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Abstract

The concepts ofd- ideals and injective ideals are introduced in a distributive lattice with respect

to derivations.d- ideals are characterized in terms of principal ideals of a distributive lattice. Further,

an equivalent condition is derived for ad- ideal to become an injective ideal. Also the Stone’s

theorem for ideals of a distributive lattice is extended to the case of injective ideals.
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1 Introduction

For a ring(R,+, ·) where+ and· denote two binary operations, we recall the derivation ofR as a

mappingf : R −→ R satisfying the following properties:

f(x · y) = (x · f(y)) + (f(x) · y)
f(x + y) = f(x) + f(y)

H.E. Bell, L.C. Kappe [3] and K. Kaya [5] have studied derivations in rings and prime rings after

Posner [6] had given the definition of the derivation in ring theory. Szasz have introduced and developed

the theory of derivations in lattice structure. In a series of papers [7] and [8] he established the main

properties of derivations of lattices. L. Ferrari [4] extended these concepts to lattices and he embedded

any lattice having some additional properties into the lattice of its derivations.

G. Birkhoff [2], George Gr̈atzer, G. Sźasz and many authors have studied about various types of

ideals and congruences all intimated to some extent the behavior of ideals in a distributive lattice.

The aim of this paper is to study the structure of certain classes of ideals in a distributive lattice with

respect to a derivation. On this way, the notions ofd-ideals and injective ideals are introduced and their

preliminary properties are studied in a distributive lattice. These classes of ideals are then characterized

in terms of principal ideals. A necessary and sufficient condition is established for ad-ideal to become

an injective ideal. The concept ofd-prime ideals is introduced and the relations between the class of all

injective ideals and the class of alld-prime ideals are obtained. Finally, the famous and crucial result of

M.H. Stone is extended to the case of injective ideals andd-prime ideals.

2 Preliminaries

We give some elementary aspects and important results which are used in the sequel of this paper.

Definition 2.1. [1] An algebra (L,∧,∨) of type (2, 2) is called a distributive lattice if for all x, y, z ∈ L,

it satisfies the following properties (1), (2), (3) and (4) along with (5) or (5′)
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(1) x ∧ x = x, x ∨ x = x

(2) x ∧ y = y ∧ x, x ∨ y = y ∨ x

(3) (x ∧ y) ∧ z = x ∧ (y ∧ z), (x ∨ y) ∨ z = x ∨ (y ∨ z)
(4) (x ∧ y) ∨ x = x, (x ∨ y) ∧ x = x

(5) x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z)
(5′) x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z)

Remark 2.2.The least element of a distributive lattice is denoted by 0. Throughout this article L stands

for a distributive lattice with 0, unless otherwise mentioned.

Definition 2.3. [1] Let (L,∧,∨) be a lattice. A partial ordering relation ≤ is defined on L by x ≤ y if

and only if x ∧ y = x and x ∨ y = y. In this case, the pair (L,≤) is called a Partially Ordered set or

simply POset.

Definition 2.4. [2] A non-empty subset A of L is called an ideal(filter) of L if a ∨ b ∈ A(a ∧ b ∈ A)
and a ∧ x ∈ A(a ∨ x ∈ A) whenever a, b ∈ A and x ∈ L.

Remark 2.5.The set I(L) of all ideals of a distributive lattice L is a complete distributive lattice with

least element {0} and the greatest element L under set inclusion in which, for any I, J ∈ I(L), I ∩ J

is the infimum of I, J and the supremum is given by I ∨ J = { i ∨ j | i ∈ I, j ∈ J }. For any

a ∈ L, (a] = { x | x ≤ a } is the principal ideal generated by a. The set PI(L) of all principal ideals

of L is a sublattice of the distributive lattice I(L).

Theorem 2.6.[2] Let I be an ideal and F a filter of L such that I ∩ F = ∅. Then there exists a prime

ideal P such that I ⊆ P and P ∩ F = ∅.

Definition 2.7. [2] Let L be a lattice. The mapping f : L −→ L is called a homomorphism if it satisfies

the following conditions for all x, y ∈ L:

(1) f(x ∧ y) = f(x) ∧ f(y)
(2) f(x ∨ y) = f(x) ∨ f(y)

A homomorphism is called injective if it is one-one.

Definition 2.8. [9] A self-map d : L −→ L is called a derivation of L if it satisfies the following

conditions:

(1) d(x ∧ y) = (d(x) ∧ y) ∨ (x ∧ d(y))
(2) d(x ∨ y) = d(x) ∨ d(y)

Remark 2.9.In [4], Ferrari observed the condition (1) is redundant and is equivalent to

(1′) d(x ∧ y) = d(x) ∧ y = x ∧ d(y)
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A function satisfying the above condition (1′) is called a translation and these translations are extensively

studied by Szasz in [7] and [8].

