‘,.u

International Journal of Mathematics and Soft Computing AMSO
Vol.2, No.1 (2012), 57 - 63. ISSN 2249 - 3328

Multi-level distance labelings for generalized gear graphs

M. T. Rahim, M. Farooq, M. Ali, S. Jan
Department of Mathematics,
National University of computer and emerging sciences,

Peshawar, PAKISTAN.
E-mail:tariq.rahim@nu.edu.pk, farooghal@hotmail.com,
murtazapsh@yahoo.com,sadaqgat@nwfpuet.edu.pk

Abstract

Theradio numberof G, rn(G), is the minimum possible span. Létu, v) denote thelistance
between two distinct vertices of a connected grépanddiam(G) be thediameterof G. A radio
labeling f of G is an assignment of positive integers to the verticas satisfyingd(u, v) + | f(u) —

f(v)] > diam(G) + 1. The largest integer in the range of the labeling is its span. In this paper we
3(nt? + 2nt + 2n +4), whentis even;

1(nt? +4nt + 3n +4), whentis odd.
Further the exact value for the radio numbev/gf, is calculated.

show thatrn(.J; ) >
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1 Introduction

A labeling of a graph is a map that carries graph elements to numbers (usually to the positive or non-
negative integers). The most common choices of domain are the set of all vertices andtetddies (
labeling9, the vertex-set alonevértex-labelingy or the edge-set alonedge-labelings In this paper
we consider a type of vertex labeling known as thelti-level distance labelingr radio labeling of
graphs. Multi-level distance labeling is motivated by restrictions inherent in assigning channel frequen-
cies for radio transmitters. These labelings can be considered as extengilistammfe-two labelings

LetG = (V(G), E(G)) be a simple connected graphs. The distance between the verticek is
denoted byi(u, v) anddiam(G) denotes the diameter 6f.

Definition 1.1.[4] For a graph G a distance two labeling with span k is a function, f : V(G) —
{0,1, ..., k}, such that the following are satisfied:

Df(x) = f(y)| = 2ifd(x,y) = 1; and

2)|f(x) = fly)l = Vifd(z,y) =2.

Definition 1.2.[1] A radio labeling is a one-to-one mapping f : V(G) — Z™ satisfying the condition
d(u,v) + |f(u) — f(v)] > diam(G) + 1

for every u, v € V(G).
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The span of a labeling is the maximum integer in the range pf The radio number ofr denoted
by rn(G) is the lowest span taken over all the radio labelings of the géaph
Thegeneralized gear grapl; ,, is obtained from avheelgraph by introducing t-vertices between every
pair of adjacent vertices on the cycle. The diameter;gffor ¢ > 1 is given by

t+2, whentiseven;
t+ 3, whentis odd.

diam(Jy ) = {

Theorem 1.3.]2] The radio number of the complete graph on n vertices is n. That is, rn(K,) = n.

(n—1)*

5— + 2 and forevenn > 4, rn(P,) = 2+l

Lemma 1.4.[5] Foroddn > 3; rn(P,) = 5

Lemma 1.5.[1] If G is a connected graph of order n and diameter 2, then n < rn(G) < 2n — 2 and
for every pair of integers k and n withn < k < 2n — 2, there exists a connected graph of order n and
diameter 2 with rn(G) = k.

Theorem 1.6.[6] rn(G) > (n — 1)(diam(G) + 1) — hpma(DG) + 1.
Theorem 1.7.2] rn(J1,n) = 4n + 2 forn > 4.

A complete survey on the radio number of graphs can be foufg].in

2 Lower bound for the radio number of generalized gear graphJ, ,,

(nt? +2nt +2n +4), when tis even;

1
Theorem 2.1.rn(Jin) > § 2 ) ,
5(nt* +4nt +3n +4), when tis odd.

Proof. Since there is a total df + n(t + 1) vertices inJ; ,, the total number of values required to label
all the vertices of]; , arel +n(t+1). We count the total number of restricted values that are prohibited
to be used as labels.
First of all we calculate the restricted values associated with any label of the eersénce for any
vertexr # z, d(z,r) < [£52]. Whent is even, the radio condition becomes

7 -5l = 2
Therefore, whert is even, the number of restricted values associated with any label of the center are
% (because center is assigned the minimum label).
Whent is odd, then the radio condition implies that there are a toté%éfwhich are restricted to
be used as labels. Thus, the total number of restricted values associated with any label of the center,
whethert is even or odd, aré$21.
To calculate the restricted values associated with any label of the vertices adjacent to the center let
denote any vertex adjacent to the centesof, then asi(v;, ) < [%L wherev; # r. For every, the
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radio condition becomes o
_|_
) = ()] > ==
It implies that the number of restricted values associated with any labglwhent is even, are (since
the restricted values above and below any label; @f the same).

Whent is odd, the radio condition becomes

t+3

|f(vi) = f(r)| > 5

So the number of restricted values associated with any lahglaret + 1 whent is odd. But as,, is
to be assigned the maximum label, restricted values associated with any lapelrefgiven by

, when tis even;

{ =1 whentis odd.

