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Abstract

Theradio numberof G, rn(G), is the minimum possible span. Letd(u, v) denote thedistance

between two distinct vertices of a connected graphG anddiam(G) be thediameterof G. A radio

labelingf of G is an assignment of positive integers to the vertices ofG satisfyingd(u, v)+ |f(u)−
f(v)| ≥ diam(G) + 1. The largest integer in the range of the labeling is its span. In this paper we

show thatrn(Jt,n) ≥

{
1
2 (nt2 + 2nt + 2n + 4), when t is even;
1
2 (nt2 + 4nt + 3n + 4), when t is odd.

Further the exact value for the radio number ofJ2,n is calculated.
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1 Introduction

A labeling of a graph is a map that carries graph elements to numbers (usually to the positive or non-

negative integers). The most common choices of domain are the set of all vertices and edges (total

labelings), the vertex-set alone (vertex-labelings), or the edge-set alone (edge-labelings). In this paper

we consider a type of vertex labeling known as themulti-level distance labelingor radio labelingof

graphs. Multi-level distance labeling is motivated by restrictions inherent in assigning channel frequen-

cies for radio transmitters. These labelings can be considered as extensions ofdistance-two labelings.

Let G = (V (G), E(G)) be a simple connected graphs. The distance between the verticesu andv is

denoted byd(u, v) anddiam(G) denotes the diameter ofG.

Definition 1.1. [4] For a graph G a distance two labeling with span k is a function, f : V (G) →
{0, 1, ..., k}, such that the following are satisfied:

1) |f(x)− f(y)| ≥ 2 if d(x, y) = 1; and

2) |f(x)− f(y)| ≥ 1 if d(x, y) = 2.

Definition 1.2. [1] A radio labeling is a one-to-one mapping f : V (G) → ZZ+ satisfying the condition

d(u, v) + |f(u)− f(v)| ≥ diam(G) + 1

for every u, v ∈ V (G).

This research was partially supported by FAST-NU, Peshawar and by the Higher Education Commission of Pakistan.

57



58 M. T. Rahim, M. Farooq, M. Ali and S. Jan

The span of a labelingf is the maximum integer in the range off . The radio number ofG denoted

by rn(G) is the lowest span taken over all the radio labelings of the graphG.

Thegeneralized gear graphJt,n is obtained from awheelgraph by introducing t-vertices between every

pair of adjacent vertices on the cycle. The diameter ofJt,n for t ≥ 1 is given by

diam(Jt,n) =

{
t + 2, when t is even;

t + 3, when t is odd.

Theorem 1.3.[2] The radio number of the complete graph on n vertices is n. That is, rn(Kn) = n.

Lemma 1.4.[5] For odd n ≥ 3; rn(Pn) = (n−1)2

2 + 2 and for even n ≥ 4, rn(Pn) = n2

2 − n + 1.

Lemma 1.5.[1] If G is a connected graph of order n and diameter 2, then n ≤ rn(G) ≤ 2n − 2 and

for every pair of integers k and n with n ≤ k ≤ 2n − 2, there exists a connected graph of order n and

diameter 2 with rn(G) = k.

Theorem 1.6.[6] rn(G) ≥ (n− 1)(diam(G) + 1)− hpmax(DG) + 1.

Theorem 1.7.[2] rn(J1,n) = 4n + 2 for n ≥ 4.

A complete survey on the radio number of graphs can be found in[3].

2 Lower bound for the radio number of generalized gear graphJt,n

Theorem 2.1.rn(Jt,n) ≥

{
1
2(nt2 + 2nt + 2n + 4), when t is even;
1
2(nt2 + 4nt + 3n + 4), when t is odd.

Proof. Since there is a total of1 + n(t + 1) vertices inJt,n the total number of values required to label

all the vertices ofJt,n are1+n(t+1). We count the total number of restricted values that are prohibited

to be used as labels.

First of all we calculate the restricted values associated with any label of the centerz. Since for any

vertexr 6= z, d(z, r) ≤ d t+2
2 e. Whent is even, the radio condition becomes

|f(z)− f(r)| ≥ t + 4
2

.

Therefore, whent is even, the number of restricted values associated with any label of the center are
t+2
2 (because center is assigned the minimum label).

When t is odd, then the radio condition implies that there are a total oft+3
2 which are restricted to

be used as labels. Thus, the total number of restricted values associated with any label of the center,

whethert is even or odd, ared t+2
2 e.