Lemma 2.10.[4] Let d be a derivation of L. Then for any x, y ∈ L, we have

(1) d(0) = 0
(2) d(x) ≤ x

(3) x ≤ y ⇒ d(x) ≤ d(y)

3 Main Results

In this section, the concepts ofd-ideals and injective ideals are introduced in a distributive lattice.

Further,d-ideals are characterized in terms of principal ideals. An equivalent condition is obtained for

ad-ideal to become an injective ideal.

Definition 3.1. A self-mapping d : L −→ L is called a derivation of L if it satisfies the following

properties:

(i) d(x ∧ y) = d(x) ∧ y

(ii) d(x ∨ y) = d(x) ∨ d(y) for all x, y ∈ L

The kernel of a derivation is defined as the setKer d = {x ∈ L | d(x) = 0}.

Proposition 3.2.For any derivation d of L, Ker d is an ideal of L.

Proof. Clearly0 ∈ Ker d. Letx, y ∈ Ker d. Thend(x∨y) = d(x)∨d(y) = 0. Hencex∨y ∈ Ker d.

Again, letx ∈ Ker d andr ∈ L. Thend(x ∧ r) = d(x) ∧ r = 0 ∧ r = 0. Hencex ∧ r ∈ Ker d. Thus

Ker d is an ideal ofL.

Theorem 3.3.Let d be a derivation and I an ideal of L. Then we have

(i) d(I) is an ideal of L such that d(I) ⊆ I .

(ii) d−1(I) is an ideal of L such that Ker d ⊆ d−1(I).

Proof. (i). Clearly0 = d(0) ∈ d(I). Let a, b ∈ d(I). Thena = d(x) andb = d(y) for somex, y ∈ I.

Now a ∨ b = d(x) ∨ d(y) = d(x ∨ y) ∈ d(I). Again, letc ∈ d(I) andx ∈ L. Thenc = d(z) for some

z ∈ I. Now c ∧ x = d(z) ∧ x = d(z ∧ x) ∈ d(I). Therefored(I) is an ideal ofL. Let x ∈ d(I). Then

x = d(y) for somey ∈ I. Sinced(y) ≤ y, we getd(y) = y ∧ d(y) ∈ I. Hencex ∈ I.

(ii). Sinced(0) = 0 ∈ I, we get0 ∈ d−1(I). Leta, b ∈ d−1(I). Then we haved(a), d(b) ∈ I. SinceI is

an ideal, we can getd(a∨b) = d(a)∨d(b) ∈ I. Hencea∨b ∈ d−1(I). Again, letx ∈ d−1(I) andr ∈ L.

Then we getd(x) ∈ I. SinceI is an ideal ofL, we getd(x ∧ r) = d(x) ∧ r ∈ I. Thusx ∧ r ∈ d−1(I).
Therefored−1(I) is an ideal ofL. Since0 ∈ I, we getKer d = d−1({0}) ⊆ d−1(I).

Remark 3.4.One can easily observe that the condition of onto which is necessary for getting the image

of an ideal under a homomorphism of distributive lattices to became again an ideal is not required in
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case of a derivation.

Definition 3.5. An ideal I of L is called a d-ideal if I = d(I).

Remark 3.6.Since d(0) = 0, it can be easily observed that the zero ideal {0} is a d-ideal of L.

Furthermore, if d is onto, then d(L) = L and hence L is also a d-ideal. However, a proper d-ideal is

given in the following example.

Example 3.7.Consider the distributive lattice L = {0, a, b, c, 1} whose Hasse diagram is given below.
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Define a self map d : L −→ L such that d(0) = 0, d(a) = d(c) = a and d(b) = d(1) = b. Then clearly

d is a derivation on L. Consider the ideal I = {0, a, b}. It can be verified that d(I) = I . Therefore, I is

a d-ideal of L.

Lemma 3.8.Let d be a derivation of L and I, J any two ideals of L. Then we have

(a) I ⊆ J implies that d(I) ⊆ d(J).
(b) d(I ∩ J) = d(I) ∩ d(J).
(c) d(I ∨ J) = d(I) ∨ d(J).

Proof. (a) Suppose thatI ⊆ J . Let x ∈ d(I). Then we get thatx = d(y) for somey ∈ I ⊆ J . Hence

we getx = d(y) ∈ d(J). Therefore,d(I) ⊆ d(J).

