On edge irregularity strength of subdivision of star S_{n}

Muhammad Kamran Siddiqui
Abdus Salam School of Mathematical Sciences, GC University, Lahore, PAKISTAN.
E-mail: kamransiddiqui75@gmail.com.

Abstract

In this paper, we study the total edge irregularity strength of some well known graphs. An edge irregular total k-labeling $\varphi: V \cup E \rightarrow\{1,2, \ldots, k\}$ of a graph $G=(V, E)$ is a labeling of vertices and edges of G in such a way that for any different edges $x y$ and $x^{\prime} y^{\prime}$ their weights are distinct. The total edge irregularity strength $\operatorname{tes}(G)$ is defined as the minimum k for which G has an edge irregular total k-labeling. Also, we determine the exact value of the total edge irregularity strength of subdivision of star S_{n}.

Keywords: Irregularity strength, Total edge irregularity strength, Edge irregular total labeling, Subdivision of star.
AMS Subject Classification(2010): 05C78.

1 Introduction

Bača, Jendroľ, Miller and Ryan [3] defined the notion of an edge irregular total k-labeling of a graph $G=(V, E)$ to be a labeling of the vertices and edges of $G, \varphi: V \cup E \rightarrow\{1,2, \ldots, k\}$ such that, the edge weights $w t_{\varphi}(u v)=\varphi(u)+\varphi(u v)+\varphi(v)$ are different for all edges. The minimum k for which the graph G has an edge irregular total k-labeling is called the total edge irregularity strength of $G, \operatorname{tes}(G)$.

The motivation for the definition of the total edge irregularity strength came from irregular assignments and the irregularity strength of graphs introduced by Chartrand, Jacobson, Lehel, Oellermann, Ruiz and Saba [6]. An irregular assignment is a k-labeling of the edges $\phi: E \rightarrow\{1,2, \ldots, k\}$ such that the sum of the labels of edges incident with a vertex is different for all the vertices of G and the smallest k for which there is an irregular assignments is the irregularity strengthand is denoted by $s(G)$.

Finding the irregularity strength of a graph seems to be hard even for graphs with simple structure, see $[4,7,9,14]$. Karoński, Luczak and Thomason [12] conjectured that the edges of every connected graph of order at least 3 can be assigned labels from $\{1,2,3\}$ such that for all the pairs of adjacent vertices, the sums of the labels of the incident edges are different.

We mention the following result from [3] giving a lower bound on the total edge irregularity strength of a graph:

$$
\begin{equation*}
\operatorname{tes}(G) \geq \max \left\{\left\lceil\frac{|E(G)|+2}{3}\right\rceil,\left\lceil\frac{\Delta(G)+1}{2}\right\rceil\right\} \tag{1}
\end{equation*}
$$

where $\Delta(G)$ is the maximum degree of G. The exact values of the total edge irregularity strength for paths, cycles, stars, wheels and friendship graphs are determined in [3].

Recently Ivančo and Jendrol [8] posed the following conjecture:

Conjecture 1.1. [8] Let G be an arbitrary graph different from K_{5}. Then

$$
\begin{equation*}
\operatorname{tes}(G)=\max \left\{\left\lceil\frac{|E(G)|+2}{3}\right\rceil,\left\lceil\frac{\Delta(G)+1}{2}\right\rceil\right\} \tag{2}
\end{equation*}
$$

Conjecture 1 has been verified for trees in [8], for complete graphs and complete bipartite graphs in [10] and [11], for the Cartesian product of two paths $P_{n} \square P_{m}$ in [13], for corona product of a path with certain graphs in [15], for large dense graphs with $\frac{|E(G)|+2}{3} \leq \frac{\Delta(G)+1}{2}$ in [5], for the categorical product of two paths $P_{n} \times P_{m}$ in [2] and for the categorical product of a cycle and a path $C_{n} \times P_{m}$ in [1].

Motivated by [1],[3] and [15] we investigate the total edge irregularity strength of subdivision of a star S_{n}. In [16], for $m \geq 0$ and $n \geq 3$, let S_{n}^{m} be a graph obtained by inserting m vertices to every edge of a star S_{n}. Thus, the star S_{n} can be written as S_{n}^{0}. The graph S_{n}^{m} is given in Figure1.

