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Abstract

Butterfly network is the most popular bounded-degree derivative of the hypercube network.
The benes network consists of back-to-back butterflies. In this paper, we obtain the minimum
vertex-disjoint cycle cover number for the odd dimensional butterfly networks and prove that it is
not possible to find the same for the even dimensional butterfly networks and benes networks.
Further we obtain the minimum edge-disjoint cycle cover number for butterfly networks.
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1 Introduction

Butterfly graphs are defined as the underlying graphs of FFT networks which can perform the
Fast Fourier Transforms very efficiently. The butterfly network consists of a series of switch stages
and interconnection patterns, which allows n inputs to be connected to n outputs. The benes network
consists of back-to-back butterflies. As butterfly is known for FFT, benes is known for permutation
routing. The butterfly and benes networks are important multistage interconnection networks, which
possess attractive topologies for communication networks [8]. They have been used in parallel
computing systems such as IBM, SP1/SP2, MIT Transit Project, NEC Cenju-3 and used as well in the
internal structures of optical couplers [7, 13]. The multistage networks have long been used as
communication networks for parallel computing [5].

Cycles in interconnection networks are useful in many applications such as indexing, embedding
linear arrays and rings, computing FFT and so on [4].  The cycle partition of star graphs and
arrangement graphs are studied in [1, 10]. The pancycle problem of butterfly networks is investigated
in [4].

Let V(G) and E(G) denote the vertex set and edge set of a graph G. Let H be a subgraph of G.
Two subgraphs of G are said to be vertex-disjoint if they have no vertices in common and edge-
disjoint if they have no edges in common. Given G(V, E), a vertex-disjoint cycle cover is a partition
{V1, V2, ..., Vk} of the vertex set V(G) into subsets of V such that each Vi , 1  i  k induces a cycle [9].
The minimum vertex-disjoint cycle cover problem is to minimise k [2]. We denote this minimum
number by (G).

An edge-disjoint cycle cover is a partition {E1, E2,… Ek} of the edge set E(G) into subsets of E
such that each Ei , 1  i  k induces a cycle [9]. The minimum edge-disjoint cycle cover problem is to
minimise k [2]. We denote this minimum number by (G). Minimum vertex-disjoint cycle cover and
minimum edge-disjoint cycle cover problems are NP-complete [2].

In this paper, we solve the minimum vertex-disjoint cycle cover problem for odd dimensional butterfly
networks and prove that vertex-disjoint cycle cover is not possible for benes networks. Also, edge-
disjoint cycle cover number is determined for butterfly networks.
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2 Vertex-disjoint Cycle Cover

Butterfly and benes networks are represented as undirected graphs whose nodes represent
processors and edges represent interprocessor communication links.

The set V of nodes of an r-dimensional butterfly network correspond to pairs [w, i], where i is the
dimension or level of a node (0  i  r) and w is an r-bit binary number that denotes the row of the
node. Two nodes [w, i] and [w, i] are linked by an edge if and only if i = i + 1 and either w and w
are identical or w and w differ in precisely the ith bit. The r-dimensional butterfly is denoted by BF(r).
It has (r+1)2r vertices and r2r+1 edges [8, 11].

An r-dimensional benes network has 2r+1 levels, each level with 2r nodes. The level 0 to level r
nodes in the network form an r-dimensional butterfly. The benes network consists of back-to-back
butterflies. The middle level of the benes network is shared by these butterflies [6]. An r-dimensional
benes network is denoted by BB(r) [13].

Manuel et al. [8] have identified new topological representations for butterfly and benes networks as
diamond representations and proved that the normal and diamond representations of butterfly and
benes networks are isomorphic. Normal and Diamond representations of BF(2) are given in Figure 1.

Figure 1: Normal and Diamond representations of BF(2).

We denote by N(u), the set of all vertices of G adjacent to u and call this set as the neighbourhood
of u [3].

