - (n-1)(i-1) - 2j; 1 \ i \ m, \ 0 \ j < \frac{n}{2}$$

$$v_{i2j} = m + (n-1)(i-1) + 2(j-1); 1 \ i \ m, \ 1 \ j$$

$$\frac{n}{2}$$

In both the cases the induced edge labels are distinct and from 1,2...mn-m. Hence the theorem. The skolem difference mean labelings of the graphs $4P_5$ and $5P_4$ are given in Figure 2.

Figure 2: Skolem difference mean labelings of the graphs $4P_5$ and $5P_4$.

Theorem 2.2. The graph $mP_n U nP_m$ is skolem difference mean for all m,n>1.

Proof. Let *G* be the graph mP_nUnP_m Let $V(G) = \{v_{ij}, u_{ij}/1 \ i \ m, 1 \ j \ n\}$ and $E(G) = \{v_{ij}v_{ij+1}/1 \ i \ m, 1 \ j \ n-1\} \cup \{u_{ji}u_{ji+1}/1 \ j \ n, 1 \ i \ m-1\}$ Define *f*: V(G)) $\{1, 2..., 4mn - m - n\}$ as follows: **Case (i).** Both *m* and *n* are odd. $v_{i2j+1} = 4mn - m - ni - 2j; 1 \ i \ m, 0 \ j \ \frac{n-1}{2}$ $v_{i2j} = m + n - 2 + (n - 2)(i - 1) + 2j; 1 \ i \ m, 1 \ j \ \frac{n-1}{2}$

 $u_{i2j+1}=3mn-n-mi-2j; 1 \ i \ n,0 \ j \ \frac{m-1}{2}$

 $u_{i2j=}m+n-2+m(n-2)+(m-2)(i-1)+2j; 1 \ i \ n, 1 \ j \ \frac{m-1}{2}$

Case (ii). n is odd and m is odd or even. Without loss of generality let us take m as even.

$$v_{i2j+1} = 4mn - m - ni - 2j; 1 \ i \ m, 0 \ j \ \frac{n-1}{2}$$

$$v_{i2j}=m+n-2+(n-2)(i-1)+2j; 1 \ i \ m, 1 \ j \ \frac{n-1}{2}$$
$$u_{i2j+1}=3mn-n+1-(m-1)i-2j; 1 \ i \ n, 1 \ j \ \frac{m}{2}$$
$$u_{i2j}=m+(n-2)(m-1)+2n-4+(m-1)(i-1)+2j; 1 \ i \ ,n, 1 \ j \ \frac{m}{2}$$
Case (iii). *m* and *n* are even.

 $v_{i2j+1} = 4mn \cdot m \cdot n \cdot (n-1)(i-1) \cdot 2j; \ 1 \ i \ m, \ 0 \ j < \frac{n}{2}$ $v_{i2j} = m + n \cdot 2 + (n-1)(i-1) + 2j; \ 1 \ i \ m, \ 1 \ j \ \frac{n}{2}$ $u_{i2j+1} = 3mn \cdot n \cdot (m-1)(i-1) \cdot 2j; \ 1 \ i \ n, \ 0 \ j < \frac{m}{2}$ $u_{i2j} = mn + m + (m-1)(i-1) + 2j; \ 1 \ i \ n, \ 0 \ j < \frac{m}{2}$

In all the cases the edge labels are 1, 2, 3... 2mn - m - n. Hence the graph $mP_n U nP_m$ is skolem difference mean for all values of *m* and *n*.

The skolem difference mean labelings of the graphs $3P_5U5P_3$, $4P_5U5P_4$ and $4P_6U6P_4$ are given in Figures 3, 4 and 5.

Figure 3: Skolem difference mean labelings of the graph $3P_5U5P_3$

Figure 4: Skolem difference mean labelings of the graph $4P_5U5P_4$

Figure 5: Skolem difference mean labelings of the graph $4P_6U6P_4$

Theorem 2.3. The graph $(m-1)P_n U(n-1)P_m$ is skolem difference mean for all m,n>1. **Proof.** Let G be the graph $(m-1)P_n U(n-1)P_m$. Let $V(G) = \{v_{ij}, u_{kl}/l \ i \ m-1, l \ j \ n, l \ k \ n-1, l \ l \ m\}$ and $E(G) = \{v_{ij}v_{ij+1}, u_{kl}u_{kl+1}/l \ i \ m-1, l \ j \ n-1, l \ k \ n-1, l \ l \ m-1\}$ Define f:V(G) $\{1, 2, ..., 4mn-3m-3n+2\}$ as follows

Case (i). *n* and *m* are odd.

