Minimum cycle covers of Butterfly and Benes networks

Albert William, A. Shanthakumari
Department of Mathematics, Loyola College,
Chennai 600 034, INDIA.
E-mail: shanthakumari9775@gmail.com

Abstract

Butterfly network is the most popular bounded-degree derivative of the hypercube network. The benes network consists of back-to-back butterflies. In this paper, we obtain the minimum vertex-disjoint cycle cover number for the odd dimensional butterfly networks and prove that it is not possible to find the same for the even dimensional butterfly networks and benes networks. Further we obtain the minimum edge-disjoint cycle cover number for butterfly networks.

Keywords: Butterfly networks, Benes networks, cycle partition, vertex-disjoint cycle cover, edge-disjoint cycle cover.
AMS Subject Classification(2010): 05B40, 68R10.

1 Introduction

Butterfly graphs are defined as the underlying graphs of FFT networks which can perform the Fast Fourier Transforms very efficiently. The butterfly network consists of a series of switch stages and interconnection patterns, which allows n inputs to be connected to n outputs. The benes network consists of back-to-back butterflies. As butterfly is known for FFT, benes is known for permutation routing. The butterfly and benes networks are important multistage interconnection networks, which possess attractive topologies for communication networks [8]. They have been used in parallel computing systems such as IBM, SP1/SP2, MIT Transit Project, NEC Cenju-3 and used as well in the internal structures of optical couplers [7, 13]. The multistage networks have long been used as communication networks for parallel computing [5].

Cycles in interconnection networks are useful in many applications such as indexing, embedding linear arrays and rings, computing FFT and so on [4]. The cycle partition of star graphs and arrangement graphs are studied in [1, 10]. The pancycle problem of butterfly networks is investigated in [4].

Let $V(G)$ and $E(G)$ denote the vertex set and edge set of a graph G. Let H be a subgraph of G. Two subgraphs of G are said to be vertex-disjoint if they have no vertices in common and edgedisjoint if they have no edges in common. Given $G(V, E)$, a vertex-disjoint cycle cover is a partition $\left\{V_{1}, V_{2}, \ldots, V_{k}\right\}$ of the vertex set $V(G)$ into subsets of V such that each $V_{i}, 1 \leq i \leq k$ induces a cycle [9]. The minimum vertex-disjoint cycle cover problem is to minimise k [2]. We denote this minimum number by $\eta(G)$.

An edge-disjoint cycle cover is a partition $\left\{E_{1}, E_{2}, \ldots E_{k}\right\}$ of the edge set $E(G)$ into subsets of E such that each $E_{i}, 1 \leq i \leq k$ induces a cycle [9]. The minimum edge-disjoint cycle cover problem is to minimise k [2]. We denote this minimum number by $\eta^{\prime}(G)$. Minimum vertex-disjoint cycle cover and minimum edge-disjoint cycle cover problems are $N P$-complete [2].
In this paper, we solve the minimum vertex-disjoint cycle cover problem for odd dimensional butterfly networks and prove that vertex-disjoint cycle cover is not possible for benes networks. Also, edgedisjoint cycle cover number is determined for butterfly networks.

2 Vertex-disjoint Cycle Cover

Butterfly and benes networks are represented as undirected graphs whose nodes represent processors and edges represent interprocessor communication links.

The set V of nodes of an r-dimensional butterfly network correspond to pairs [w, i], where i is the dimension or level of a node $(0 \leq i \leq r)$ and w is an r-bit binary number that denotes the row of the node. Two nodes $[w, i]$ and $\left[w^{\prime}, i^{\prime}\right]$ are linked by an edge if and only if $i^{\prime}=i+1$ and either w and w^{\prime} are identical or w and w^{\prime} differ in precisely the $i^{\text {th }}$ bit. The r-dimensional butterfly is denoted by $B F(r)$. It has $(r+1) 2^{r}$ vertices and $r 2^{r+1}$ edges [8, 11].

An r-dimensional benes network has $2 r+1$ levels, each level with 2^{r} nodes. The level 0 to level r nodes in the network form an r-dimensional butterfly. The benes network consists of back-to-back butterflies. The middle level of the benes network is shared by these butterflies [6]. An r-dimensional benes network is denoted by $B B(r)$ [13].
Manuel et al. [8] have identified new topological representations for butterfly and benes networks as diamond representations and proved that the normal and diamond representations of butterfly and benes networks are isomorphic. Normal and Diamond representations of $B F(2)$ are given in Figure 1.