Two nodes [w, i] and [w´, i´] in BF(r) are said to be mirror images of each other if w and w´ differ
precisely in the first bit. The removal of level 0 vertices {v1, v2, …, v2

r} of BF(r) gives two subgraphs
H1 and H2 of BF(r), each isomorphic to BF(r-1). Since {v1, v2, …, v2

r} is a vertex-cut of BF(r), the
vertices are called binding vertices of BF(r). If a 4-cycle in BF(r) has binding vertices then it is called
a binding diamond. The edges of binding diamonds are called binding edges [8]. Such diamonds are
also obtained when vertices of BF(r) at level (n + 1) are removed. To distinguish between the two, we
call the binding diamonds defined by removing  the vertices at level 0 as vertical binding diamonds
and those defined by removing vertices at level (n + 1) as horizontal binding diamonds. The two types
of diamonds are given in Figure 2.

Figure 2: Horizontal and vertical binding diamonds of BF(2)
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Lemma 2.1. [4] BF(r) contains cycles of length 4d for all d, 1  d  r.

Lemma 2.2. [4] BF(r) contains cycles of length 4d+2 for all d, 3  d  r.

Theorem 2.3. Let BF(2r+1) be an odd dimensional butterfly network. Then, (BF(2r+1)) =
(2r+2)22r1, r  1.

Proof. We prove the result by induction on r.
Consider BF(3). There are 8 binding diamonds in BF(3) and they cover all the 32 vertices of BF(3).
Hence, (BF(3)) = 8 = (2+2)221.

Figure 3: Binding diamonds of BF(3)

Assume the result to be true for BF(k),where k is odd, k  2r1. The hypothesis implies that the
cycles in any vertex-disjoint cycle cover of BF(k), k odd and k  2r1 are all 4-cycles.

Consider BF(2r+1). Let B be the set of all binding diamonds of BF(2r+1). There are 22r+1

number of binding diamonds in BF(2r+1). We have exactly two binding vertices through which a
binding diamond passes. Further, two binding vertices u and v belonging to a binding diamond cannot
lie on two different vertex-disjoint cycles as N(u) and N(v) are equal and are of cardinality 2.
Removal of all the binding vertices leaves 4 copies of BF(2r1). By induction hypothesis, the binding
vertices of the 4 copies of BF(2r1) are all covered by the 4-cycles in B. Removal of the binding

vertices of all the 4 copies of BF(2r1) leave 16 copies of BF(2r3). Again by induction hypothesis,
each BF(2r3) is covered by only 4-cycles and (BF(2r3)) = (2r2)22r5. Let  be the collection of
all these 4-cycles. Then || = 16  (2r2)22r5 = (2r2)22r1. Now, B   is a vertex-disjoint cycle

cover of BF(2r+1) such that every member of B   is a 4-cycle. Further, |B  | = (BF(2r+1)) =

22r+1 + (2r2)22r1 = (2r+2)22r1. 

Remark 2.4. Any vertex-disjoint cycle cover of BF(r) where r is even, contains r2r2 number of 4-
cycles and 2r isolated vertices. Isolated vertices of BF(2) are given in Figure 4.

Figure 4: Isolated vertices of BF(2).
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Theorem 2.5. There does not exist a vertex-disjoint cycle cover for the r-dimensional benes network
BB(r), r  1.

Proof. Case 1. r is odd.

Let r = 2k+1, k  1.  Since BB(r) consists of back to back butterflies BF(2k+1) obtained by
merging level 0 vertices, by Theorem 2.3, one copy of BF(2k+1) has a vertex-disjoint cycle cover, say
C. Deleting vertices of level 0 which are already covered by cycles in C from the second copy of
BF(2k+1) leave 2 copies of BF(2k) for which there does not exist a vertex-disjoint cycle cover. Hence,
there does not exist a vertex-disjoint cycle cover for BB(r).

Case 2. r is even.

Let r = 2k. The vertex set of BB(r) can be partitioned into three sets, one inducing BF(2k) and the
other two inducing two copies of BF(2k1). Even though there exists a vertex-disjoint cycle cover for
BF(2k1), there does not exist a vertex-disjoint cycle cover for BF(2k). 

Figure 5: A 2-dimensional benes network with level zero vertices marked.