 $\begin{aligned} v_{i2j+i} = 4mn \cdot 3m \cdot 3n + 2 \cdot n(i-1) \cdot 2j; \ 1 \ i \ m-1, \ 0 \ j \ \frac{n-1}{2} \\ v_{i2j} = m+n \cdot 4 + (n-2)(i-1) + 2j; \ 1 \ i \ m-1, \ 1 \ j \ \frac{n-1}{2} \\ u_{i2j+1} = 3mn \cdot 3m \cdot 2n + 2 \cdot m(i-1) \cdot 2j; \ 1 \ i \ n-1, \ 0 \ j \ \frac{m-1}{2} \\ \textbf{Case (ii). } n \ \text{is even and } m \ \text{is odd or even. Without loss of generality let us take m as odd.} \\ v_{i2j+1} = 4mn \cdot 3m \cdot 3n + 2 \cdot (n-1)(i-1) \cdot 2j; \ 1 \ i \ m-1, \ 0 \ j < \frac{n}{2} \\ v_{i2j} = m+n \cdot 4 + (n-1)(i-1) + 2j; \ 1 \ i \ m-1, \ 1 \ j \ \frac{m-1}{2} \\ u_{i2j} = m(n-1) \cdot 1 + (m-2)i + 2j; \ 1 \ i \ n-1, \ 1 \ j \ \frac{m-1}{2} \\ \textbf{Case (iii). } n \ \text{and } m \ \text{are even.} \\ v_{i2j+1} = 4mn \cdot 3m \cdot 3n + 2 \cdot (n-1)(i-1) \cdot 2j; \ 1 \ i \ m-1, \ 0 \ j < \frac{m-1}{2} \\ \textbf{Case (iii). } n \ \text{and } m \ \text{are even.} \\ v_{i2j+1} = 4mn \cdot 3m \cdot 3n + 2 \cdot (n-1)(i-1) \cdot 2j; \ 1 \ i \ m-1, \ 0 \ j < \frac{m}{2} \\ \textbf{Case (iii). } n \ \text{and } m \ \text{are even.} \\ v_{i2j+1} = 4mn \cdot 3m \cdot 3n + 2 \cdot (n-1)(i-1) \cdot 2j; \ 1 \ i \ m-1, \ 0 \ j < \frac{n}{2} \\ \textbf{Case (iii). } n \ \text{and } m \ \text{are even.} \\ v_{i2j+1} = 4mn \cdot 3m \cdot 3n + 2 \cdot (n-1)(i-1) \cdot 2j; \ 1 \ i \ m-1, \ 0 \ j < \frac{n}{2} \\ \textbf{Case (iii). } n \ \text{and } m \ \text{are even.} \\ v_{i2j+1} = 4mn \cdot 3m \cdot 3n + 2 \cdot (n-1)(i-1) \cdot 2j; \ 1 \ i \ m-1, \ 0 \ j < \frac{n}{2} \\ v_{i2j} = m + n \cdot 4 + (n-1)(i-1) + 2j; \ 1 \ i \ m-1, \ 1 \ j < \frac{n}{2} \end{aligned}$

 $u_{i2j+1}=3mn-2m-2n+1-(m-1)(i-1)-2j; 1 \text{ i } n-1,0 \text{ } j < \frac{m}{2}$ $u_{i2j}=m(n-1)-2+(m-1)i+2j; 1 \text{ i } n-1,1 \text{ } j \text{ } \frac{m}{2}$

In all the cases the edge labels are $1,2,3...2mn \cdot 2m \cdot 2n + 2$. Hence the graph $(m-1)P_n U(n-1)P_m$ is skolem difference mean for all the values of *m* and *n*.

