International Journal of Mathematics and Soft Computing Vol.2, No.1 (2012), 65 - 73.

d-ideals and injective ideals in a distributive lattice

M. Sambasiva Rao

Department of Mathematics MVGR College of Engineering, Chintalavalasa Vizianagaram, Andhra Pradesh-535003, INDIA. E-mail: mssraomaths35@rediffmail.com

Abstract

The concepts of d-ideals and injective ideals are introduced in a distributive lattice with respect to derivations. d-ideals are characterized in terms of principal ideals of a distributive lattice. Further, an equivalent condition is derived for a d-ideal to become an injective ideal. Also the Stone's theorem for ideals of a distributive lattice is extended to the case of injective ideals.

Keywords: Derivation, kernel, *d*-ideal, injective ideal, *d*-prime ideal. **AMS Subject Classification(2010):** 06D99.

1 Introduction

For a ring $(R, +, \cdot)$ where + and \cdot denote two binary operations, we recall the derivation of R as a mapping $f : R \longrightarrow R$ satisfying the following properties:

$$f(x \cdot y) = (x \cdot f(y)) + (f(x) \cdot y)$$

$$f(x + y) = f(x) + f(y)$$

H.E. Bell, L.C. Kappe [3] and K. Kaya [5] have studied derivations in rings and prime rings after Posner [6] had given the definition of the derivation in ring theory. Szasz have introduced and developed the theory of derivations in lattice structure. In a series of papers [7] and [8] he established the main properties of derivations of lattices. L. Ferrari [4] extended these concepts to lattices and he embedded any lattice having some additional properties into the lattice of its derivations.

G. Birkhoff [2], George Grätzer, G. Szász and many authors have studied about various types of ideals and congruences all intimated to some extent the behavior of ideals in a distributive lattice.

The aim of this paper is to study the structure of certain classes of ideals in a distributive lattice with respect to a derivation. On this way, the notions of d-ideals and injective ideals are introduced and their preliminary properties are studied in a distributive lattice. These classes of ideals are then characterized in terms of principal ideals. A necessary and sufficient condition is established for a d-ideal to become an injective ideal. The concept of d-prime ideals is introduced and the relations between the class of all injective ideals and the class of all d-prime ideals are obtained. Finally, the famous and crucial result of M.H. Stone is extended to the case of injective ideals and d-prime ideals.

2 Preliminaries

We give some elementary aspects and important results which are used in the sequel of this paper.

Definition 2.1. [1] An algebra (L, \wedge, \vee) of type (2, 2) is called a distributive lattice if for all $x, y, z \in L$, it satisfies the following properties (1), (2), (3) and (4) along with (5) or (5')

(1) $x \wedge x = x, x \vee x = x$ (2) $x \wedge y = y \wedge x, x \vee y = y \vee x$ (3) $(x \wedge y) \wedge z = x \wedge (y \wedge z), (x \vee y) \vee z = x \vee (y \vee z)$ (4) $(x \wedge y) \vee x = x, (x \vee y) \wedge x = x$ (5) $x \wedge (y \vee z) = (x \wedge y) \vee (x \wedge z)$ (5') $x \vee (y \wedge z) = (x \vee y) \wedge (x \vee z)$

Remark 2.2. The least element of a distributive lattice is denoted by 0. Throughout this article *L* stands for a distributive lattice with 0, unless otherwise mentioned.

Definition 2.3. [1] Let (L, \wedge, \vee) be a lattice. A partial ordering relation \leq is defined on L by $x \leq y$ if and only if $x \wedge y = x$ and $x \vee y = y$. In this case, the pair (L, \leq) is called a Partially Ordered set or simply POset.

Definition 2.4. [2] A non-empty subset A of L is called an ideal(filter) of L if $a \lor b \in A(a \land b \in A)$ and $a \land x \in A(a \lor x \in A)$ whenever $a, b \in A$ and $x \in L$.

Remark 2.5. The set $\mathcal{I}(L)$ of all ideals of a distributive lattice L is a complete distributive lattice with least element $\{0\}$ and the greatest element L under set inclusion in which, for any $I, J \in \mathcal{I}(L), I \cap J$ is the infimum of I, J and the supremum is given by $I \vee J = \{i \vee j \mid i \in I, j \in J\}$. For any $a \in L, (a] = \{x \mid x \leq a\}$ is the principal ideal generated by a. The set $\mathcal{PI}(L)$ of all principal ideals of L is a sublattice of the distributive lattice $\mathcal{I}(L)$.

