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Abstract

The concepts aof -ideals and injective ideals are introduced in a distributive lattice with respect
to derivationsd-ideals are characterized in terms of principal ideals of a distributive lattice. Further,
an equivalent condition is derived for&ideal to become an injective ideal. Also the Stone’s
theorem for ideals of a distributive lattice is extended to the case of injective ideals.
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1 Introduction

For aring(R, +, -) where+ and- denote two binary operations, we recall the derivatioRafs a
mappingf : R — R satisfying the following properties:

flx-y) = (- f(y)+ (f(z)-y)
flx+y) = f(z)+ f(y)

H.E. Bell, L.C. Kappe [3] and K. Kaya [5] have studied derivations in rings and prime rings after
Posner [6] had given the definition of the derivation in ring theory. Szasz have introduced and developed
the theory of derivations in lattice structure. In a series of papers [7] and [8] he established the main
properties of derivations of lattices. L. Ferrari [4] extended these concepts to lattices and he embedded
any lattice having some additional properties into the lattice of its derivations.

G. Birkhoff [2], George Giitzer, G. SZsz and many authors have studied about various types of
ideals and congruences all intimated to some extent the behavior of ideals in a distributive lattice.

The aim of this paper is to study the structure of certain classes of ideals in a distributive lattice with
respect to a derivation. On this way, the notiond gtleals and injective ideals are introduced and their
preliminary properties are studied in a distributive lattice. These classes of ideals are then characterized
in terms of principal ideals. A necessary and sufficient condition is establishedifateal to become
an injective ideal. The concept dfprime ideals is introduced and the relations between the class of all
injective ideals and the class of dliprime ideals are obtained. Finally, the famous and crucial result of
M.H. Stone is extended to the case of injective idealsd&pdime ideals.

2 Preliminaries

We give some elementary aspects and important results which are used in the sequel of this paper.

Definition 2.1. [1] An algebra (L, A\, V) of type (2, 2) is called a distributive lattice if for all x,y, z € L,
it satisfies the following properties (1), (2), (3) and (4) along with (5) or (5')
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) xANx=xz,zVr==x

)z ANy=yAz,zVy=yVz

3) (xAy)ANz=xzA(yANz),(xVy)Vz=zV(yVz)
) (zAy)Ve=z,(xVy) Nz ==z

)z A(yVz)=(xAy)V(zAz)

Yy xV(yAz)=(xVy A(zVz)

Remark 2.2. The least element of a distributive lattice is denoted by 0. Throughout this article L stands

for a distributive lattice with 0, unless otherwise mentioned.

Definition 2.3.[1] Let (L, A\, V) be a lattice. A partial ordering relation < is defined on L by x < y if
and only if x ANy = x and x V y = y. In this case, the pair (L, <) is called a Partially Ordered set or
simply POset.

Definition 2.4.[2] A non-empty subset A of L is called an ideal(filter) of L ifaVvV b € A(a Nb € A)
anda Nz € A(aV x € A) whenevera,b € Aandx € L.

Remark 2.5. The set Z(L) of all ideals of a distributive lattice L is a complete distributive lattice with
least element {0} and the greatest element L under set inclusion in which, forany I, J € Z(L), INJ
is the infimum of I,.J and the supremum is given by IV J = {iV j|i € I,j € J }. For any
a € L, (a] = { x| x < a} is the principal ideal generated by a. The set PZ(L) of all principal ideals
of L is a sublattice of the distributive lattice Z(L).

Theorem 2.6.[2] Let I be an ideal and F a filter of L such that I N F' = (). Then there exists a prime
ideal P suchthat C Pand PN F = ().

Definition 2.7. [2] Let L be a lattice. The mapping f : L — L is called a homomorphism if it satisfies
the following conditions for all x,y € L:

(1) fxAy) = f(z) A f(y)
(2) f(xVvy) = f(z)V f(y)

A homomorphism is called injective if it is one-one.

Definition 2.8.[9] A self-map d : L. — L is called a derivation of L if it satisfies the following

conditions:

(D) d(z Ay) = (d(x) Ay) V (z Ad(y))
(2) d(zVvy)=d(z)Vdy)

Remark 2.9.In [4], Ferrari observed the condition (1) is redundant and is equivalent to

(1) dz Ay) =d(z) Ny =2 Ad(y)
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A function satisfying the above condition (1') is called a translation and these translations are extensively
studied by Szasz in [7] and [8].