The skolem difference mean labelings of the graphs $2P_5U4P_3$, $4P_4U3P_5$ and $3P_8U7P_4$ are given in Figures 6, 7 and 8.

Figure 6: Skolem difference mean labelings of the graph $2P_5U4P_3$.

Figure 7: Skolem difference mean labelings of the graph $4P_4U3P_5$

Figure 8: Skolem difference mean labelings of the graph 3P₈U7P₄

Theorem 2.4. The graph $nP_n U mP_m$ is skolem difference mean for all m, n > 1.

Proof. Let *G* be the graph $nP_n U mP_m$

Let $V(G) = \{v_{ij}, u_{kl} / l \ i, j \ n, l \ k, l \ m\}$ and $E(G) = \{v_{ij}v_{ij+1} / l \ i \ n, l \ j \ n-1\}U\{u_{kl}u_{kl+1} / l \ j \ m, l \ i \ m-1\}.$ Define f:V(G) $\{1, 2, 3... 2n^2 + 2m^2 - n - m\}$ as follows.

Case (i). *n* and *m* are odd.

 $\begin{aligned} v_{i2j+I} &= 2n^2 + 2m^2 \cdot n \cdot m \cdot n(i-I) \cdot 2j; \ 1 \ i \ n, 0 \ j \ \frac{n-1}{2} \\ v_{i2j} &= m + n \cdot 2 + (n-2)(i-I) + 2j; \ 1 \ i \ n, 1 \ j \ \frac{n-1}{2} \\ u_{i2j+I} &= n^2 + 2m^2 \cdot n \cdot m \cdot m(i-I) \cdot 2j; \ 1 \ i \ m, 0 \ j \ \frac{m-1}{2} \\ u_{i2j} &= m + 2n \cdot 4 + (n-2)(n-I) + (m-2)(i-I) + 2j; \ 1 \ i \ m, 1 \ j \ \frac{m-1}{2} \\ \textbf{Case (ii). } n \ \text{is odd and } m \ \text{is odd or even.} \\ \text{Without loss of generality let us take m as even.} \\ v_{i2j+I} &= 2n^2 + 2m^2 \cdot n \cdot m \cdot n(i-I) \cdot 2j; \ 1 \ i \ n, 0 \ j \ \frac{n-1}{2} \\ v_{i2j} &= m + n \cdot 2 + (n-2)(i-I) + 2j; \ 1 \ i \ n, 0 \ j \ \frac{m-1}{2} \\ u_{i2j+I} &= n^2 + 2m^2 \cdot n \cdot m \cdot (m-I)(i-I) \cdot 2j; \ 1 \ i \ m, 0 \ j \ \frac{m}{2} \\ u_{i2j+I} &= n^2 + 2m^2 \cdot n \cdot m \cdot (m-I)(i-I) + 2j; \ 1 \ i \ n, 0 \ j < \frac{m}{2} \\ v_{i2j+I} &= 2n^2 + 2m^2 \cdot n \cdot m \cdot (n-I)(i-I) + 2j; \ 1 \ i \ n, 0 \ j < \frac{m}{2} \\ v_{i2j+I} &= 2n^2 + 2m^2 \cdot n \cdot m \cdot (n-I)(i-I) + 2j; \ 1 \ i \ n, 0 \ j < \frac{m}{2} \\ u_{i2j+I} &= 2n^2 + 2m^2 \cdot n \cdot m \cdot (n-I)(i-I) + 2j; \ 1 \ i \ n, 0 \ j < \frac{m}{2} \\ u_{i2j+I} &= n^2 + 2m^2 \cdot n \cdot m \cdot (n-I)(i-I) + 2j; \ 1 \ i \ n, 0 \ j < \frac{m}{2} \\ u_{i2j+I} &= m + n \cdot 2 + (n-2)(n-I) + (m-I)(i-I) + 2j; \ 1 \ i \ m, 0 \ j < \frac{m}{2} \\ u_{i2j+I} &= m + n \cdot 2 + (n-2)(n-I) + (m-I)(i-I) + 2j; \ 1 \ i \ m, 0 \ j < \frac{m}{2} \\ u_{i2j+I} &= n^2 + 2m^2 \cdot m + 2 \cdot (m-I)(i-I) + 2j; \ 1 \ i \ m, 1 \ j \ \frac{m}{2} \\ u_{i2j} &= n^2 + 2m^2 \cdot m + 2 \cdot (m-I)(i-I) + 2j; \ 1 \ i \ m, 1 \ j \ \frac{m}{2} \\ u_{i2j} &= n^2 + 2m^2 \cdot m + 2 \cdot (m-I)(i-I) + 2j; \ 1 \ i \ m, 1 \ j \ \frac{m}{2} \\ u_{i2j} &= n^2 + 2m^2 \cdot m + 2 \cdot (m-I)(i-I) + 2j; \ 1 \ i \ m, 1 \ j \ \frac{m}{2} \\ u_{i2j} &= n^2 + 2m^2 \cdot m + 2 \cdot (m-I)(i-I) + 2j; \ 1 \ i \ m, 1 \ j \ \frac{m}{2} \\ u_{i2j} &= n^2 + 2m^2 \cdot m + 2 \cdot (m-I)(i-I) + 2j; \ 1 \ i \ m, 1 \ j \ \frac{m}{2} \\ u_{i2j} &= n^2 + 2m^2 \cdot m + 2 \cdot (m-I)(i-I) + 2j; \ 1 \ i \ m, 1 \ j \ \frac{m}{2} \\ u_{i2j} &= n^2 + 2m^2 \cdot m + 2 \cdot (m-I)(i-I) + 2j; \ 1 \ i \ m, 1 \ j \ \frac{m}{2} \\ u_{i2j} &= n^2 + 2m^2 \cdot m + 2 \cdot (m-I)(i-I) + 2j; \ 1 \ i \ m, 1 \ j \ \frac{m}{2} \\ u_{i2j} &= n^2 + 2m^2 \cdot m + 2 \cdot (m-I)(i-I) + 2j; \ 1 \ i \ m, 1$