Theorem 2.6. [2] Let *I* be an ideal and *F* a filter of *L* such that $I \cap F = \emptyset$. Then there exists a prime ideal *P* such that $I \subseteq P$ and $P \cap F = \emptyset$.

Definition 2.7. [2] Let *L* be a lattice. The mapping $f : L \longrightarrow L$ is called a homomorphism if it satisfies the following conditions for all $x, y \in L$:

- (1) $f(x \wedge y) = f(x) \wedge f(y)$
- (2) $f(x \lor y) = f(x) \lor f(y)$

A homomorphism is called injective if it is one-one.

Definition 2.8. [9] A self-map $d : L \longrightarrow L$ is called a derivation of L if it satisfies the following conditions:

(1) $d(x \land y) = (d(x) \land y) \lor (x \land d(y))$ (2) $d(x \lor y) = d(x) \lor d(y)$

Remark 2.9. In [4], Ferrari observed the condition (1) is redundant and is equivalent to

(1')
$$d(x \wedge y) = d(x) \wedge y = x \wedge d(y)$$

A function satisfying the above condition (1') is called a translation and these translations are extensively studied by Szasz in [7] and [8].

Lemma 2.10. [4] Let d be a derivation of L. Then for any $x, y \in L$, we have

- (1) d(0) = 0(2) $d(x) \le x$
- (3) $x \le y \Rightarrow d(x) \le d(y)$

3 Main Results

In this section, the concepts of d-ideals and injective ideals are introduced in a distributive lattice. Further, d-ideals are characterized in terms of principal ideals. An equivalent condition is obtained for a d-ideal to become an injective ideal.

Definition 3.1. A self-mapping $d : L \longrightarrow L$ is called a derivation of L if it satisfies the following properties:

(i) $d(x \wedge y) = d(x) \wedge y$ (ii) $d(x \vee y) = d(x) \vee d(y)$ for all $x, y \in L$

The kernel of a derivation is defined as the set $Ker d = \{x \in L \mid d(x) = 0\}$.

Proposition 3.2. For any derivation d of L, Ker d is an ideal of L.

Proof. Clearly $0 \in Ker d$. Let $x, y \in Ker d$. Then $d(x \lor y) = d(x) \lor d(y) = 0$. Hence $x \lor y \in Ker d$. Again, let $x \in Ker d$ and $r \in L$. Then $d(x \land r) = d(x) \land r = 0 \land r = 0$. Hence $x \land r \in Ker d$. Thus *Ker d* is an ideal of *L*.

Theorem 3.3. Let d be a derivation and I an ideal of L. Then we have

- (i) d(I) is an ideal of L such that $d(I) \subseteq I$.
- (ii) $d^{-1}(I)$ is an ideal of L such that $Ker \ d \subseteq d^{-1}(I)$.

Proof. (i). Clearly $0 = d(0) \in d(I)$. Let $a, b \in d(I)$. Then a = d(x) and b = d(y) for some $x, y \in I$. Now $a \lor b = d(x) \lor d(y) = d(x \lor y) \in d(I)$. Again, let $c \in d(I)$ and $x \in L$. Then c = d(z) for some $z \in I$. Now $c \land x = d(z) \land x = d(z \land x) \in d(I)$. Therefore d(I) is an ideal of L. Let $x \in d(I)$. Then x = d(y) for some $y \in I$. Since $d(y) \le y$, we get $d(y) = y \land d(y) \in I$. Hence $x \in I$.

(ii). Since $d(0) = 0 \in I$, we get $0 \in d^{-1}(I)$. Let $a, b \in d^{-1}(I)$. Then we have $d(a), d(b) \in I$. Since I is an ideal, we can get $d(a \lor b) = d(a) \lor d(b) \in I$. Hence $a \lor b \in d^{-1}(I)$. Again, let $x \in d^{-1}(I)$ and $r \in L$. Then we get $d(x) \in I$. Since I is an ideal of L, we get $d(x \land r) = d(x) \land r \in I$. Thus $x \land r \in d^{-1}(I)$. Therefore $d^{-1}(I)$ is an ideal of L. Since $0 \in I$, we get $Ker d = d^{-1}(\{0\}) \subseteq d^{-1}(I)$.

Remark 3.4. One can easily observe that the condition of onto which is necessary for getting the image of an ideal under a homomorphism of distributive lattices to became again an ideal is not required in

case of a derivation.