Figure 1: Normal and Diamond representations of $B F(2)$.
We denote by $N(u)$, the set of all vertices of G adjacent to u and call this set as the neighbourhood of u [3].

Two nodes $[w, i]$ and $\left[w^{\prime}, i^{\prime}\right]$ in $B F(r)$ are said to be mirror images of each other if w and w^{\prime} differ precisely in the first bit. The removal of level 0 vertices $\left\{v_{1}, v_{2}, \ldots, v_{2}{ }^{r}\right\}$ of $B F(r)$ gives two subgraphs H_{1} and H_{2} of $B F(r)$, each isomorphic to $B F(r-1)$. Since $\left\{v_{1}, v_{2}, \ldots, v_{2}{ }^{r}\right\}$ is a vertex-cut of $B F(r)$, the vertices are called binding vertices of $B F(r)$. If a 4-cycle in $B F(r)$ has binding vertices then it is called a binding diamond. The edges of binding diamonds are called binding edges [8]. Such diamonds are also obtained when vertices of $B F(r)$ at level $(n+1)$ are removed. To distinguish between the two, we call the binding diamonds defined by removing the vertices at level 0 as vertical binding diamonds and those defined by removing vertices at level $(n+1)$ as horizontal binding diamonds. The two types of diamonds are given in Figure 2.

Figure 2: Horizontal and vertical binding diamonds of $B F(2)$

Lemma 2.1. [4] $B F(r)$ contains cycles of length $4 d$ for all $d, 1 \leq d \leq r$.

Lemma 2.2. [4] $B F(r)$ contains cycles of length $4 d+2$ for all $d, 3 \leq d \leq r$.

Theorem 2.3. Let $B F(2 r+1)$ be an odd dimensional butterfly network. Then, $\eta(B F(2 r+1))=$ $(2 r+2) 2^{2 r-1}, r \geq 1$.

Proof. We prove the result by induction on r.
Consider $B F(3)$. There are 8 binding diamonds in $B F(3)$ and they cover all the 32 vertices of $B F(3)$. Hence, $\eta(B F(3))=8=(2+2) 2^{2-1}$.

Figure 3: Binding diamonds of $B F(3)$
Assume the result to be true for $B F(k)$, where k is odd, $k \leq 2 r-1$. The hypothesis implies that the cycles in any vertex-disjoint cycle cover of $B F(k), k$ odd and $k \leq 2 r-1$ are all 4 -cycles.

Consider $B F(2 r+1)$. Let \mathfrak{B} be the set of all binding diamonds of $B F(2 r+1)$. There are $2^{2 r+1}$ number of binding diamonds in $B F(2 r+1)$. We have exactly two binding vertices through which a binding diamond passes. Further, two binding vertices u and v belonging to a binding diamond cannot lie on two different vertex-disjoint cycles as $N(u)$ and $N(v)$ are equal and are of cardinality 2 . Removal of all the binding vertices leaves 4 copies of $B F(2 r-1)$. By induction hypothesis, the binding vertices of the 4 copies of $B F(2 r-1)$ are all covered by the 4 -cycles in \mathfrak{B}. Removal of the binding vertices of all the 4 copies of $B F(2 r-1)$ leave 16 copies of $B F(2 r-3)$. Again by induction hypothesis, each $B F(2 r-3)$ is covered by only 4 -cycles and $\eta(B F(2 r-3))=(2 r-2) 2^{2 r-5}$. Let τ be the collection of all these 4-cycles. Then $|\tau|=16 \times(2 r-2) 2^{2 r-5}=(2 r-2) 2^{2 r-1}$. Now, $\mathfrak{B} \cup \tau$ is a vertex-disjoint cycle cover of $B F(2 r+1)$ such that every member of $\mathfrak{B} \cup \tau$ is a 4-cycle. Further, $|\mathfrak{B} \cup \tau|=\eta(B F(2 r+1))=$ $2^{2 r+1}+(2 r-2) 2^{2 r-1}=(2 r+2) 2^{2 r-1}$.
Remark 2.4. Any vertex-disjoint cycle cover of $B F(r)$ where r is even, contains $r 2^{r-2}$ number of 4cycles and 2^{r} isolated vertices. Isolated vertices of $B F(2)$ are given in Figure 4.

Figure 4: Isolated vertices of $B F(2)$.