Figure 1: The graph of S_{n}^{m}

We define the vertex set and the edge set of the graph S_{n}^{m} as follows:

$$
V\left(S_{n}^{m}\right)=\left\{c, x_{i, j}: i \in[1, n], j \in[1, m+1]\right\}
$$

and

$$
E\left(S_{n}^{m}\right)=\left\{c x_{i, 1}, x_{i, j-1} x_{i, j}: i \in[1, n], j \in[2, m+1]\right\}
$$

Clearly, a graph S_{n}^{m} has $m n+n+1$ vertices and $m n+n$ edges. Among these vertices, one vertex has degree n, n vertices have degree one, and the remaining vertices have degree two. As the maximum degree $\triangle\left(S_{n}^{m}\right)=n$, then (1) implies that $\operatorname{tes}\left(S_{n}^{m}\right) \geq\left\lceil\frac{m n+n+2}{3}\right\rceil$. To show that $\left\lceil\frac{m n+n+2}{3}\right\rceil$ is an upper bound for the $\operatorname{tes}\left(S_{n}^{m}\right)$, we describe an edge irregular total $\left\lceil\frac{m n+n+2}{3}\right\rceil$-labeling for S_{n}^{m}.

Theorem 1.2. For $n \geq 3$, tes $\left(S_{n}^{1}\right)=\left\lceil\frac{2 n+2}{3}\right\rceil$.
Proof. The inequality tes $\left(S_{n}^{1}\right) \geq\left\lceil\frac{2 n+2}{3}\right\rceil$ follows from (1). To prove tes $\left(S_{n}^{1}\right) \leq\left\lceil\frac{2 n+2}{3}\right\rceil$, we split the edge set of S_{n}^{1} in mutually disjoint subsets:
$A_{i}=\left\{c x_{i, 1}\right\}$ for $1 \leq i \leq n$ and $B_{i}=\left\{x_{i, 1} x_{i, 2}\right\}$ for $1 \leq i \leq n$.
Let $k=\left\lceil\frac{2 n+2}{3}\right\rceil$ and define a total k-labeling $\psi_{1}: V \cup E \rightarrow\{1,2, \ldots, k\}$ with $\psi_{1}(c)=1$ as follows:
Case 1. when $n \equiv 0(\bmod 3)$
$\psi_{1}\left(x_{i, j}\right)= \begin{cases}1, & \text { if } 1 \leq i \leq \frac{n}{3}, j=1 \\ 1+i-\frac{n}{3}, & \text { if } \frac{n}{3}+1 \leq i \leq n, j=1 \\ k, & \text { if } 1 \leq i \leq n, j=2\end{cases}$
$\psi_{1}\left(A_{i}\right)= \begin{cases}i, & \text { if } 1 \leq i \leq \frac{n-3}{3} \\ \frac{n}{3}, & \text { if } \frac{n}{3} \leq i \leq n\end{cases}$
$\psi_{1}\left(B_{i}\right)= \begin{cases}\frac{n+3 i}{3}, & \text { if } 1 \leq i \leq \frac{n}{3} \\ k-1, & \text { if } \frac{n+3}{3} \leq i \leq n\end{cases}$
Under the labeling ψ_{1}, the total weights of the edges are as follows:
(i) edges in A_{i} receive $2+i$ for $1 \leq i \leq n$,
(ii) edges in B_{i} receive $\frac{3 k+3+n+3 i}{3}$ for $1 \leq i \leq \frac{n}{3}$ and $\frac{6 k+3 i-n}{3}$ for $\frac{n+3}{3} \leq i \leq n$.

Case 2. when $n \equiv 1(\bmod 3)$

$$
\begin{aligned}
\psi_{1}\left(x_{i, j}\right)= & \begin{cases}1, & \text { if } 1 \leq i \leq \frac{n-1}{3}, j=1 \\
2+i-\frac{n+2}{3}, & \text { if } \frac{n+2}{3} \leq i \leq n, j=1 \\
k, & \text { if } 1 \leq i \leq n, j=2\end{cases} \\
\psi_{1}\left(A_{i}\right) & = \begin{cases}i, & \text { if } 1 \leq i \leq \frac{n-1}{3} \\
\frac{n-1}{3}, & \text { if } \frac{n+2}{3} \leq i \leq n\end{cases} \\
\psi_{1}\left(B_{i}\right) & = \begin{cases}\frac{n+3 i-1}{3}, & \text { if } 1 \leq i \leq \frac{n-1}{3} \\
k-2, & \text { if } \frac{n+2}{3} \leq i \leq n\end{cases}
\end{aligned}
$$