Definition 3.5. An ideal I of L is called a d-ideal if I = d(I).

Remark 3.6. Since d(0) = 0, it can be easily observed that the zero ideal $\{0\}$ is a *d*-ideal of *L*. Furthermore, if *d* is onto, then d(L) = L and hence *L* is also a *d*-ideal. However, a proper *d*-ideal is given in the following example.

Example 3.7. Consider the distributive lattice $L = \{0, a, b, c, 1\}$ whose Hasse diagram is given below.

Define a self map $d : L \longrightarrow L$ such that d(0) = 0, d(a) = d(c) = a and d(b) = d(1) = b. Then clearly d is a derivation on L. Consider the ideal $I = \{0, a, b\}$. It can be verified that d(I) = I. Therefore, I is a d-ideal of L.

Lemma 3.8. Let d be a derivation of L and I, J any two ideals of L. Then we have

- (a) $I \subseteq J$ implies that $d(I) \subseteq d(J)$.
- (b) $d(I \cap J) = d(I) \cap d(J)$.
- (c) $d(I \lor J) = d(I) \lor d(J)$.

Proof. (a) Suppose that $I \subseteq J$. Let $x \in d(I)$. Then we get that x = d(y) for some $y \in I \subseteq J$. Hence we get $x = d(y) \in d(J)$. Therefore, $d(I) \subseteq d(J)$.

(b) Clearly $d(I \cap J) \subseteq d(I) \cap d(J)$. Conversely, let $x \in d(I) \cap d(J)$. Then x = d(a) for some $a \in I$ and x = d(b) for some $b \in J$. Since $b \in J$ and $d(b) \leq b$, we get that $d(b) \in J$ and hence $a \wedge d(b) \in I \cap J$. Thus $x = d(a) \wedge d(b) = d(a \wedge d(b)) \in d(I \cap J)$. Therefore $d(I) \cap d(J) \subseteq d(I \cap J)$.

(c) Clearly $d(I) \lor d(J) \subseteq d(I \lor J)$. Conversely, let $x \in d(I \lor J)$. Then x = d(z) for some $z \in I \lor J$. Hence $z = a \lor b$ for some $a \in I$ and $b \in J$. Thus $x = d(z) = d(a \lor b) = d(a) \lor d(b) \in d(I) \lor d(J)$. Therefore, $d(I \lor J) \subseteq d(I) \lor d(J)$.

For any derivation d of L, let us denote the class of all d-ideals of L by $\mathcal{I}_d(L)$.

Theorem 3.9. Let d be a derivation of L. Then $\mathcal{I}_d(L)$ is a complete distributive lattice with respect to set inclusion. Moreover, $\mathcal{I}_d(L)$ has greatest element if and only if the map d is onto.

Proof. Define an order \leq on $\mathcal{I}_d(L)$ by $I \leq J$ if and only if $I \subseteq J$ for any two $I, J \in \mathcal{I}_d(L)$. Then clearly $(\mathcal{I}_d(L), \leq)$ is a partially ordered set. Since $\{0\}$ is a *d*-ideal, it can be easily obtained that

 $(\mathcal{I}_d(L), \leq)$ is a complete lattice. Again by the above lemma, it yields that $\langle \mathcal{I}_d(L), \cap, \vee \rangle$ is a sublattice of $\mathcal{I}(L)$ of all ideals of L. Hence $\langle \mathcal{I}_d(L), \cap, \vee, \{0\} \rangle$ is a complete distributive lattice. The remaining part is clear by the observation that d is onto if and only if d(L) = L.

Theorem 3.10. Let d be a derivation of L. Then for any ideal I of L, the following conditions are equivalent.

- (1) I is a d-ideal.
- (2) $I = \bigcup_{x \in I} (d(x)].$
- (3) For any $x \in I$, there exists $y \in I$ such that x = d(y).

Proof. (1) \Rightarrow (2): Since $d(x) \leq x$, we have always $\bigcup_{x \in I} (d(x)] \subseteq \bigcup_{x \in I} (x] = I$. Conversely, let $x \in I$. Then there exists $a \in I$ such that x = d(a). Hence $x \in (d(a)] \subseteq \bigcup_{t \in I} (d(t)]$. Thus we get $I \subseteq \bigcup_{t \in I} (d(t)]$. Therefore $I = \bigcup_{t \in I} (d(t)]$.