(b) Clearlyd(I∩J) ⊆ d(I)∩d(J). Conversely, letx ∈ d(I)∩d(J). Thenx = d(a) for somea ∈ I and

x = d(b) for someb ∈ J . Sinceb ∈ J andd(b) ≤ b, we get thatd(b) ∈ J and hencea ∧ d(b) ∈ I ∩ J .

Thusx = d(a) ∧ d(b) = d(a ∧ d(b)) ∈ d(I ∩ J). Therefored(I) ∩ d(J) ⊆ d(I ∩ J).

(c) Clearlyd(I) ∨ d(J) ⊆ d(I ∨ J). Conversely, letx ∈ d(I ∨ J). Thenx = d(z) for somez ∈ I ∨ J .

Hencez = a ∨ b for somea ∈ I andb ∈ J . Thusx = d(z) = d(a ∨ b) = d(a) ∨ d(b) ∈ d(I) ∨ d(J).
Therefore,d(I ∨ J) ⊆ d(I) ∨ d(J).

For any derivationd of L, let us denote the class of alld-ideals ofL by Id(L).

Theorem 3.9.Let d be a derivation of L. Then Id(L) is a complete distributive lattice with respect to

set inclusion. Moreover, Id(L) has greatest element if and only if the map d is onto.

Proof. Define an order≤ on Id(L) by I ≤ J if and only if I ⊆ J for any twoI, J ∈ Id(L). Then

clearly (Id(L),≤) is a partially ordered set. Since{0} is a d-ideal, it can be easily obtained that
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(Id(L),≤) is a complete lattice. Again by the above lemma, it yields that〈Id(L),∩,∨〉 is a sublattice

of I(L) of all ideals ofL. Hence〈Id(L),∩,∨, {0}〉 is a complete distributive lattice. The remaining

part is clear by the observation thatd is onto if and only ifd(L) = L.

Theorem 3.10.Let d be a derivation of L. Then for any ideal I of L, the following conditions are

equivalent.

(1) I is a d-ideal.

(2) I =
⋃

x∈I

(d(x)].

(3) For any x ∈ I , there exists y ∈ I such that x = d(y).

Proof. (1) ⇒ (2): Sinced(x) ≤ x, we have always
⋃

x∈I

(d(x)] ⊆
⋃

x∈I

(x] = I. Conversely, letx ∈ I.

Then there existsa ∈ I such thatx = d(a). Hencex ∈ (d(a)] ⊆
⋃
t∈I

(d(t)]. Thus we getI ⊆
⋃
t∈I

(d(t)] .

ThereforeI =
⋃
t∈I

(d(t)].

(2) ⇒ (3): Assume the condition (2). Letx ∈ I. Thenx ∈ (d(a)] for somea ∈ I. Hencex =
d(a) ∧ x = d(a ∧ x). Thereforex = d(a ∧ x) anda ∧ x ∈ I.

(3) ⇒ (1): Assume the condition (3). We have alwaysd(I) ⊆ I. Now let x ∈ I. Then there exists

y ∈ I such thatx = d(y) ∈ d(I). ThereforeI = d(I).

Definition 3.11.Let d be a derivation of L. An ideal I of L is called an injective ideal with respect to d

if for x, y ∈ L, d(x) = d(y) and x ∈ I implies that y ∈ I .

Evidently Ker d is an injective ideal ofL. Though the zero ideal{0} is a d-ideal, there is no

guarantee that it is an injective ideal. However, a set of equivalent conditions are established for{0} to

become an injective ideal.

Proposition 3.12.Let d be a derivation of L. Then the following conditions are equivalent.

(a) {0} is injective with respect to d.

(b) Ker d = {0}.

(c) d(x) = 0 implies that x = 0 for all x ∈ L.

Proof. (a) ⇒ (b): Assume that{0} is injective with respect tod. Let x ∈ Ker d. Thend(x) = 0 =
d(0). Since{0} is injective, we can get thatx ∈ {0}. ThereforeKer d = {0}.
(b) ⇒ (c): The proof is trivial.

(c) ⇒ (a): Assume the condition(c). Let d(x) = d(y) andx ∈ {0}. Henced(y) = d(x) = d(0) = 0.

Therefore condition (c) yields thaty = 0 ∈ {0}.

Theorem 3.13.Let d be a derivation of L. Then the following conditions are equivalent:

(1) d is injective.

(2) Every ideal is injective with respect to d.
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(3) Every prime ideal is injective with respect to d.

Proof. (1) ⇒ (2): It is clear by the definition of an injective ideal.