To calculate the restricted values associated with any label of the vertices adjacent to the center letvi

denote any vertex adjacent to the center ofJt,n, then asd(vi, r) ≤ d t+4
2 e, wherevi 6= r. For event, the
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radio condition becomes

|f(vi)− f(r)| ≥ t + 2
2

.

It implies that the number of restricted values associated with any label ofvi, whent is even, aret (since

the restricted values above and below any label ofvi is the same).

Whent is odd, the radio condition becomes

|f(vi)− f(r)| ≥ t + 3
2

.

So the number of restricted values associated with any label ofvi aret + 1 whent is odd. But asvn is

to be assigned the maximum label, restricted values associated with any label ofvn are given by

{
t
2 , when t is even;
t+1
2 , when t is odd.

Therefore, the total number of restricted values associated with the labels ofvi wherei = 1, 2, ..., n are{
(n− 1)t + t

2 , when t is even;

(n− 1)(t + 1) + t+1
2 , when t is odd.

Now we calculate the restricted values associated with any label ofxk, k ∈ { t
2 , t

2 + 1, t+1
2 }, wherexk

is the vertex at maximum distance betweenvj andvj+1 on the cycle. Letxk, k ∈ { t
2 , t

2 + 1, t+1
2 } be

the vertex at maximum distance betweenvj andvj+1 on the cycle then asd(xk, r) ≤ t + 3, (xk 6= r)
wheret is odd, the radio condition implies

|f(xk)− f(r)| ≥ 1

which is always true asf is a bijection. Also, asd(xk, r) ≤ t + 2, (xk 6= r) whent is even, the radio

condition yields

|f(xk)− f(r)| ≥ 1

. And once again the radio condition is satisfied. So there is no restricted value associated with any label

of xk.

Next, we find restricted values associated with any label ofxi, wherexi is any vertex other thanxk

betweenvj andvj+1. If t is even then asd(xi, xk) ≤ t
2 + i + 2, where1 ≤ i ≤ t

2 − 1, so the radio

condition gives

|f(xi)− f(xk)| ≥ 1 +
t

2
− i.

It means that the number of restricted values associated with any label ofxi aret− 2i, 1 ≤ i ≤ t
2 − 1.

Hence the total number of restricted values associated with any label ofxi wherexi is betweenvj and

x t
2

is equal to

t
2
−1∑

i=1
(t− 2i)———-(i)

Due to symmetry,the number of restricted values associated with any label ofxi = t
2−i, t

2+2 ≤ i ≤ t

Thus, the total number of restricted values associated with any label ofxi wherexi is betweenx t
2
+1
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andvj+1 is equal to
t∑

i= t
2
+2

(t− 2i)———-(ii)

From (i) and (ii) the total number of restricted values associated with any label ofxi betweenvj and

vj+1 whent is even are2
t
2
−1∑

i=1
(t − 2i). Therefore, the total number of restricted values associated with

any label of all non-adjacent vertices to the center exceptx t
2

andx t
2
+1 are2n

t
2
−1∑

i=1
(t− 2i) = nt(t−2)

2 .

Now if t is odd then asd(xi, xk) = t+1
2 + i + 2, where1 ≤ i < t−1

2 , the radio condition becomes

|f(xi)− f(xk)| ≥
t + 3

2
− i.

This implies that the number of restricted values associated with any label ofxi are 2[ t+1
2 − i] =

t + 1 − 2i, 1 ≤ i ≤ t−1
2 . Thus, the total number of restricted values associated with any label ofxi

betweenvj andx t+1
2

is equal to

t−1
2∑

i=1
(t + 1− 2i)———(iii)

Due to symmetry, we can say that the number of restricted values associated with any label ofxi =
t + 1− 2i, t+3

2 ≤ i ≤ t. It means that the total number of restricted values associated with any label of

xi betweenx t+1
2

andvj+1 is equal to
t∑

i= t+3
2

(t + 1− 2i)———(iv)

From (iii) and (iv) the total number of restricted values associated with any label ofxi betweenvj and

vj+1 whent is odd are2
t−1
2∑

i=1
(t + 1− 2i).

Therefore the total number of restricted values associated with any label of all non-adjacent vertices to

the center exceptx t+1
2

is equal to2n

t−1
2∑

i=1
(t + 1− 2i) = n(t2−1)

2

Thus, the total number of restricted labels=

{
1
2(nt2 + 2), when t is even;
1
2(nt2 + 2nt + n + 2), when t is odd.