Under the labeling ψ_{1}, the total weights of the edges are as follows:
(i) edges in A_{i} receive $2+i$ for $1 \leq i \leq n$,
(ii) edges in B_{i} receive $\frac{3 k+2+n+3 i}{3}$ for $1 \leq i \leq \frac{n-1}{3}$ and $\frac{6 k+3 i-n-2}{3}$ for $\frac{n+2}{3} \leq i \leq n$

Case 3. when $n \equiv 2(\bmod 3)$

$$
\begin{aligned}
& \psi_{1}\left(x_{i, j}\right)= \begin{cases}1, & \text { if } 1 \leq i \leq \frac{n+1}{3}, j=1 \\
2+i-\frac{n+4}{3}, & \text { if } \frac{n+4}{3} \leq i \leq n, j=1 \\
k, & \text { if } 1 \leq i \leq n, j=2\end{cases} \\
& \psi_{1}\left(A_{i}\right)= \begin{cases}i, & \text { if } 1 \leq i \leq \frac{n+1}{3} \\
\frac{n+1}{3}, & \text { if } \frac{n+4}{3} \leq i \leq n\end{cases} \\
& \psi_{1}\left(B_{i}\right)= \begin{cases}\frac{n+3 i+1}{3}, & \text { if } 1 \leq i \leq \frac{n+1}{3} \\
k, & \text { if } \frac{n+4}{3} \leq i \leq n\end{cases}
\end{aligned}
$$

Under the labeling ψ_{1}, the total weights of the edges are as follows:
(i) edges in A_{i} receive the integer $2+i$ for $1 \leq i \leq n$,
(ii) edges in B_{i} receive the integer $\frac{3 k+4+n+3 i}{3}$ for $1 \leq i \leq \frac{n+1}{3}$ and $\frac{6 k+3 i-n+2}{3}$ for $\frac{n+4}{3} \leq i \leq n$.

It can be easily verified that the vertex and edge labels are atmost k and the edge-weights are pairwise distinct. Thus, the resulting total labeling is the desired edge irregular k-labeling. This concludes the proof.

Theorem 1.3. For $n \geq 3$, $\operatorname{tes}\left(S_{n}^{2}\right)=\left\lceil\frac{3 n+2}{3}\right\rceil$.
Proof. The ineqality $\operatorname{tes}\left(S_{n}^{2}\right) \geq\left\lceil\frac{3 n+2}{3}\right\rceil$ follows from (1). To prove the equality we split the edge set of S_{n}^{2} in mutually disjoint subsets:
$A_{i}=\left\{c x_{i, 1}\right\}, B_{i}=\left\{x_{i, 1} x_{i, 2}\right\}$ and $C_{i}=\left\{x_{i, 2} x_{i, 3}\right\}$ for $1 \leq i \leq n$.
Let $k=\left\lceil\frac{3 n+2}{3}\right\rceil$. Define a total k-labeling $\psi_{2}: V \cup E \rightarrow\{1,2, \ldots, k\}$ such that $\psi_{2}(c)=1$ and for $1 \leq i \leq n$,
$\psi_{2}\left(x_{i, j}\right)= \begin{cases}i, & \text { if } j=1 \\ i+1, & \text { if } j=2 \\ k, & \text { if } j=3\end{cases}$
$\psi_{2}\left(A_{i}\right)=1, \psi_{2}\left(B_{i}\right)=k-i, \psi_{2}\left(C_{i}\right)=k-1$,
Under the labeling ψ_{2}, the total weights of the edges are as follows:
(i) edges in A_{i} receive $2+i$ for $1 \leq i \leq n$,
(ii) edges in B_{i} receive $k+1+i$ for $1 \leq i \leq n$,
(iii) edges in C_{i} receive $2 k+i$ for $1 \leq i \leq n$.

It can be easily verified ψ_{2} is an edge irregular total labeling having the required property.

Theorem 1.4. For $n \geq 3$, $\operatorname{tes}\left(S_{n}^{3}\right)=\left\lceil\frac{4 n+2}{3}\right\rceil$.
Proof. The inequality $\operatorname{tes}\left(S_{n}^{3}\right) \geq\left\lceil\frac{4 n+2}{3}\right\rceil$ from (1). To prove the equality we split the edge set of S_{n}^{3} in mutually disjoint subsets:
$A_{i}=\left\{c x_{i, 1}\right\}, B_{i}=\left\{x_{i, 1} x_{i, 2}\right\}, C_{i}=\left\{x_{i, 2} x_{i, 3}\right\}$ and $D_{i}=\left\{x_{i, 3} x_{i, 4}\right\}$ for $1 \leq i \leq n$.