Lemma 2.10.[4] Let d be a derivation of L. Then for any x,y € L, we have
(1) d(0) =0
(2) d(z) <=
3) z <y =d) <dy)

3 Main Results

In this section, the concepts dfideals and injective ideals are introduced in a distributive lattice.
Further,d-ideals are characterized in terms of principal ideals. An equivalent condition is obtained for
ad-ideal to become an injective ideal.

Definition 3.1. A self-mapping d : L — L is called a derivation of L if it satisfies the following
properties:

@) d(z Ny) =d(z) Ny
(i) d(x Vy) =d(x)Vd(y) forallx,y € L

The kernel of a derivation is defined as the Bet d = {x € L | d(x) = 0}.
Proposition 3.2.For any derivation d of L, Ker d is an ideal of L.

Proof. Clearly0 € Kerd. Letz,y € Ker d. Thend(zVy) = d(x)Vd(y) = 0. HencexVy € Kerd.
Again, letz € Ker dandr € L. Thend(x A7) =d(z) Ar=0Ar=0. Hencex A r € Ker d. Thus
Ker dis an ideal ofL. [ |

Theorem 3.3.Let d be a derivation and I an ideal of L. Then we have

(i) d(I) is an ideal of L such thatd(I) C I.
(ii) d='(I) is an ideal of L such that Ker d C d—'(I).

Proof. (i). Clearly0 = d(0) € d(I). Leta,b € d(I). Thena = d(z) andb = d(y) for somezx,y € I.
Nowa Vb =d(z)Vd(y) =dxVy)edl). Again, letc € d(I) andx € L. Thenc = d(z) for some
zel.NowcAz=d(z) ANx =d(zANx) € d(I). Therefored(I) is an ideal ofL. Letx € d(I). Then
x = d(y) for somey € I. Sinced(y) < y, we getd(y) =y Ad(y) € I. Hencez € I.

(ii). Sinced(0) = 0 € I, we get) € d~'(I). Leta,b € d~'(I). Then we have(a),d(b) € I. Sincel is
anideal, we can gel(aVb) = d(a)Vd(b) € I. Hencea\Vb € d~1(I). Again, letr € d~*(I) andr € L.
Then we geti(z) € I. Sincel is an ideal ofL, we getd(x A7) = d(x) Ar € I. Thusz Ar € d=1(I).
Therefored—1(I) is an ideal ofL. Since0 € I, we getKer d = d—1({0}) C d~*(I). [

Remark 3.4. One can easily observe that the condition of onto which is necessary for getting the image

of an ideal under a homomorphism of distributive lattices to became again an ideal is not required in
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case of a derivation.
Definition 3.5. An ideal I of L is called a d-ideal if [ = d(I).

Remark 3.6.Since d(0) = 0, it can be easily observed that the zero ideal {0} is a d-ideal of L.
Furthermore, if d is onto, then d(L) = L and hence L is also a d-ideal. However, a proper d-ideal is

given in the following example.

Example 3.7.Consider the distributive lattice L = {0, a, b, ¢, 1} whose Hasse diagram is given below.
1
b c/\>n c
a
l 0

Define a self map d : L — L such that d(0) = 0,d(a) = d(c) = a and d(b) = d(1) = b. Then clearly

d is a derivation on L. Consider the ideal I = {0, a,b}. It can be verified that d(I) = I. Therefore, I is
a d-ideal of L.

Lemma 3.8.Let d be a derivation of L and I, J any two ideals of L. Then we have
(a) I C J implies that d(I) C d(J).
(b) d(INJ)=d(I)nd(J).
(c) d(IVv J)=d(I)Vvd(J).

Proof. (a) Suppose that C J. Letx € d(I). Then we get that = d(y) for somey € I C J. Hence
we getr = d(y) € d(J). Therefored(I) C d(J).