Hence,rn(Jt,n) ≥ Total number of values required to label all the vertices ofJt,n + Total number of

restricted values associated with any label ofJt,n.

That is,Jt,n =

{
1
2(nt2 + 2nt + 2n + 4), when t is even;
1
2(nt2 + 4nt + 3n + 4), when t is odd.

Remark: Takingt = 1 in Theorem 2.1 we get the lower bound ofJ1,n obtained in[2] and takingt = 2
we get the lower bound ofJ2,n.

Corollary 2.2. For n ≥ 4; rn(J2,n) ≥ 5n + 2.

Theorem 2.3.For n ≥ 7, rn(J2,n) ≤ 5n + 2.

Proof. Let the center vertex ofJ2,n is labeledz, the vertices adjacent to the center are labeled sequen-

tially {v1, v2, ..., vn}. The vertices not adjacent to the center are labeled sequentially{w1, w2, ..., wn}
and{u1, u2, ..., un}, using the same orientation chosen for thevi. If n is odd then we specify thatw1

andu1 are adjacent tov1 andv2 respectively otherwise they are adjacent tovn andv1 respectively. The
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standard labelings ofJ2,8 andJ2,9 are shown in Figure 3.1.

We provide a radio labelingf of J2,n and consequently the span of this radio labeling provides an up-

per bound for the radio number ofJ2,n. First we define a position function that renames the vertices

of J2,n using the set{x0, x1, ..., x3n}, then we specify the labelsf(xi) so thati < j if and only if

f(xi) < f(xj). (This allows us to show more easily thatf is indeed a radio labeling). Throughout this

proofn ≥ 7.

The position functionp : V (J2,n) → {x0, x1, ..., x3n} is defined as follows.

Forn = 2k + 1 we define

p(z) = x0,

p(w2i−1) = xi for i = 1, ..., k + 1,

p(w2i) = xk+1+i for i = 1, ..., k,

p(u2i−1) = x2k+1+i for i = 1, ..., k + 1,

p(u2i) = x2k+3+i for i = 1, ..., k,

p(vi) = x2n+i for i = 1, ..., n.

Whenn = 2k the position function changes slightly in renaming the verticeswi andui:

p(z) = x0,

p(w2i−1) = xi for i = 1, ..., k,

p(w2i) = xk+i for i = 1, ..., k,

p(u2i−1) = x2k+i for i = 1, ..., k,

p(u2i) = x3k+i for i = 1, ..., k,

p(vi) = x2n+i for i = 1, ..., n.

The above defined position function orders the vertices so that{x0, x1, ..., x3n} corresponds to

{z, w1, w3, ..., wn, w2, w4, ..., wn−1, u1, u3, ..., un, u2, u4, ..., un−1, v1, v2, ..., vn} whenn is odd and to

{z, w1, w3, ..., wn−1, w2, w4, ..., wn, u1, u3, ..., un−1, u2, u4, ..., un, v1, v2, ..., vn} whenn is even.

We define a labelingf : V (J2,n) → ZZ+ as follows.

f(xi) =


1, i = 0;

3+i, 1 ≤ i ≤ 2n;

2 + 2n + 3(i− 2n), 2n + 1 ≤ i ≤ 3n.

Claim: The labelingf is a valid radio labeling. That is the condition

d(u, v) + |f(u)− f(v)| ≥ 1 + diam(J2,n)

holds for all pairs of distinct vertices(u, v).
Case 1.Consider the pair(z, r) of any two distinct verticesr andz. Recallp(z) = x0. As f(xi) ≥ 5
for any i ≥ 2, hence the radio condition becomesd(x0, xi) + |f(x0) − f(xi)| ≥ 1 + |1 − 5| ≥ 5 for

all i ≥ 2 holds for all such vertices. This leaves the pair(z, x1). But p−1(x1) = w1, so we calculate

d(x0, x1) + |f(x0)− f(x1)| = 2 + |1− 4| ≥ 5.

Case 2.Consider the pair(wj , wk) wherej 6= k. Recallp(w2i−1) = xi and note thatp(w2i) can be writ-

ten asxn−k+i whether n is even or odd. We haved(wj , wk) = 3 for the pairs(w2i−1, w2i), (w2i, w2i+1)
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and(wn, w1). These pairs are translated to(xi, xn−k+i), (xn−k+i, xi+1) and(xs, x1) respectively where

s = k + 1 whenn is odd ands = 2k whenn is even. Now we examine the label difference for each

pair:

|f(xi)− f(xn−k+i)| = n− k,

|f(xn−k+i)− f(xi+1)| = n− k − 1
and|f(xs)− f(x1)| is k whens = k + 1 (n odd) and is2k − 1 whens = 2k (n even).