Theorem 2.5. There does not exist a vertex-disjoint cycle cover for the r-dimensional benes network $B B(r), r \geq 1$.

Proof. Case 1. r is odd.

Let $r=2 k+1, k \geq 1$. Since $B B(r)$ consists of back to back butterflies $B F(2 k+1)$ obtained by merging level 0 vertices, by Theorem 2.3, one copy of $B F(2 k+1)$ has a vertex-disjoint cycle cover, say \mathcal{C}. Deleting vertices of level 0 which are already covered by cycles in \mathcal{C} from the second copy of $B F(2 k+1)$ leave 2 copies of $B F(2 k)$ for which there does not exist a vertex-disjoint cycle cover. Hence, there does not exist a vertex-disjoint cycle cover for $B B(r)$.
Case 2. r is even.
Let $r=2 k$. The vertex set of $B B(r)$ can be partitioned into three sets, one inducing $B F(2 k)$ and the other two inducing two copies of $B F(2 k-1)$. Even though there exists a vertex-disjoint cycle cover for $B F(2 k-1)$, there does not exist a vertex-disjoint cycle cover for $B F(2 k)$.

Figure 5: A 2-dimensional benes network with level zero vertices marked.

3 Edge-disjoint Cycle Cover

For any graph G, a lower bound for $\eta^{\prime}(G)$ has been obtained in [12]. In this section, we prove that the bound is sharp for butterfly network.

Theorem 3.1. [12] Let G be a graph with an edge-disjoint cycle cover. Let be the maximum degree in G. Then $\eta^{\prime}(G) \geq(/ 2)$.
Theorem 3.2. Let $B F(r), r \geq 1$ be a butterfly network. Then $\eta^{\prime}(B F(r))=2$.
Proof. $B F(r)$ contains 2^{r-1} horizontal binding diamonds $H B_{\mathrm{i}}$ and 2^{r-1} vertical binding diamonds $V B_{\mathrm{i}}, 1$ $\leq i \leq 2^{r-1}$. Let u_{i} be a 2 degree vertex in $H B_{i}$. Then the neighbourhood of u_{i} has two vertices $u_{i}(1)$ and $u_{i}(2)$ of degree four.

Similarly $V B_{i}$ has a 2 degree vertex v_{i} and its neighbouring vertices are $v_{i}(1)$ and $v_{i}(2)$ with degree four. In other words, $N\left(u_{i}\right)=\left\{u_{i}(1), u_{\mathrm{i}}(2)\right\}$ and $N\left(v_{i}\right)=\left\{v_{\mathrm{i}}(1), v_{i}(2)\right\}, 1 \leq i \leq 2^{r-1}$.

In the following procedure, $u \rightarrow v$ denotes a traversal from vertex u to vertex v. Again, removing all the binding diamonds of $B F(r)$ leaves 4 copies of $B F(r-2)$, two on the top and two at the bottom. Let $B F^{T L}(r-2), B F^{T R}(r-2), B F^{B L}(r-2)$ and $B F^{B R}(r-2)$ denote the top left, top right, bottom left and bottom right copies of $B F(r-2)$.

Procedure CYCLECOVER BF(r)

Input: An r-dimensional butterfly network $B F(r)$.

Algorithm:

Step 1: Begin C_{1}. Initialize $i=1$ and $j=2^{r-1}$.
Step 2: $u_{i}(1) \rightarrow u_{i}(2)$ traversing 2 edges in $H B_{i}$ and passing through u_{i}. $u_{i}(2) \rightarrow v_{j}(1)$ traversing $r-2$ edges in $B F^{T R}(r-2)$.
$v_{j}(1) \rightarrow v_{j}(2)$ traversing 2 edges in $V B_{j}$ and passing through v_{j}. $v_{j}(2) \rightarrow u_{j}(2)$ traversing $r-2$ edges in $B F^{B R}(r-2)$.
Step 3: Increment or decrement i in $H B_{i}$ and j in $V B_{j}$
Step 4: $u_{j}(2) \rightarrow u_{j}(1)$ traversing 2 edges in HB_{j} and passing through u_{j}. $u_{j}(1) \rightarrow v_{i}(2)$ traversing $r-2$ edges in $B F^{B L}(r-2)$. $v_{i}(2) \rightarrow v_{i}(1)$ traversing 2 edges in $V B_{i}$ and passing through v_{i}. Traverse $r-2$ edges in $B F^{T L}(r-2)$.