Let $k=\left\lceil\frac{4 n+2}{3}\right\rceil$. We define a total k-labeling ψ_{3} such that $\psi_{3}(c)=1$ and for $1 \leq i \leq n$,
$\psi_{3}\left(x_{i, j}\right)= \begin{cases}i, & \text { if } j=1 \\ i+1, & \text { if } j=2 \\ k, & \text { if } j=3,4\end{cases}$
$\psi_{3}\left(A_{i}\right)=1, \psi_{3}\left(B_{i}\right)=n+1-i$,
$\psi_{3}\left(C_{i}\right)=\left\{\begin{array}{lll}\frac{2 n}{3} & \text { when } & n \equiv 0(\bmod 3) \\ \frac{2 n+1}{3} & \text { when } & n \equiv 1(\bmod 3) \\ \frac{2 n-1}{3} & \text { when } & n \equiv 2(\bmod 3)\end{array}\right.$
$\psi_{3}\left(D_{i}\right)=\left\{\begin{array}{lll}\frac{n}{3}+i & \text { when } & n \equiv 0(\bmod 3) \\ \frac{5 n+4}{3}-k+i & \text { when } & n \equiv 1(\bmod 3) \\ \frac{5 n+2}{3}-k+i & \text { when } & n \equiv 2(\bmod 3)\end{array}\right.$
Under the labeling ψ_{3},
(i) edges in A_{i} receive $2+i$ for $1 \leq i \leq n$,
(ii) edges in B_{i} receive $n+2+i$ for $1 \leq i \leq n$.

Case 1. when $n \equiv 0(\bmod 3)$
(i) edges in C_{i} receive $k+1+\frac{2 n}{3}+i$ for $1 \leq i \leq n$,
(ii)edges in D_{i} receive $2 k+\frac{n}{3}+i$ for $1 \leq i \leq n$.

Case 2. when $n \equiv 1(\bmod 3)$
(i) edges in C_{i} receive $k+2+\frac{2 n-2}{3}+i$ for $1 \leq i \leq n$,
(ii)edges in D_{i} receive $k+\frac{5 n+4}{3}+i$ for $1 \leq i \leq n$.

Case 3. when $n \equiv 2(\bmod 3)$
(i) edges in C_{i} receive $k+1+\frac{2 n-1}{3}+i$ for $1 \leq i \leq n$,
(ii)edges in D_{i} receive $k+\frac{5 n+2}{3}+i$ for $1 \leq i \leq n$.

It can be easily verified that the vertex and edge labels are atmost k and the edge-weights are pairwise distinct.Thus, the resulting total labeling is the desired edge irregular k-labeling.

Theorem 1.5. For $4 \leq m \leq 5$ and $n \geq 3$, tes $\left(S_{n}^{m}\right)=\left\lceil\frac{(m+1) n+2}{3}\right\rceil$.
Proof. The inequality $\operatorname{tes}\left(S_{n}^{m}\right) \geq\left\lceil\frac{(m+1) n+2}{3}\right\rceil$. follows from (1). To prove the equality we split the edge set of S_{n}^{m} in mutually disjoint subsets:
$A_{i, 1}=\left\{c x_{i, 1}\right\}$ for $1 \leq i \leq n$
$A_{i, j}=\left\{x_{i, j-1} x_{i, j}\right\}$ for $1 \leq i \leq n, 2 \leq j \leq m+1$
Let $k=\left\lceil\frac{(m+1) n+2}{3}\right\rceil$. Define a total k-labeling ψ_{4} such that $\psi_{4}(c)=1$ and for $1 \leq i \leq n$,
$\psi_{4}\left(x_{i, j}\right)= \begin{cases}i, & \text { if } j=1 \\ i+1, & \text { if } j=2 \\ n, & \text { if } j=3 \\ k, & \text { if } j=4,5,6\end{cases}$

```
    \(\psi_{4}\left(A_{i, 1}\right)=1, \psi_{4}\left(A_{i, 2}\right)=n+1-i\),
\(\psi_{4}\left(A_{i, 3}\right)=n+1, \psi_{4}\left(A_{i, 4}\right)=2 n-k+2+i\),
\(\psi_{4}\left(A_{i, 5}\right)=4 n-2 k+2+i, \psi_{4}\left(A_{i, 6}\right)=5 n-2 k+2+i\),
```

Under the labeling ψ_{4}, the edges in $A_{i, j}$ receive weights $(j-1) n+2+i$ for $1 \leq i \leq n$ and $1 \leq j \leq m+1$.

