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Abstract.

This paper aims to study the effect of Harvesting on predator species with time-delay on a
Holling type-IV prey-predator model. Harvesting has a strong impact on the dynamic evolution of
a population. Two delays are considered in the model of this paper to describe the time that
juveniles of prey and predator take to mature. Dynamics of the system is studied in terms of local
and Hopf bifurcation analysis. Finally, numerical simulation is done to support the analytical
findings.
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1 Introduction

The predator-prey model is a kind of “pursuit and evasion” system in which the prey try to evade
the predator and the predator try to catch the prey if they interact. Two species continuous time
models of predator (natural enemy)–prey (pest) type of interaction with functional response of the
predator to its prey have been extensively discussed in the literature [2-6]. Andrews [1] suggested a
function
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called the Monod-Haldane function and also called a Holling type- IV function. Sokol and Howell
[11] proposed a simplified Holling type-IV function of the form

.)(
2xa

mx
x




Many authors researched Holling type IV population models [8]. Keeping this in mind, we
consider a prey-predator model with Holling type-IV functional response and harvesting of predator
(natural enemy) species:
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where )(tx and )(ty denote the population densities of prey (pest) and predator (natural enemy) at

time t , respectively. All coefficients are positive constants. Specially, r and K represent the
intrinsic growth rate and carrying capacity of prey in the absence of predation, respectively.
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, known as Holling type-IV response and contributes to its growth rate
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is a constant birth rate and 0d is the maximum death rate in the absence of food. All the metabolic

energy a predator obtains from its food goes into physiological maintenance, rather than into

enhancing reproductive effort. In addition, we assume that the juveniles of prey and predator take 1
and 2 units of time to mature, respectively. Moreover, the catch rate function YqE0 is based on the

catch-per-unit-effort (CPUE) hypothesis. Here, q is the catchability coefficient of the predator species

and 0E is the harvesting effort.

The rest of this paper is organized as follows: In section 2, we investigate the stability of positive
equilibrium and occurrence of Hopf bifurcation. In section 3, some numerical simulations are carried
out to justify the analytic results obtained in the manuscript. Section 4 deals with the conclusions of
the paper.
2 Stability And Local Hopf Bifurcation

Let  **, yx be the only interior equilibrium of the system (1). Then the linearization of Equation (1)

at  **, yx is given by
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whose characteristic equation is
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Case 1. 021   .

In this case, Equation (3) becomes

0)( 212211

2  DDCBCBA  , (4)

All roots of Equation (4) have negative real parts if and only if
(H1) 0,0 212211  DDCBCBA

So the equilibrium point  ** , yx is locally asymptotically stable when (H1) holds and unstable if

either of these conditions is not satisfied. Hence, in the absence of time delay, the system is locally
asymptotically stable if and only if 0and0 212211  DDCBCBA hold simultaneously.

Case 2. 0,0 21   .

Here, Equation (3) becomes

0)()( 2

121221

2   eDCCDBBA (5)

Let iw be one such root. Substituting this in equation (5) and equating real and imaginary parts,
we get
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)(sin)(cos 121221 BAwwDCwwC   (5b)

Squaring and adding the equations (5a) and (5b) we get
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From (6), it follows that if
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holds, then Equation (6) has no positive roots. Hence, all roots of (5) have negative real parts when

),0(2  under (H1) and (H2).

If (H1) and (H3) 0)()( 2
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22  DCDB hold, then (6) has a unique positive root 2
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into (5a) and (5b), we have
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hold, then there are two positive solutions
2

w . Substituting
2

w into (5a) and (5b), we have
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Differentiating equation (5) with respect to
2
 , we obtain
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by using
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Theorem 2.1. If (H1) and (H3) hold, then the equilibrium  **, yx is unstable for
022   and

asymptotically stable for
022   . Further, as  increases through

02 ,  **, yx bifurcates into small

amplitude periodic solutions where
n220

  as 0n .

Proof. For 02  ,  **, yx is unstable if condition (H1) holds. Hence, by Butler’s lemma,  **, yx
remains unstable for

022   . Now we show that
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This signifies that there exists at least one eigen value with positive real part for
022

  .

Moreover, the conditions of Hopf bifurcation (Hale and Lunel, (1993)) are then satisfied yielding the
required periodic solution.

From (7c), it follows that
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Therefore, the transversability conditions holds and hence Hopf bifurcation occurs
at

0220 ,   ww . This completes the proof. 

Theorem 2.2. Let 

k2 be defined in (6a). If (H1) and (H4) hold, then there exists a positive integer m

such that there are m switches from stability to instability and from instability to stability. In other

words, when ),(,),,(),,0[ 1100




 mm   , the equilibrium  **, yx is unstable and

when ),(,),,(),,[ 11100




 mm   ,  **, yx is stable. Therefore, there are bifurcations at  **, yx

when ,...2,1,0,   kk
Proof. If conditions (H1) and (H4) hold, then to prove the theorem we need only to verify the
transversability conditions.
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Hence, the transversality conditions hold.
Case 3. 0,0 21   .