(b) Clearlyd(InJ) C d(I)nd(J). Conversely, let: € d(I)Nd(J). Thenz = d(a) for somea € I and
x = d(b) for someb € J. Sinceb € J andd(b) < b, we get thati(b) € J and hence A d(b) € I N J.
Thusz = d(a) A d(b) = d(a Ad(b)) € d(INJ). Therefored(I) Nd(J) Cd(INJ).

(c) Clearlyd(I) v d(J) C d(IV J). Conversely, let € d(I v J). Thenz = d(z) for somez € IV J.
Hencez = a v b for somea € I andb € J. Thusz = d(z) = d(a vV b) = d(a) vV d(b) € d(I) V d(J).
Therefored (1 v J) Cd(I) Vv d(J). [ |

For any derivationi of L, let us denote the class of allideals ofL by Z,(L).

Theorem 3.9.Let d be a derivation of L. Then Z,(L) is a complete distributive lattice with respect to

set inclusion. Moreover, Z4(L) has greatest element if and only if the map d is onto.

Proof. Define an ordexK onZ,(L) by I < Jifandonly if I C J for any twol,J € Zy4(L). Then
clearly (Z4(L), <) is a partially ordered set. Sind@®} is a d-ideal, it can be easily obtained that
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(Z4(L), <) is a complete lattice. Again by the above lemma, it yields {FafL), N, V) is a sublattice
of Z(L) of all ideals of L. Hence(Z,(L),N,V,{0}) is a complete distributive lattice. The remaining
part is clear by the observation thats onto if and only ifd(L) = L. |

Theorem 3.10.Let d be a derivation of L. Then for any ideal I of L, the following conditions are
equivalent.

(1) I is ad-ideal.

@) I'=U (d(z)].

xel
(3) Forany x € I, there exists y € I such that x = d(y).

Proof. (1) = (2): Sinced(x) < z, we have alwayd J (d(z)] € U (z] = I. Conversely, let: € I.
zel zel
Then there exists € I such thatr = d(a). Hencer € (d(a)] € J (d(t)]. Thus we getl C | (d(t)] .

tel tel
Thereforel = J (d(t)].
tel

(2) = (3): Assume the condition (2). Let € I. Thenz € (d(a)] for somea € I. Hencexr =
d(a) Nz = d(a A z). Thereforer = d(a Ax) anda Az € 1.

(3) = (1): Assume the condition (3). We have alway(d) C I. Now letz € I. Then there exists
y € I such thatt = d(y) € d(I). Thereforel = d(I). [ |

Definition 3.11. Let d be a derivation of L. An ideal I of L is called an injective ideal with respect to d
ifforx,y € L,d(x) = d(y) and x € I implies thaty € I.

Evidently Ker d is an injective ideal ofL. Though the zero ideg|0} is a d-ideal, there is no
guarantee that it is an injective ideal. However, a set of equivalent conditions are establisfgdtéor
become an injective ideal.

Proposition 3.12.Let d be a derivation of L. Then the following conditions are equivalent.

(a) {0} is injective with respect to d.
(b) Kerd={0}.
(c) d(x) = 0 implies thatz = 0 forall x € L.

Proof. (a) = (b): Assume thaf0} is injective with respect td. Letz € Ker d. Thend(z) =0 =
d(0). Since{0} is injective, we can get that € {0}. ThereforeKer d = {0}.

(b) = (c): The proof is trivial.

(¢) = (a): Assume the conditiofx). Letd(x) = d(y) andz € {0}. Henced(y) = d(z) = d(0) = 0.
Therefore condition (c) yields thgt= 0 € {0}.

Theorem 3.13.Let d be a derivation of L. Then the following conditions are equivalent:

(1) d is injective.

(2) Every ideal is injective with respect to d.
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(3) Every prime ideal is injective with respect to d.

Proof. (1) = (2): Itis clear by the definition of an injective ideal.

(2) = (3): Obvious.

(3) = (1): Assume that every prime ideal df is an injective ideal. Let;,y € L be such that
d(xz) = d(y). Suppose that # y. Without loss of generality, we can assume thdtn [y) = (). Then

there exists a prime ided such thatt € P andy ¢ P, which is a contradiction t@ is an injective
ideal. |

The independency between the class ofialtieals and that of injective ideals are demonstrated in
the following examples.

Example 3.14.Consider the distributive lattice L = {0, a, b, ¢, 1} whose Hasse diagram is given below.