It is easy to verify that ψ_{4} is an edge irregular total labeling having the required property.

Theorem 1.6. For $n \geq 3$, $\operatorname{tes}\left(S_{n}^{6}\right)=\left\lceil\frac{7 n+2}{3}\right\rceil$.
Proof. We have $\operatorname{tes}\left(S_{n}^{6}\right) \geq\left\lceil\frac{7 n+2}{3}\right\rceil$ from (1). To prove the equality we split the edge set of S_{n}^{6} in mutually disjoint subsets:
$A_{i, 1}=\left\{c x_{i, 1}\right\}$ for $1 \leq i \leq n$
$A_{i, j}=\left\{x_{i, j-1} x_{i, j}\right\}$ for $1 \leq i \leq n, 2 \leq j \leq 7$.
Let $k=\left\lceil\frac{7 n+2}{3}\right\rceil$. Define the total k-labeling ψ_{5} such that $\psi_{5}(c)=1$ and for $1 \leq i \leq n$,

$$
\begin{aligned}
& \psi_{5}\left(x_{i, j}\right)= \begin{cases}i, & \text { if } j=1 \\
i+1, & \text { if } j=2 \\
n-1+i, & \text { if } j=3 \\
n+i, & \text { if } j=4 \\
k, & \text { if } j=5,6,7\end{cases} \\
& \psi_{5}\left(A_{i, 1}\right)=1, \psi_{5}\left(A_{i, 2}\right)=n+1-i, \\
& \psi_{5}\left(A_{i, 3}\right)=n+2-i, \psi_{5}\left(A_{i, 4}\right)=n+3-i, \\
& \psi_{5}\left(A_{i, 5}\right)=3 n-k+2, \psi_{5}\left(A_{i, 6}\right)=5 n-2 k+2+i, \psi_{5}\left(A_{i, 7}\right)=6 n-2 k+2+i,
\end{aligned}
$$

Under the labeling ψ_{5}, the edges in $A_{i, j}$ receive weights $(j-1) n+2+i$ for $1 \leq i \leq n, 1 \leq j \leq 7$. It can be easily verified that ψ_{5} is an edge irregular total labeling having the required property.

Theorem 1.7. For $7 \leq m \leq 8$ and $n \geq 3$, tes $\left(S_{n}^{m}\right)=\left\lceil\frac{(m+1) n+2}{3}\right\rceil$.
Proof. The inequality $\operatorname{tes}\left(S_{n}^{m}\right) \geq\left\lceil\frac{(m+1) n+2}{3}\right\rceil$ follows from (1). To prove the equality we split the edge set of S_{n}^{m} in mutually disjoint subsets:
$A_{i, 1}=\left\{c x_{i, 1}\right\}$ for $1 \leq i \leq n$
$A_{i, j}=\left\{x_{i, j-1} x_{i, j}\right\}$ for $1 \leq i \leq n, 2 \leq j \leq m+1$
First we construct the vertex labeling ψ_{6} for $1 \leq i \leq n$ with $\psi_{6}(c)=1$ and $k=\left\lceil\frac{(m+1) n+2}{3}\right\rceil$.

$$
\psi_{6}\left(x_{i, j}\right)= \begin{cases}i, & \text { if } j=1 \\ i+1, & \text { if } j=2 \\ n-1+i, & \text { if } j=3 \\ n+i, & \text { if } j=4 \\ n+1+i, & \text { if } j=5\end{cases}
$$

Case 1. when $m=7$

$$
\psi_{6}\left(x_{i, j}\right)=\{k, \quad \text { if } 1 \leq i \leq n, j=6,7,8
$$

$$
\begin{aligned}
& \text { Case 2. when } m=8 \\
& \qquad \psi_{6}\left(x_{i, j}\right)= \begin{cases}n+2+i, & \text { if } 1 \leq i \leq n, j=6 \\
k, & \text { if } 1 \leq i \leq n, j=7,8,9\end{cases}
\end{aligned}
$$