Hence the graph $nP_n UmP_m$ is skolem difference mean for all the values of m and n.

The skolem difference mean labelings of the graphs $3P_3U 7P_{7,} 7P_7U 4P_4$ and $4P_4U 6P_6$ are given in Figures 9, 10 and 11.

Figure 9: Skolem difference mean labelings of the graph $3P_3U 7P_7$

Figure 10: Skolem difference mean labelings of the graph $7P_7U 4P_4$

Figure 11: Skolem difference mean labelings of the graph $4P_4U$ $6P_6$.

Theorem 2.5. The graph $(n-1)P_n U(m-1)P_m$ is skolem difference mean for all the values of m and n. **Proof.** Let G be the graph $(n-1)P_n U(m-1)P_m$ Let $V(G) = \{v_{ii}, u_{kl}/l \ i \ n-1, l \ j \ n, l \ k \ m-1, l \ l \ m\}$ and $E(G) = \{ v_{ij}v_{ij+1} \ / 1 \ i \ n-1, 1 \ j \ n-1 \} U \{ u_{kl}u_{kl+1} / 1 \ k \ m-1, 1 \ l \ m-1 \}.$ Define f:V(G)) {1,2...2 $n^2+2m^2-3n-3m+2$ } as follows: Case (i). *n* and *m* are odd. $v_{i2j+1}=2n^2+2m^2-3n-3m+2-n(i-1)-2j; 1 \ i \ n-1, 0 \ j \ \frac{n-1}{2}$ $v_{i2j}=n+m-4+(n-2)(i-1)+2j; 1 \ i \ n-1, 1 \ j \ \frac{n-1}{2}$ $u_{i2j+1}=n^2+2m^2-2n-3m+2-m(i-1)-2j; 1 \ i \ m-1,0 \ j \ \frac{m-1}{2}$ $u_{i2j} = n^2 + m \cdot 2n \cdot 2 + (m \cdot 2)(i \cdot 1) + 2j; 1 \ i \ m \cdot 1, 1 \ j \ \frac{m - 1}{2}$ Case (ii). *n* is odd and *m* is odd or even. Without loss of generality let us take *m* as even. $v_{i2j+1}=2n^2+2m^2-3n-3m+2-n(i-1)-2j; 1 \ i \ n-1, 0 \ j \ \frac{n-1}{2}$ $v_{i2j}=n+m-4+(n-2)(i-1)+2j; 1 \ i \ n-1, 1 \ j \ \frac{n-1}{2}$ $u_{i2j+1} = n^2 + 2m^2 - 2n - 3m + 2 - (m-1)(i-1) - 2j; 1 \ i \ m-1, 0 \ j < \frac{m}{2}$ $u_{i2j} = n^2 - 2n + m - 2 + (m - 1)(i - 1) + 2j; 1 \ i \ m - 1, 1 \ j \ \frac{m}{2}$ Case (iii). *n* and *m* are even. $v_{i2j+1}=2n^2+2m^2-3n-3m+2-(n-1)(i-1)-2j; 1 \ i \ n-1, 0 \ j<\frac{n}{2}$ $v_{i2j}=n+m-4+(n-1)(i-1)+2j; 1 \ i \ n-1, 1 \ j \ \frac{n}{2}$ $u_{i2j+1}=n^2+2m^2-n-3m+1-(m-1)(i-1)-2j; 1 \ i \ m-1,0 \ j<\frac{m}{2}$ $u_{i2j} = n^2 - n + m - 3 + (m - 1)(i - 1) + 2j; 1 \ i \ m - 1, 1 \ j \ \frac{m}{2}$ In all the cases the edge labels are $1, 2, 3...n^2 + m^2 - 2n - 2m + 2$.