(2) \Rightarrow (3): Assume the condition (2). Let $x \in I$. Then $x \in (d(a)]$ for some $a \in I$. Hence $x = d(a) \wedge x = d(a \wedge x)$. Therefore $x = d(a \wedge x)$ and $a \wedge x \in I$.

(3) \Rightarrow (1): Assume the condition (3). We have always $d(I) \subseteq I$. Now let $x \in I$. Then there exists $y \in I$ such that $x = d(y) \in d(I)$. Therefore I = d(I).

Definition 3.11. Let *d* be a derivation of *L*. An ideal *I* of *L* is called an injective ideal with respect to *d* if for $x, y \in L$, d(x) = d(y) and $x \in I$ implies that $y \in I$.

Evidently Ker d is an injective ideal of L. Though the zero ideal $\{0\}$ is a d-ideal, there is no guarantee that it is an injective ideal. However, a set of equivalent conditions are established for $\{0\}$ to become an injective ideal.

Proposition 3.12. Let d be a derivation of L. Then the following conditions are equivalent.

- (a) $\{0\}$ is injective with respect to d.
- (b) Ker $d = \{0\}$.
- (c) d(x) = 0 implies that x = 0 for all $x \in L$.

Proof. $(a) \Rightarrow (b)$: Assume that $\{0\}$ is injective with respect to d. Let $x \in Ker d$. Then d(x) = 0 = d(0). Since $\{0\}$ is injective, we can get that $x \in \{0\}$. Therefore $Ker d = \{0\}$.

 $(b) \Rightarrow (c)$: The proof is trivial.

 $(c) \Rightarrow (a)$: Assume the condition (c). Let d(x) = d(y) and $x \in \{0\}$. Hence d(y) = d(x) = d(0) = 0. Therefore condition (c) yields that $y = 0 \in \{0\}$.

Theorem 3.13. Let d be a derivation of L. Then the following conditions are equivalent:

- (1) d is injective.
- (2) Every ideal is injective with respect to d.

(3) Every prime ideal is injective with respect to d.

Proof. $(1) \Rightarrow (2)$: It is clear by the definition of an injective ideal.

 $(2) \Rightarrow (3)$: Obvious.

(3) \Rightarrow (1): Assume that every prime ideal of L is an injective ideal. Let $x, y \in L$ be such that d(x) = d(y). Suppose that $x \neq y$. Without loss of generality, we can assume that $(x] \cap [y] = \emptyset$. Then there exists a prime ideal P such that $x \in P$ and $y \notin P$, which is a contradiction to P is an injective ideal.

The independency between the class of all *d*-ideals and that of injective ideals are demonstrated in the following examples.

Example 3.14. Consider the distributive lattice $L = \{0, a, b, c, 1\}$ whose Hasse diagram is given below.

Define a self-map $d: L \longrightarrow L$ as follows:

$$d(x) = \begin{cases} a & \text{if } x = a, c, 1\\ 0 & \text{Otherwise} \end{cases}$$

Then it can be easily verified that d is a derivation of L. $I = \{0, b\}$ is an injective ideal of L. Now $d(I) = \{0\}$ and hence $I \neq d(I)$. Therefore, I is an injective ideal with respect to d but not a d-ideal.

Example 3.15. Consider the distributive lattice $L = \{0, a, b, c, 1\}$ given in example 2.7. Define a self map $d : L \longrightarrow L$ as follows:

$$d(x) = \begin{cases} 0 & \text{if } x = 0\\ a & \text{if } x = a, c\\ b & \text{if } x = b, 1 \end{cases}$$

It can be easily verified that d is a derivation of L. Now consider the ideal $I = \{0, a, b\}$. Clearly d(I) = I and hence I is a d-ideal. But $d(a) = d(c), a \in I$ and $c \notin I$. Therefore, I is a d-ideal but not injective with respect to d.

Theorem 3.16. Let d be a derivation of L. Then a d-ideal I of L is injective with respect to d if and only if for any $x \in L$, $d(x) \in I$ implies $x \in I$.

Proof. Let *I* be a *d*-ideal of *L*. Assume that *I* is an injective ideal with respect to *d*. Let $x \in L$. Suppose $d(x) \in I = d(I)$. Then d(x) = d(a) for some $a \in I$. Since *I* is injective and $a \in I$, we get that $x \in I$. Conversely, let $x, y \in L, d(x) = d(y)$ and $x \in I$. Since $x \in I = d(I)$, we get x = d(a) for some $a \in I$. Hence, d(y) = d(x) = d(d(a)) and $d(a) \le a \in I$ which implies that $y \in I$. Therefore, *I* is an injective ideal of *L* with respect to *d*.