In all the cases, using the fact thatn ≥ 7, we have that|f(wj) − f(wk)| > 2, so the radio condition

is satisfied wheneverd(wj , wk) = 3. Meanwhile, ifj andk are not consecutive(mod n), we have

d(wj , wk) = 4. Hence the radio condition is again satisfied for all such pairs.

Case 3.The radio condition holds for all such vertices in the same way as in case 2.

Case 4.For the pair(vj , vk) wherei 6= j.

As d(vj , vk) = 2. Also |f(vj) − f(vk)| = |f(x2n+j) − f(x2n+k)| ≥ 3, ∀ vj , vk, the radio condition

is satisfied.

Case 5. Consider the pair(v, w), wherev ∈ {v1, ..., vn} andw ∈ {w1, ..., wn}. We havef(v) ∈
{2n+5, 2n+8, 2n+11, ..., 5n+2} andf(w) ∈ {4, 5, 6, ..., n+3}. For allv andw, |f(v)− f(w)| ≥
(2n + 5) − (n + 3) = n + 2. Now using the conditionn ≥ 7 we verify that the radio condition is

satisfied for all such pairs.

Case 6.Consider the pair(v, u), wherev ∈ {v1, ..., vn} andu ∈ {u1, ..., un}. We havef(v) ∈ {2n +
5, 2n+8, 2n+11, ..., 5n+2} andf(u) ∈ {n+4, n+5, n+6, ..., 2n+3}. For allv 6= v1, |f(v)−f(u)| ≥
(2n + 8) − (2n + 3) = 5. Therefore the radio condition is satisfied whenv 6= v1. If v = v1 then as

d(v1, u) ≤ 3, sou = xn+1 or u = xn+5 or f(u) ∈ {n + 5, n + 6, n + 7, n + 9, n + 10, ..., 2n + 3}.
Checking the radio condition for each we obtain

d(v1, xn+1) + |f(v1)− f(xn+1)| = 1 + |(2n + 5)− (n + 4)| = n + 2 > 5,

d(v1, xn+5) + |f(v1)− f(xn+5)| = 2 + |(2n + 5)− (n + 8)| ≥ n− 1 > 5 and

d(v1, u) + |f(v1)− f(u)| = 3 + |(2n + 5)− (2n + 3)| = 5.

Therefore once again the radio condition holds.

Case 7.Consider the pair(w, u) wherew ∈ {w1, ..., wn} andu ∈ {u1, ..., un}.
We havef(w) ∈ {4, 5, 6, ..., n + 3} andf(u) ∈ {n + 4, n + 5, n + 6, ..., 2n + 3}.
Now |f(w)− f(u)| = |4− (2n + 3)| = |1− 2n| = 2n− 1, radio Condition holds.

Also |f(w)− f(u)| = |n + 4− n− 3| = 1. But d(w, u) = 4. So once again condition holds.

These seven cases establish the claim thatf is a radio labeling ofJ2,n.

Hencern(J2,n) ≤ span(f) = f(x3n) = 2 + 2n + 3(3n− 2n) = 5n + 2.

Theorem 2.4.rn(J2,3) = 21.

Proof. Sincediam(J2,3) = 4, the radio condition becomes

d(u, v) + |f(u)− f(v)| ≥ 5
for every two distinct verticesu, v ∈ V (J2,3).

If the central vertexz has labela, then asd(z, r) ≤ 2, ∀ r 6= z, so by Theorem 3.1.1 there are two

restricted labels associated withz.

Let xi be any vertex on the cycle and letf(x1) = x then taking into account the vertices at maximum

distance and the radio condition we see thatx+2, x+4, x+6, x+9, x+10, x+12, x+13, x+15
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andx + 16 are the restricted labels for all vertices.

Therefore, the allowed labels arex, x + 1, x + 3, x + 5, x + 7, x + 8, x + 11, x + 14
andx + 17. Hence,rn(J2,3) =Total number of restricted labels + Total number of allowed labels

= 11 + 10 = 21.

Remark 2.5.In a similar way as in Theorem 2.4, it can be shown that rn(J2,2) = 12, rn(J2,4) = 22,

rn(J2,5) = 28 and rn(J2,6) = 32.
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