Now we define edge labeling ψ_{6} as follows:

```
\(\psi_{6}\left(A_{i, 1}\right)=1, \psi_{6}\left(A_{i, 2}\right)=n+1-i\),
\(\psi_{6}\left(A_{i, 3}\right)=n+2-i, \psi_{6}\left(A_{i, 4}\right)=n+3-i, \psi_{6}\left(A_{i, 5}\right)=2 n+1-i\),
```

- when $m=7$

$$
\psi_{6}\left(A_{i, 6}\right)=4 n-k+1, \psi_{6}\left(A_{i, 7}\right)=6 n-2 k+2+i, \psi_{6}\left(A_{i, 8}\right)=7 n-2 k+2+i
$$

- when $m=8$

$$
\begin{aligned}
& \psi_{6}\left(A_{i, 6}\right)=3 n-1-i, \psi_{6}\left(A_{i, 7}\right)=5 n-k, \psi_{6}\left(A_{i, 8}\right)=7 n-2 k+2+i \\
& \psi_{6}\left(A_{i, 9}\right)=8 n-2 k+2+i
\end{aligned}
$$

Under the labeling ψ_{5}, the edges in $A_{i, j}$ receive weights $(j-1) n+2+i$ for $1 \leq i \leq n, 1 \leq j \leq$ $(m+1)$.

It can be easily verified that the vertex and edge labels are atmost k and the edge-weights of the edges from the sets $A_{i, j}$ for $i \in[1, n-1], j \in[1, m+1]$ are pairwise distinct. Thus, the resulting total labeling is the desired edge irregular k-labeling. This concludes the proof.

Open Problem. We conclude the paper with the following open problem.
For $m \geq 9, n \geq 3$, determine the total edge irregular strength of subdivision of star S_{n}.
Acknowledgement: The author is thankful to the anonymous referee for valuable comments and suggestions.

References

[1] A. Ahmad and M. Bača, Edge irregular total labeling of certain family of graphs, AKCE J. Graphs. Combin. , 6, No. 1 (2009), 21-29.
[2] A. Ahmad and M. Bača, Total edge irregularity strength of a categorical product of two paths, Ars Combin., in press.
[3] M. Bača, S. Jendroľ, M. Miller and J. Ryan, On irregular total labellings, Discrete Math. ,307(2007), 1378-1388.
[4] T. Bohman and D. Kravitz, On the irregularity strength of trees, J. Graph Theory, 45(2004), 241254.
[5] S. Brandt, J. Miškuf and D. Rautenbach, On a conjecture about edge irregular total labellings, J. Graph Theory, 57(2008), 333-343.
[6] G. Chartrand, M.S. Jacobson, J. Lehel, O.R. Oellermann, S. Ruiz and F. Saba, Irregular networks, Congr. Numer., 64(1988), 187-192.
[7] A. Frieze, R.J. Gould, M. Karonski and F. Pfender, On graph irregularity strength, J. Graph Theory, 41(2002), 120-137.
[8] J. Ivančo and S. Jendroľ, Total edge irregularity strength of trees, Discussiones Math. Graph Theory, 26(2006), 449-456.
[9] S. Jendroľ, M. Tkáč and Z. Tuza, The irregularity strength and cost of the union of cliques, Discrete Math., 150(1996), 179-186.
[10] S. Jendroľ, J. Miškuf and R. Soták, Total edge irregularity strength of complete and complete bipartite graphs, Electron. Notes Discrete Math., 28(2007), 281-285.
[11] S. Jendrol, J. Miškuf and R. Soták, Total edge irregularity strength of complete graphs and complete bipartite graphs, Discrete Math., 310(2010), 400-407.
[12] M. Karoński, T. Luczak and A. Thomason, Edge weights and vertex colours, J. Combin. Theory, В 91 (2004), 151-157.
[13] J. Miškuf and S. Jendroľ, On total edge irregularity strength of the grids, Tatra Mt. Math. Publ., 36(2007), 147-151.
[14] T. Nierhoff, A tight bound on the irregularity strength of graphs, SIAM J. Discrete Math., 13(2000), 313-323.
[15] Nurdin, A.N.M. Salman and E.T. Baskoro, The total edge-irregular strengths of the corona product of paths with some graphs, J. Combin. Math. Combin. Comput., 65(2008), 163-175.
[16] A.N.M.Salman, A.A.Gede Ngurah, N.Izzati, On (super) edge-magic total labelings of a subdivision of a star S_{n},Utilitas Mathematica., 81(2010), 275-284.