Definition 3.17. Let *d* be a derivation of *L*. Then for any ideal *I* of *L*, define an extension of *I* as $I' = \{x \in L \mid d(x) \in (d(a)] \text{ for some } a \in I\}.$

The following lemma is a routine verification.

Lemma 3.18. Let d be a derivation of L. Then for any two ideals I, J of L, we have the following:

I' is an ideal of L.
I ⊆ I'.
I ⊆ J implies I' ⊆ J'.
I' ∩ J' = (I ∩ J)'.

Proposition 3.19. Let *d* be a derivation of *L*. Then for any ideal *I* of *L*, *I'* is the smallest injective ideal with respect to *d* such that $I \subseteq I'$.

Proof. By the above lemma, I' is an ideal containing I. We now show that I' is an injective ideal with respect to d. Let $x, y \in L, d(x) = d(y)$ and $x \in I'$. Then $d(y) = d(x) \in (d(a)]$ for some $a \in I$. Thus $y \in I'$. Let J be an injective ideal with respect to d such that $I \subseteq J$. Let $t \in I'$. Then $d(t) \in (d(a)]$ for some $a \in I \subseteq J$. Hence, $d(t) = d(a) \land d(t) = d(a \land d(t))$ and $a \land d(t) \in J$. Since J is injective with respect to d, we get that $t \in J$. Thus $I' \subseteq J$ and hence I' is the smallest injective ideal with respect to d such that $I \subseteq I'$.

Corollary 3.20. If *I* is an injective ideal, then I = I'.

Theorem 3.21. The set $\mathcal{I}^d(L)$ of all injective ideals of L, with respect to a given derivation of d of L, forms a distributive lattice on their own.

Proof. For $I, J \in \mathcal{I}^d(L)$, define the operations \wedge and \sqcup such that $I \wedge J = I \cap J$ and $I \sqcup J = (I \vee J)'$. Clearly $(\mathcal{I}^d(L), \wedge, \sqcup)$ is a lattice. Now for any $I, J, K \in \mathcal{I}^d(L)$ we have $I \sqcup (J \cap K) = \{I \vee (J \cap K)\}' = \{(I \vee J) \cap (I \vee K)\}' = (I \vee J)' \cap (I \vee K)' = (I \sqcup J) \cap (I \sqcup K)$. Therefore, $(\mathcal{I}^d(L), \wedge, \sqcup)$ is a distributive lattice.

Definition 3.22. Let d be a derivation of L. A proper ideal P of L is called a d-prime ideal if for any $x, y \in L, x \land y \in Ker d$ implies either $x \in P$ or $y \in P$.

By a maximal injective ideal, we mean an injective ideal which is maximal in the class of all proper injective ideals with respect to a given derivation. Then the following series of propositions establish some useful relations between the class of all injective ideals with respect to a derivation d and the class of all d-prime ideals. For this, the following lemma is required.

Lemma 3.23. Let d be a derivation of L. Then for any injective ideal I of L with respect to d, $Ker d \subseteq I$. In other words, Ker d is the smallest injective ideal of L.

Proof. Let *I* be an injective ideal with respect to *d* of *L*. Suppose $x \in Ker d$. Then d(x) = 0 = d(0). Since *I* is injective with respect to *d* and $0 \in I$, it yields that $x \in I$. Since *Ker d* is also an injective ideal with respect to *d* of *L*, it is the smallest injective ideal in *L* with respect to the derivation *d*.

Proposition 3.24. Let d be a derivation of L. Then every maximal injective ideal with respect to the derivation d of L is a d-prime ideal.

Proof. Let M be a maximal injective ideal of L. Choose $x, y \in L$ such that $x \notin M$ and $y \notin M$. Then $M \subset M \lor (x] \subseteq \{M \lor (x]\}'$ and $M \subset M \lor (y] \subseteq \{M \lor (y]\}'$. Since M is maximal, we can get $\{M \lor (x]\}' = L$ and $\{M \lor (y]\}' = L$. Hence

$$\{M \lor (x \land y]\}' = \{(M \lor (x]) \cap (M \lor (y])\}'$$
$$= \{M \lor (x]\}' \cap \{M \lor (y]\}'$$
$$= L$$

If $x \wedge y \in Ker d$, then $L = \{M \lor (x \land y)\}' \subseteq \{M \lor Ker d\}' = M' = M$, which is a contradiction to the fact that M is proper. Hence M is a d-prime ideal.