Hence, the graph $(n-1)P_n U(m-1)P_m$ is skolem difference mean for all the values of *m* and *n*.

The skolem difference mean labelings of the graphs $2P_3U4P_5$, $2P_3U5P_6$ and $3P_4U7P_8$ are given in Figures 12, 13 and 14.

භ

Theorem 2.6. $\bigcup_{i=2}^{n} Pi$ is skolem difference mean for all the values of *n*. **Proof.** Let $V(\bigcup_{i=2}^{n} Pi) = \{u_{ij}/2 \text{ i } n, 1 \text{ j } i\}$ and $E(\bigcup_{i=2}^{n} Pi) = \{u_{ij}u_{ij+1}/2 \text{ i } n, 1 \text{ j } i-1\}$ Define $f: V(\bigcup_{i=2}^{n} Pi) \{1, 2, 3..., n^2 - 1\}$ as follows. $f(u_{i2j+1}) = n^2 - 2 - (i+1)(\frac{i-1}{2} - 1) - 2j;$ when i is odd; 0 j $\frac{i-1}{2}$

 $= n^{2} - 1 - i \left(\frac{i}{2} - 1\right) - 2j; \text{ when } i \text{ is even; } 0 \quad j < \frac{i}{2}$ $f(u_{i2j}) = n + (i-1)\left(\frac{i-1}{2} - 1\right) + 2j; \text{ when } i \text{ is odd; } 0 \quad j < \frac{i-1}{2}$ $= n - 1 + (i-2)\left(\frac{i-2}{2}\right) + 2j \text{ when } i \text{ is even; } 0 \quad j < \frac{i}{2}$ Then the induced edge labels are $1, 2, 3 \dots \frac{n(n-1)}{2}$

Hence, the graph $\bigcup_{i=2}^{n} Pi$ is skolem difference mean for all the values of *n*. The skolem difference mean labelings of $\bigcup_{i=2}^{8} Pi$ is given in Fgure 15.

Acknowledgement

The authors are thankful to the referee for valuable comments and suggestions.

References

- [1] V.Balaji, D.S.T. Ramesh and A. Subramanian, *Skolem mean labeling*, Bulletin of Pure and Applied Sciences, Vol.26E(No.2)(2007), 245-248.
- [2] Frank Harary, Graph Theory, Narosa Publishing House, New Delhi (2001).
- [3] Joseph A. Gallian, *A Dynamic Survey of Graph Labeling*, The Electronic Journal of Combinatorics, 15(2008), #DS6.
- [4] K. Murugan, A. Subramanian, Skolem difference mean labeling of H-graphs, International Journal of Mathematics and Soft Computing, Vol.1, No.1 (2011), 115-129.