(2) ⇒ (3): Obvious.

(3) ⇒ (1): Assume that every prime ideal ofL is an injective ideal. Letx, y ∈ L be such that

d(x) = d(y). Suppose thatx 6= y. Without loss of generality, we can assume that(x] ∩ [y) = ∅. Then

there exists a prime idealP such thatx ∈ P andy /∈ P , which is a contradiction toP is an injective

ideal.

The independency between the class of alld-ideals and that of injective ideals are demonstrated in

the following examples.

Example 3.14.Consider the distributive lattice L = {0, a, b, c, 1} whose Hasse diagram is given below.
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Define a self-map d : L −→ L as follows:

d(x) =

{
a if x = a, c, 1
0 Otherwise

Then it can be easily verified that d is a derivation of L. I = {0, b} is an injective ideal of L. Now

d(I) = {0} and hence I 6= d(I). Therefore, I is an injective ideal with respect to d but not a d-ideal.

Example 3.15.Consider the distributive lattice L = {0, a, b, c, 1} given in example 2.7. Define a self

map d : L −→ L as follows:

d(x) =


0 if x = 0
a if x = a, c

b if x = b, 1

It can be easily verified that d is a derivation of L. Now consider the ideal I = {0, a, b}. Clearly

d(I) = I and hence I is a d-ideal. But d(a) = d(c), a ∈ I and c /∈ I . Therefore, I is a d-ideal but not

injective with respect to d.

Theorem 3.16.Let d be a derivation of L. Then a d-ideal I of L is injective with respect to d if and

only if for any x ∈ L, d(x) ∈ I implies x ∈ I .
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Proof. Let I be ad-ideal ofL. Assume thatI is an injective ideal with respect tod. Letx ∈ L. Suppose

d(x) ∈ I = d(I). Thend(x) = d(a) for somea ∈ I. SinceI is injective anda ∈ I, we get thatx ∈ I.

Conversely, letx, y ∈ L, d(x) = d(y) andx ∈ I. Sincex ∈ I = d(I), we getx = d(a) for somea ∈ I.

Hence,d(y) = d(x) = d(d(a)) andd(a) ≤ a ∈ I which implies thaty ∈ I. Therefore,I is an injective

ideal ofL with respect tod.

Definition 3.17.Let d be a derivation of L. Then for any ideal I of L, define an extension of I as

I ′ = {x ∈ L | d(x) ∈ (d(a)] for some a ∈ I}.

The following lemma is a routine verification.

Lemma 3.18.Let d be a derivation of L. Then for any two ideals I, J of L, we have the following:

(1) I ′ is an ideal of L.

(2) I ⊆ I ′.

(3) I ⊆ J implies I ′ ⊆ J ′.

(4) I ′ ∩ J ′ = (I ∩ J)′.

Proposition 3.19.Let d be a derivation of L. Then for any ideal I of L, I ′ is the smallest injective ideal

with respect to d such that I ⊆ I ′.

Proof. By the above lemma,I ′ is an ideal containingI. We now show thatI ′ is an injective ideal with

respect tod. Let x, y ∈ L, d(x) = d(y) andx ∈ I ′. Thend(y) = d(x) ∈ (d(a)] for somea ∈ I. Thus

y ∈ I ′. Let J be an injective ideal with respect tod such thatI ⊆ J . Let t ∈ I ′. Thend(t) ∈ (d(a)] for

somea ∈ I ⊆ J . Hence,d(t) = d(a) ∧ d(t) = d(a ∧ d(t)) anda ∧ d(t) ∈ J . SinceJ is injective with

respect tod, we get thatt ∈ J . ThusI ′ ⊆ J and henceI ′ is the smallest injective ideal with respect to

d such thatI ⊆ I ′.

Corollary 3.20. If I is an injective ideal, then I = I ′.

Theorem 3.21.The set Id(L) of all injective ideals of L, with respect to a given derivation of d of L,

forms a distributive lattice on their own.

Proof. ForI, J ∈ Id(L), define the operations∧ andt such thatI∧J = I∩J and ItJ = (I∨J)′.
Clearly(Id(L),∧,t) is a lattice. Now for anyI, J, K ∈ Id(L) we haveIt(J∩K) = {I∨(J∩K)}′ =
{(I∨J)∩(I∨K)}′ = (I∨J)′∩(I∨K)′ = (ItJ)∩(ItK). Therefore,(Id(L),∧,t) is a distributive

lattice.