Define a self-map d : L — L as follows:

d(m):{ a ifx=a,cl

0 Otherwise

Then it can be easily verified that d is a derivation of L. I = {0,b} is an injective ideal of L. Now
d(I) = {0} and hence I # d(I). Therefore, I is an injective ideal with respect to d but not a d -ideal.

Example 3.15.Consider the distributive lattice L = {0, a,b,c,1} given in example 2.7. Define a self
map d : L — L as follows:

0 ifz=0
diz)=4¢ a ifz=a,c
boifz=b1

It can be easily verified that d is a derivation of L. Now consider the ideal I = {0, a,b}. Clearly
d(I) = I and hence I is a d-ideal. But d(a) = d(c),a € I and ¢ ¢ I. Therefore, I is a d-ideal but not

injective with respect to d.

Theorem 3.16.Let d be a derivation of L. Then a d-ideal I of L is injective with respect to d if and
only if for any x € L, d(x) € I implies z € I.
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Proof. Let I be ad-ideal of L. Assume thal is an injective ideal with respecttb Letx € L. Suppose
d(x) € I =d(I). Thend(x) = d(a) for somea € I. Sincel is injective andz € I, we get thatr € I.
Conversely, let:,y € L,d(x) = d(y) andx € I. Sincex € I = d(I), we getr = d(a) for somea € I.
Henced(y) = d(z) = d(d(a)) andd(a) < a € I which implies that) € I. Therefore[ is an injective
ideal of I, with respect tai. |

Definition 3.17.Let d be a derivation of L. Then for any ideal I of L, define an extension of I as
I'={x € L|d(z) € (d(a)] for some a € I}.

The following lemma is a routine verification.

Lemma 3.18.Let d be a derivation of L. Then for any two ideals I, J of L, we have the following:

(1) I is an ideal of L.

@ ICT.

(3) I C JimpliesI' C J'.
@ Ir'nJt =InJy.

Proposition 3.19.Let d be a derivation of L. Then for any ideal I of L, I’ is the smallest injective ideal
with respect to d such that I C I'.

Proof. By the above lemmal/ is an ideal containing. We now show thaf’ is an injective ideal with
respect tal. Letz,y € L,d(z) = d(y) andz € I'. Thend(y) = d(z) € (d(a)] for somea € I. Thus

y € I'. Let J be an injective ideal with respect dosuch that/ C J. Lett € I'. Thend(t) € (d(a)] for
somea € I C J. Henced(t) = d(a) Ad(t) = d(a A d(t)) anda A d(t) € J. SinceJ is injective with
respect tal, we get that € J. Thus!’ C J and hencd’ is the smallest injective ideal with respect to
dsuchthat C I'. [ |

Corollary 3.20. If I is an injective ideal, then I = I'.

Theorem 3.21.The set Z%(L) of all injective ideals of L, with respect to a given derivation of d of L,

forms a distributive lattice on their own.

Proof. ForI,J € Z%(L), define the operationsandL suchthaf AJ = IN.J and ILJ = (IV.J)'.
Clearly(Z4(L), A, L) is a lattice. Now for any, J, K € Z¢(L) we havel Li(JNK) = {IV(JNK)} =
{IvI)NIVEK)Y = (IvJ)N(IVK) = (IuJ)Nn(IUK). Therefore(Z%(L), A, L) is a distributive
lattice. [ |

Definition 3.22. Let d be a derivation of L. A proper ideal P of L is called a d-prime ideal if for any
x,y € L,x Ny € Ker d implies eitherz € P ory € P.

By a maximal injective ideal, we mean an injective ideal which is maximal in the class of all proper
injective ideals with respect to a given derivation. Then the following series of propositions establish
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some useful relations between the class of all injective ideals with respect to a derivatidrihe class
of all d-prime ideals. For this, the following lemma is required.

Lemma 3.23.Let d be a derivation of L. Then for any injective ideal I of L with respecttod , Ker d C
1. In other words, Ker d is the smallest injective ideal of L.