SIS

Therefore, the total number of restricted values associated with the lahgle/bérei = 1,2, ..., n are

(n—1)t+%, when tis even;
(n—1)(t+1)+ %L, whentis odd.

Now we calculate the restricted values associated with any labgl,ok € {%, % + 1,1}, wherez,
is the vertex at maximum distance betwegrandv;; on the cycle. Letr, k € {,L + 1,1} be
the vertex at maximum distance betwegrandv;,; on the cycle then ad(xzy,r) <t +3, (z #r)

wheret is odd, the radio condition implies

|f(z) = f(r)[ =1

which is always true ag is a bijection. Also, agl(zy,r) < t+ 2, (zx # r)whent is even, the radio
condition yields

[f(xr) = f(r)| =1

. And once again the radio condition is satisfied. So there is no restricted value associated with any label
of x;.

Next, we find restricted values associated with any labet;pfvherez; is any vertex other thamy
betweenv; andv; 1. If ¢ is even then ad(x;,z) < § + i+ 2, wherel < i < £ — 1, so the radio
condition gives

V@H—ﬂmﬂ21+%—¢

It means that the number of restricted values associated with any labghmdt — 27, 1 <i < % —1.
Hence the total number of restricted values associated with any labghdferex; is betweernv; and

t

2
rt isequalto) (t — 2i) -(i)

=1
Due to symmetrythe number of restricted values associated with any labejef £ —i, L+2 <i<t
Thus, the total number of restricted values associated with any lahglwherez; is betweenx% 41
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t
andv;j; isequalto > (¢t —29) -(ii)
z:%+2
From (i) and (ii) the total number of restricted values associated with any labelwétweenv; and
11

vj+1 Whent is even are Z (t — 24). Therefore, the total number of restricted values associated with
=1

g
. . 2 . t(t—2
any label of all non-adjacent vertices to the center exm@mnd:m+1 are2n > (t —2i) ="~ (2 ),

i=1
Now if ¢ is odd then ag(x;, z) = 5 + i + 2, wherel < i < 51, the radio condition becomes

|f (i) = flaw)| 2 —— — i,

This implies that the number of restricted values associated with any label are 2[EL — i] =
t+1—-2i, 1 <i< ﬂ. Thus, the total number of restricted values associated with any lahgl of

t—l

betweery; andxf+1 is equal toZ (t+1—2i)

(iii)

Due to symmetry, we can say that the number of restricted values associated with any label of

t+1—2i, t+3 <1 < t. It means that the total number of restricted values associated with any label of
= E53

(iv)

From (iii) and (iv) the total number of restrlcted values associated with any labglwétweerv; and

t—l

vj+1 whent is odd are2 Z (t+1—249).

T between:cm andv;4 is equal to Z (t+1—2i0)

=1
Therefore the total number of restricted values associated with any label of all non-adjacent vertices to

t—1

2
the center except:+: is equal td2n > (t + 1 — 2i) = "“22’1)
2 i=1

3(nt? +2), when tis even;
2(nt> +2nt +n+2), whentis odd.
Hence,rn(J;,,) > Total number of values required to label all the verticeg,gf + Total number of
restricted values associated with any labelof.

$(nt> +2nt +2n +4), whentis even;

$(nt> +4nt +3n +4), whentis odd.
Remark: Takingt = 1 in Theorem 2.1 we get the lower bound.ff,, obtained in2] and takingt = 2

we get the lower bound ofy ,,.

Thus, the total number of restricted Iabets{

Thatis,J; , = [ |

Corollary 2.2. Forn > 4; rn(Ja,) > bn + 2.
Theorem 2.3.Forn > 7,rn(J2,) < 5n + 2.

Proof. Let the center vertex of; ,, is labeledz, the vertices adjacent to the center are labeled sequen-
tially {v1, ve,...,v,}. The vertices not adjacent to the center are labeled sequertiallyws, ..., w, }
and{uy, ug, ..., uy }, using the same orientation chosen for thelf n is odd then we specify that,
andu, are adjacent to; andwv, respectively otherwise they are adjacenticandv; respectively. The
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standard labelings of; s and.J; g are shown in Figure 3.1.

We provide a radio labeling of .J,, and consequently the span of this radio labeling provides an up-
per bound for the radio number d% ,,. First we define a position function that renames the vertices
of Jy, using the sef{xzg,z1, ..., x3,}, then we specify the label(x;) so thati < j if and only if
f(x;) < f(z;). (This allows us to show more easily thats indeed a radio labeling). Throughout this
proofn > 7.

The position functiom : V (Ja2,,) — {x0, 1, ..., 3, } is defined as follows.

Forn = 2k + 1 we define

p(z) = o,

plwai—1) =x; fori=1,....k+1,

p(wy;) = xpy14 fori=1,.. k,

(ugi—1) = Togy144 fOri=1,....k+1,

(

p(

3

p(ugi) = Topqai fori=1,. k‘,

Vi) = Xonpys fOri=1,.