3 Edge-disjoint Cycle Cover

For any graph G, a lower bound for η′(G) has been obtained in [12]. In this section, we prove that
the bound is sharp for butterfly network.

Theorem 3.1. [12] Let G be a graph with an edge-disjoint cycle cover. Let Δ be the maximum degree
in G. Then η′(G) ≥ (Δ/2).
Theorem 3.2. Let BF(r) , r  1 be a butterfly network. Then (BF(r)) = 2.

Proof. BF(r) contains 2r-1 horizontal binding diamonds HBi and 2r-1 vertical binding diamonds VBi, 1
 i  2r1. Let ui be a 2 degree vertex in HBi. Then the neighbourhood of ui has two vertices ui(1) and
ui(2) of degree four.

Similarly VBi has a 2 degree vertex vi and its neighbouring vertices are vi(1) and vi(2) with degree
four. In other words, N(ui) = { ui(1) , ui(2) } and N(vi) = { vi(1) , vi(2) }, 1  i  2r1. 

In the following procedure, u → v denotes a traversal from vertex u to vertex v. Again, removing
all the binding diamonds of BF(r) leaves 4 copies of BF(r – 2), two on the top and two at the bottom.
Let BFTL(r – 2), BFTR(r – 2), BFBL(r – 2) and BFBR(r – 2) denote the top left, top right, bottom left and
bottom right copies of BF(r – 2).

Procedure CYCLECOVER BF(r)
Input: An r-dimensional butterfly network BF(r).

Algorithm:
Step 1: Begin C1 .

Initialize i = 1 and j = 2r-1.
Step 2: ui(1) → ui(2) traversing 2 edges in HBi and passing through ui.

ui(2) → vj(1) traversing r – 2 edges in BFTR(r – 2).
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vj (1) → vj (2) traversing 2 edges in VBj and passing through vj.
vj (2) → uj (2) traversing r – 2 edges in BFBR(r – 2) .

Step 3: Increment or decrement i in HBi and j in VBj

Step 4: uj(2) → uj (1) traversing 2 edges in HBj and passing through uj.
uj (1) →vi(2) traversing r – 2 edges in BFBL(r – 2) .
vi(2) → vi(1) traversing 2 edges in VBi and passing through vi .
Traverse r – 2 edges in BFTL(r – 2).

Step 5: Increment or decrement i in HBi and j in VBj.

Step 6: Repeat.

Output: A cycle C1.

Proof of correctness: BF(r) contains 2r-1 horizontal and 2r-1 vertical binding diamonds. C1 traverses
two edges in each of the 2r binding diamonds. The number of edges used in 2r binding diamonds is
2r+1. C1 traverses (r – 2) edges in each of the butterflies of smaller dimension, namely BFTL(r – 2),
BFTR(r – 2), BFBL(r – 2) and BFBR(r – 2) while moving from HBi to VBj, 1  i , j  2r1 and vice-versa.
The number of edges traversed in BF(r – 2) is 2r(r – 2 ).

To proceed we prove that the complement of C1 in BF(r) is another cycle C2 isomorphic to C1.
We know that BF(r) is the union of 4-cycles. By Procedure CYCLECOVER BF(r), which generates a
cycle C1, the subgraph of C1 in any 4-cycle C* in BF(r) is isomorphic to its complement in C*. Thus
the subgraph induced by the complementary subgraphs of all the four cycles in BF(r) induce a
cycle C2 isomorphic to C1. Hence, | E(C1) | = | E(C2) | =2r + 1 + 2r( r – 2 ) = r 2r.

Therefore, | E(C1) | +| E(C2) | = r 2r + 1 = | E(BF(r) ) |. The procedure is illustrated in Figure 6.

Figure 6: Two edge-disjoint cycles of BF3.

4 Conclusion

In this paper, minimum vertex-disjoint cycle cover number for odd dimensional butterfly
networks BF(2r+1), r  1 is obtained. It is also proved that a vertex-disjoint cycle cover does not exist
for even dimensional butterfly networks and benes networks BB(r), r  1. Further, we obtain
minimum edge-disjoint cycle cover number for BF(r).
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