Proof. Let I be an injective ideal with respect tbof L. Supposer € Ker d. Thend(z) = 0 = d(0).
Sincel is injective with respect td and0 € I, it yields thatx € I. SinceKer d is also an injective
ideal with respect td of L, it is the smallest injective ideal ib with respect to the derivatiosh |

Proposition 3.24.Let d be a derivation of L. Then every maximal injective ideal with respect to the

derivation d of L is a d-prime ideal.

Proof. Let M be a maximal injective ideal af. Chooser,y € L such that ¢ M andy ¢ M. Then
Mc MV (z] C{MV(z]}y andM Cc MV (y] € {M V (y]}. SinceM is maximal, we can get
{M V (z]} = Land{M V (y]} = L. Hence

{MV (zAylY = {(MV(]) N (MV(y)}Y
= {MV @]} N AMV (y]}
=1L
If x ANy € Kerd,thenL ={M V (z ANy]} C{M V Ker d} = M' = M, which is a contradiction to
the fact thatM is proper. Hencé/ is ad-prime ideal. |

Proposition 3.25.Let d be a derivation of L. Then every d-prime ideal P is an injective ideal with
respect to d if for each a € P there exists b ¢ P such thata ANb € Ker d.

Proof. Let P be ad-prime ideal which satisfies the given property. ey € L be such thatl(z) =
d(y). Supposer € P. Then there exists’ ¢ P such thatr A 2/ € Ker d. Henced(z) A 2/ =
d(xz A 2") = 0, which yields thati(y A ') = d(y) A 2’ = 0. Thereforey A 2’ € Kerd. SinceP is ad-
prime ideal and’ ¢ P, we get thay € P. Hence,P is injective with respect td. |

We generalise the celebrated result of M.H. Stone [1936] which is meant for ideals, filters and prime
ideals of a distributive lattice to the case of injective ideals, filtersdpdime ideals.

Theorem 3.26.Let d be a derivation of L. Suppose I is an injective ideal with respect to d and F a filter
of L such that I N F' = (). Then there exists a d-prime ideal P such that ] C P and PN F = ().

Proof. Let I be an injective ideal with respect tband F' a filter of L such that/ N F' = (). Consider
={JelI{L)|I C JandJNF = (}. Clearlyl € §. Let{J,} be a chain of elements of
§. Then clearlyuJ, is an upper bound fof.J,} in §. Hence by Zorn’s lemma§ has a maximal
element, say/. We now prove thall/ is d-prime. Letz,y € L such thatr ¢ M andy ¢ M. Then
Mc MV (z] C{MV (z]} andM Cc M V (y] C {M V (y]}. By the maximality ofM/, we get that
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{MV (z]} NF #@and{M Vv (y]} N F # 0. Chooser € {M V (z]} N Fandb e {M V (y]} N F.
Then

aNb € {MV (]} N{MV (y]}

— {(MV (@) N (MY @)Y
— MV (@ Ay

Supposec Ay € Ker d. Thenitreflects thadAb € {M V (zAy]} = {MVKerd} = M’ = M(Since
M is injective). Thusag A b € M N F, which is a contradiction td/ N F' = (). Therefore M is ad-
prime ideal. |

References

[1] R. Balbes and P. DwingeBistributive Lattices University of Missouri Press, Columbia, Mo.,
(1974).

[2] G. Birkhoff, Lattice Theory Amer. Math. Soc. Collog. XXV, Providence, U.S.A., (1967).

[3] H.E. Bell and L.C. KappeRings in which derivations satisfy certain algebraic conditiosta
Math. Hungar., 53(3-4)(1989), 339-346.

[4] L. Ferrari,On derivations of latticesPure Mathematics and Applications, 12(2001), No.45, 365-
382.

[5] K. Kaya, Prime rings with a derivationBull. Mater. Sci. Eng., 16(1987), 63-71.

[6] E. PosnerDerivations in prime ringsProc. Amer. Math. Soc., 8(1957), 1093-1100.

[7] G. Szisz, Translation der Verbinde Acta Fac. Rer. Nat. Univ. Comenianae, 5(1961), 53-57.
[8] G. Szisz,Derivations of latticesActa Sci. Math.(Szeged), 37(1975), 149-154.

[9] X.L. Xin, T.Y. Liand J.H. Lu,On derivations of latticednform. Sci., 178(2008), No. 2, 307-316.