Definition 3.22.Let d be a derivation of L. A proper ideal P of L is called a d-prime ideal if for any

x, y ∈ L, x ∧ y ∈ Ker d implies either x ∈ P or y ∈ P .

By a maximal injective ideal, we mean an injective ideal which is maximal in the class of all proper

injective ideals with respect to a given derivation. Then the following series of propositions establish
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some useful relations between the class of all injective ideals with respect to a derivationd and the class

of all d-prime ideals. For this, the following lemma is required.

Lemma 3.23.Let d be a derivation of L. Then for any injective ideal I of L with respect to d , Ker d ⊆
I . In other words, Ker d is the smallest injective ideal of L.

Proof. Let I be an injective ideal with respect tod of L. Supposex ∈ Ker d. Thend(x) = 0 = d(0).
SinceI is injective with respect tod and0 ∈ I, it yields thatx ∈ I. SinceKer d is also an injective

ideal with respect tod of L, it is the smallest injective ideal inL with respect to the derivationd.

Proposition 3.24.Let d be a derivation of L. Then every maximal injective ideal with respect to the

derivation d of L is a d-prime ideal.

Proof. Let M be a maximal injective ideal ofL. Choosex, y ∈ L such thatx /∈ M andy /∈ M . Then

M ⊂ M ∨ (x] ⊆ {M ∨ (x]}′ andM ⊂ M ∨ (y] ⊆ {M ∨ (y]}′. SinceM is maximal, we can get

{M ∨ (x]}′ = L and{M ∨ (y]}′ = L. Hence

{M ∨ (x ∧ y]}′ = {(M ∨ (x])
⋂

(M ∨ (y])}′

= {M ∨ (x]}′
⋂
{M ∨ (y]}′

= L

If x ∧ y ∈ Ker d, thenL = {M ∨ (x ∧ y]}′ ⊆ {M ∨Ker d}′ = M ′ = M , which is a contradiction to

the fact thatM is proper. HenceM is ad-prime ideal.

Proposition 3.25.Let d be a derivation of L. Then every d-prime ideal P is an injective ideal with

respect to d if for each a ∈ P there exists b /∈ P such that a ∧ b ∈ Ker d.

Proof. Let P be ad-prime ideal which satisfies the given property. Letx, y ∈ L be such thatd(x) =
d(y). Supposex ∈ P . Then there existsx′ /∈ P such thatx ∧ x′ ∈ Ker d. Henced(x) ∧ x′ =
d(x ∧ x′) = 0, which yields thatd(y ∧ x′) = d(y) ∧ x′ = 0. Thereforey ∧ x′ ∈ Kerd. SinceP is ad-

prime ideal andx′ /∈ P , we get thaty ∈ P . Hence,P is injective with respect tod.

We generalise the celebrated result of M.H. Stone [1936] which is meant for ideals, filters and prime

ideals of a distributive lattice to the case of injective ideals, filters andd-prime ideals.

Theorem 3.26.Let d be a derivation of L. Suppose I is an injective ideal with respect to d and F a filter

of L such that I ∩ F = ∅. Then there exists a d-prime ideal P such that I ⊆ P and P ∩ F = ∅.

Proof. Let I be an injective ideal with respect tod andF a filter of L such thatI ∩ F = ∅. Consider

F = {J ∈ Id(L) | I ⊆ J andJ ∩ F = ∅}. Clearly I ∈ F. Let {Jα} be a chain of elements of

F. Then clearly∪Jα is an upper bound for{Jα} in F. Hence by Zorn’s lemma,F has a maximal

element, sayM . We now prove thatM is d-prime. Letx, y ∈ L such thatx /∈ M andy /∈ M . Then

M ⊂ M ∨ (x] ⊆ {M ∨ (x]}′ andM ⊂ M ∨ (y] ⊆ {M ∨ (y]}′. By the maximality ofM , we get that
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{M ∨ (x]}′ ∩ F 6= ∅ and{M ∨ (y]}′ ∩ F 6= ∅. Choosea ∈ {M ∨ (x]}′ ∩ F andb ∈ {M ∨ (y]}′ ∩ F .

Then

a ∧ b ∈ {M ∨ (x]}′
⋂
{M ∨ (y]}′

= {(M ∨ (x])
⋂

(M ∨ (y])}′

= {M ∨ (x ∧ y]}′

Supposex∧y ∈ Ker d. Then it reflects thata∧b ∈ {M∨(x∧y]}′ = {M∨Ker d}′ = M ′ = M (Since

M is injective). Thus,a ∧ b ∈ M ∩ F , which is a contradiction toM ∩ F = ∅. Therefore,M is ad-

prime ideal.
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