Step 5: Increment or decrement i in $H B_{i}$ and j in $V B_{j}$.
Step 6: Repeat.
Output: A cycle C_{1}.
Proof of correctness: $B F(r)$ contains 2^{r-1} horizontal and 2^{r-1} vertical binding diamonds. C_{1} traverses two edges in each of the 2^{r} binding diamonds. The number of edges used in 2^{r} binding diamonds is $2^{r+1} . C_{1}$ traverses $(r-2)$ edges in each of the butterflies of smaller dimension, namely $B F^{T L}(r-2)$, $B F^{T R}(r-2), B F^{B L}(r-2)$ and $B F^{B R}(r-2)$ while moving from $H B_{\mathrm{i}}$ to $V B_{j}, 1 \leq i, j \leq 2^{r-1}$ and vice-versa. The number of edges traversed in $B F(r-2)$ is $2^{\mathrm{r}}(r-2)$.

To proceed we prove that the complement of C_{1} in $B F(r)$ is another cycle C_{2} isomorphic to C_{1}. We know that $B F(r)$ is the union of 4-cycles. By Procedure CYCLECOVER $B F(r)$, which generates a cycle C_{1}, the subgraph of C_{1} in any 4-cycle C^{*} in $B F(r)$ is isomorphic to its complement in C^{*}. Thus the subgraph induced by the complementary subgraphs of all the four cycles in $B F(r)$ induce a cycle C_{2} isomorphic to C_{1}. Hence, $\left|E\left(C_{1}\right)\right|=\left|E\left(C_{2}\right)\right|=2^{r+1}+2^{r}(r-2)=r 2^{r}$.
Therefore, $\left|E\left(C_{1}\right)\right|+\left|E\left(C_{2}\right)\right|=r 2^{r+1}=|E(B F(r))|$. The procedure is illustrated in Figure 6.

Figure 6: Two edge-disjoint cycles of $B F_{3}$.

4 Conclusion

In this paper, minimum vertex-disjoint cycle cover number for odd dimensional butterfly networks $B F(2 r+1), r \geq 1$ is obtained. It is also proved that a vertex-disjoint cycle cover does not exist for even dimensional butterfly networks and benes networks $B B(r), r \geq 1$. Further, we obtain minimum edge-disjoint cycle cover number for $B F(r)$.

References

[1] K. Day, A. Tripathi, Embedding of cycles in arrangement graphs, IEEE Transactions on Computers, 12(1993), 1002-1006.
[2] M.R. Garey, D.S. Johnson, Computers and Intractability: A Guide to the Theory of NPCompleteness, Freeman and Company, 1979.
[3] F. Harary, Graph Theory, Addison-Wesley Publishing Company Inc., 1969.
[4] S.C. Hwang, G.H. Chen, Cycles in Butterfly Graph, Networks, 35(2000), 161 - 171.
[5] S. Konstantinidou, The Selective Extra Stage Butterfly, IEEE Transactions on very Large Scale Integration Systems, 1(1993).
[6] T.F. Leighton, Introduction to parallel algorithms and architecture: Arrays, Trees, Hypercubes, Morgan, Kaufmann Publishers, 1992.
[7] X. Liu, Q.P. Gu, Multicasts on WDM All-Optical Butterfly Networks, Journal of Information Science and Engineering, 18(2002), 1049-1058.
[8] P. Manuel, M.I. Abd-El-Barr, I. Rajasingh, B. Rajan, An Efficient representation of Benes Network and its Applications, Journal of Discrete Algorithms, 6(2008), 11-19.
[9] C. Murat, V.Th. Pachos, Probabilistic Combinatorial Optimization on graphs, ISTE Ltd., 2006.
[10] K. Qiu, H. Meijer, S. Akl, Decomposing a Star graph into disjoint cycles, Information Processing Letters, 39(1999), $125-129$.
[11] B. Rajan, I. Rajasingh, P. Venugopal, Minimum Metric Dimension of Oriented Butterfly Network, Proc. of the fifth Asian Mathematical Conference, Malaysia, 2009.
[12] A. William, A. Shanthakumari, Bound on the minimum cycle cover number of a graph, J. Comp. \& Math. Sci., 2(2011), 842-845.
[13] J. Xu, Topological Structure and Analysis of Interconnection Networks, Kluwer Academic Publishers, 2001.