Proposition 3.25. Let d be a derivation of L. Then every d-prime ideal P is an injective ideal with respect to d if for each $a \in P$ there exists $b \notin P$ such that $a \wedge b \in Ker d$.

Proof. Let P be a d-prime ideal which satisfies the given property. Let $x, y \in L$ be such that d(x) = d(y). Suppose $x \in P$. Then there exists $x' \notin P$ such that $x \wedge x' \in Ker d$. Hence $d(x) \wedge x' = d(x \wedge x') = 0$, which yields that $d(y \wedge x') = d(y) \wedge x' = 0$. Therefore $y \wedge x' \in Ker d$. Since P is a d-prime ideal and $x' \notin P$, we get that $y \in P$. Hence, P is injective with respect to d.

We generalise the celebrated result of M.H. Stone [1936] which is meant for ideals, filters and prime ideals of a distributive lattice to the case of injective ideals, filters and d-prime ideals.

Theorem 3.26. Let *d* be a derivation of *L*. Suppose *I* is an injective ideal with respect to *d* and *F* a filter of *L* such that $I \cap F = \emptyset$. Then there exists a *d*-prime ideal *P* such that $I \subseteq P$ and $P \cap F = \emptyset$.

Proof. Let *I* be an injective ideal with respect to *d* and *F* a filter of *L* such that $I \cap F = \emptyset$. Consider $\mathfrak{F} = \{J \in I^d(L) \mid I \subseteq J \text{ and } J \cap F = \emptyset\}$. Clearly $I \in \mathfrak{F}$. Let $\{J_\alpha\}$ be a chain of elements of \mathfrak{F} . Then clearly $\cup J_\alpha$ is an upper bound for $\{J_\alpha\}$ in \mathfrak{F} . Hence by Zorn's lemma, \mathfrak{F} has a maximal element, say *M*. We now prove that *M* is *d*-prime. Let $x, y \in L$ such that $x \notin M$ and $y \notin M$. Then $M \subset M \lor \{x\} \subseteq \{M \lor \{x\}\}'$ and $M \subset M \lor \{y\} \subseteq \{M \lor \{y\}\}'$. By the maximality of *M*, we get that

 $\{M \lor (x]\}' \cap F \neq \emptyset$ and $\{M \lor (y]\}' \cap F \neq \emptyset$. Choose $a \in \{M \lor (x]\}' \cap F$ and $b \in \{M \lor (y]\}' \cap F$. Then

$$a \wedge b \in \{M \lor (x]\}' \bigcap \{M \lor (y]\}'$$
$$= \{(M \lor (x]) \bigcap (M \lor (y])\}'$$
$$= \{M \lor (x \land y]\}'$$

Suppose $x \wedge y \in Ker d$. Then it reflects that $a \wedge b \in \{M \lor (x \wedge y)\}' = \{M \lor Ker d\}' = M' = M$ (Since M is injective). Thus, $a \wedge b \in M \cap F$, which is a contradiction to $M \cap F = \emptyset$. Therefore, M is a d-prime ideal.

References

- [1] R. Balbes and P. Dwinger, *Distributive Lattices*, University of Missouri Press, Columbia, Mo., (1974).
- [2] G. Birkhoff, Lattice Theory, Amer. Math. Soc. Colloq. XXV, Providence, U.S.A., (1967).
- [3] H.E. Bell and L.C. Kappe, *Rings in which derivations satisfy certain algebraic conditions*, Acta Math. Hungar., 53(3-4)(1989), 339-346.
- [4] L. Ferrari, On derivations of lattices, Pure Mathematics and Applications, 12(2001), No.45, 365-382.
- [5] K. Kaya, Prime rings with a derivations, Bull. Mater. Sci. Eng., 16(1987), 63-71.
- [6] E. Posner, Derivations in prime rings, Proc. Amer. Math. Soc., 8(1957), 1093-1100.
- [7] G. Szász, Translation der Verbände, Acta Fac. Rer. Nat. Univ. Comenianae, 5(1961), 53-57.
- [8] G. Szász, Derivations of lattices, Acta Sci. Math.(Szeged), 37(1975), 149-154.
- [9] X.L. Xin, T.Y. Li and J.H. Lu, On derivations of lattices, Inform. Sci., 178(2008), No. 2, 307-316.