We consider Equation (3) with 2 in its stable interval. Regard 1 as a parameter. Without loss of

generality, we consider system (1) under the assumptions (H1) and (H3). Let iw be one such root.
Substituting this in equation (3) and equating the real and imaginary parts we get

  cossin}sin{sincoscos 22212

2
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  cossin}cos{sinsincos 212221212111 AwwwCwCwDBwwDwBw   (9b)

Squaring and adding equation (9a) and (9b), we get
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Therefore, by the general Hopf bifurcation theorem for FDEs in Hale [7], we have the following
result on stability and bifurcation in system (1). 

Theorem 2.3. For the system (1), suppose (H1), (H3) and (H5) are satisfied and ).,0[
022   Then the

equilibrium  **, yx is asymptotically stable when ),0(
011   and system (1) undergoes a Hopf

bifurcation at  **, yx when
011   .

3 Numerical Simulation and Discussion

In this section, we present numerical simulation to illustrate the results obtained in the previous
sections. The system (1) is integrated using the fourth order Runge – Kutta Method with the help of
MATLAB software package under the following set of parameters.
(a) 5.0,4.0,2,4,5.2,6.2,2,10,120,20 02001  EqedbeKr 

The positive equilibrium point of Equation (1) with data (a) is .00209.2*,0250313.0*  YX

Then, we can easily obtain that is (H1) and (H4) to be satisfied. By computation, we
have 245831.0,1415.2

020  w . Here we show that the transversal condition (8) is satisfied as:

020339.1
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d
. Therefore, ),( ** YX is unstable for 245831.0

022  and

asymptotically stable for 245831.05.2
022   .When

022   , Equation(1) with data (a) undergoes

a Hopf bifurcation at ),( ** YX , that is there is a small amplitude periodic solution around

),( ** YX when 01  and 2 is close to
02 which is shown in Figure (1a) and Figure( 1b).

Figure 1a: when 2.0,0 21   .
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Figure 1b: when 3.0,0 21  

Regard
1
 as a parameter and let 034.01  . From Figures (2a) and (2b) we can easily see that

when
0221 2.0,034.0   the system is unstable and when

0221 3.0,034.0   the system

becomes stable that is there is a small amplitude periodic solution around ),( ** YX

when
0221 ,034.0   . But when

2
 reaches 5.2 the system becomes unstable, it means stability of

the system lies in ]5.2,245831.0[ . Thus, delay plays an important role in Hopf bifurcation.

Figure 2a: when 2.0,034.0 21   Figure 2b: when 3.0,034.0 21  
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Figure 2c: when 0,0 21  
When there is no delay, the system shows chaotic behavior that means the system is unstable, refer

Figure (2c). Thus, from numerical simulation we have observed that when population of prey is very
small, maturation delay in predator plays an important role in stability of the system. When maturation
time of predator lies between 2.5and245831.0 , the system remains stable and the stability of the
system is lost when 5.22  , refer Figure 3. Here, we can show ecological interpretation of maturation

delay. Some insects, such as ladybirds are very helpful to farmers, because they eat pest species such
as greenfly, whitefly and mealy bug. Ladybirds are natural enemies of pests. If maturation delay of
natural enemies is 5.22  , the population of pests will increase and this is harmful for crops. For

good production, it is necessary maturation time of natural enemies (predator) lies
between 2.5and245831.0 .

Figure 3: when 5.2,034.0 21  

Now, we see effect of Harvesting on the system. Harvesting has a strong impact on the dynamic
evolution of a population. To a certain extent, it can control the long-term stationary density of
population efficiently. However, it can also lead to the incorporation of a positive extinction
probability and therefore to potential extinction in finite time. We take harvesting of predator species.
If the population of ladybirds increases out of limit, it will create problem for the human beings. So
we had taken harvesting of ladybirds (predator). Figure (4) is the plots of prey population and predator
population against time for different value of 0E at 2.02  . Figure 4 shows that predator population

decreases with 0E increases and becomes extinct if 5.00 E . Here, we can also note that the prey

population increases with the increase of 0E and reaches to the peak level.
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Figure 5: when 3.0,0 21   .

Figure 6: when 2.0,0 21  
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From Figures 4 and 6 we can easily see that when the system is unstable that is. when 2.02  , the

range of  Harvesting is )5.0,4.0( . Here we can note that when 4.00 E the prey population becomes

extinct and however for 5.00 E the predator population becomes extinct.  Both of these cases do not

have any biological meaning. Figure 5 is the plots of the prey population and predator population
against time for different value of 0E at 3.02  . Figure 5 shows that predator population decreases

with 0E increases and the prey population increases with 0E increases. We can also note that the prey

and predator population will not tend to extinction if 7.04.0 0  E . For good production it is

necessary 0E lies between 0.4 and 0.7.

4 Conclusion

In this paper we carried out simulations and found that when the system is unstable, that is when
2.02  , range of  Harvesting is )5.0,4.0( . We had taken ladybirds as natural enemy (predator) and

pests as prey. If the maturation delay of ladybirds is 5.22  , the population of pests will increase and

it will be harmful for crops. So the maturation delay of   ladybirds should less than 2.5. We had taken
harvesting of ladybirds for controlling the population of them. If the population of ladybirds increases
out of limit, it will create problems for humans. For good production it is necessary 0E lies between

0.4 and 0.7. Hence, we conclude from our analysis that the stability properties of the system could
switch with the Harvesting with time delay that is incorporated on different densities in the model.
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