Whenn = 2k the posmon function changes slightly in renaming the verticeandu;:
p(z) = z0,

Wi— 1)—1’Z fOYZ—l k‘,

kB3

U9 — 1) = Tok+i fori = 1,...,k,

3

(wo;) = Tpys fori=1,.. k,

p(u27,) = T3k+i for 1= 17 ceny k,

p(v;) = wop4; fori=1,...,n

The above defined position function orders the vertices so{thatzy, ..., x3, } corresponds to

{2, W1, W3, ooy Wiy Wy Wy vy W1y ULy Uy ey Uy Uy ULy -evy Up—1, V1, V2, ..., Up } WhENn is odd and to

{z, W1, W3, ., Wp—1, W, Wy, ooy Wy, ULy Uy vy U1 U, Udy oy Uy V1, V2, ..., Up } WHENR IS EVEN.

We define a labeling : V(.J,,,) — Z* as follows.

1 1 =0;
flxy) =< 3+, 1<1i<2n;
2+ 2n+3(i—2n), 2n+1<i<3n

Claim: The labelingf is a valid radio labeling. That is the condition
d(u,v) + [f(u) = f(v)| = 1+ diam(Ja,n)

holds for all pairs of distinct vertices:, v).

Case 1.Consider the paifz,r) of any two distinct vertices andz. Recallp(z) = zg. As f(x;) > 5
for anyi > 2, hence the radio condition becomé&x, x;) + |f(xo) — f(x;)] > 1+ |1 — 5] > 5 for
all i > 2 holds for all such vertices. This leaves the pairz1). Butp~!(x;) = w1, So we calculate
d(zo, 1) + [ f(z0) — f(z1)| =2+ [1 —4[ = 5.

Case 2.Consider the paifw;, wy,) wherej # k. Recallp(ws;—1) = x; and note thap(w-;) can be writ-
ten asr,,_j+; whether nis even or odd. We hav@w;, wy,) = 3 for the pair(wa;—1, wa;), (wa;, wait1)
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and(wy,, wy). These pairs are translated 9, z,,—xt:), (n—k+i, Ti+1) @nd(zs, z1) respectively where
s = k + 1 whenn is odd ands = 2k whenn is even. Now we examine the label difference for each
pair:

| (@) = f(Zn—ksi)| =1 — K,

|f(@n—k+i) — f(@ip1)| =n—k—1

and|f(zs) — f(x1)|is k whens = k + 1 (n odd) and i2k — 1 whens = 2k (n even).

In all the cases, using the fact that> 7, we have thatf(w;) — f(wx)| > 2, so the radio condition
is satisfied whenevet(w;, w,) = 3. Meanwhile, if j andk are not consecutivenod n), we have
d(wj, wy) = 4. Hence the radio condition is again satisfied for all such pairs.

Case 3.The radio condition holds for all such vertices in the same way as in case 2.

Case 4.For the pair(v;, v;) wherei # j.

As d(vj,vg) = 2. Also | f(v;) — f(vk)| = |f(z2n+j) — f(@antk)| > 3, ¥V vj, v, the radio condition
is satisfied.

Case 5. Consider the paifv, w), wherev € {vy,...,v,} andw € {wy,...,w,}. We havef(v) €
{2n+5,2n+8,2n+11,....,5n+ 2} andf(w) € {4,5,6,...,n+3}. For allv andw, | f(v) — f(w)| >
(2n + 5) — (n + 3) = n + 2. Now using the conditiom > 7 we verify that the radio condition is
satisfied for all such pairs.

Case 6.Consider the paifv, u), wherev € {v1,...,v,} andu € {uy, ..., u, }. We havef(v) € {2n +
5,2n+8,2n+11,...,5n+2} andf(u) € {n+4,n+5,n+6, ...,2n+3}. Forallv # vy, | f(v)— f(u)]| >
(2n + 8) — (2n + 3) = 5. Therefore the radio condition is satisfied wheg: v;. If v = v; then as
d(vi,u) < 3,80U = Tpt1 OF U = Ty OF f(u) € {n+5,n+6,n+7n+9n+10,..,2n+ 3}.
Checking the radio condition for each we obtain

d(vi, Tps1) + | f(v1) — f(@py)| =14+ |(2n+5) — (n+4)| =n+2 > 5,

d(v1, Tnys) + | f(v1) = f(enes)] =2+ |(2n +5) — (n+8)[ 2 n—1>5and

d(v1,u) + |f(01) = ()] =3+ |(2n +5) — (20 + 3)| = 5.

Therefore once again the radio condition holds.

Case 7.Consider the paifw, v) wherew € {wy, ...,w,} andu € {uq, ..., u,}.

We havef(w) € {4,5,6,...,n+3}andf(u) € {n+4,n+5n+6,...,2n + 3}.

Now |f(w) — f(u)| =4 — (2n + 3)| = |1 — 2n| = 2n — 1, radio Condition holds.

Also | f(w) — f(u)| = |n+4 —n — 3| = 1. Butd(w,u) = 4. So once again condition holds.

These seven cases establish the claim thata radio labeling of/; ,,.

Hencern(Ja,,) < span(f) = f(xsn) =2+ 2n+3(3n —2n) = 5n + 2. [ |

Theorem 2.4.rn(J23) = 21.
Proof. Sincediam(.J2 3) = 4, the radio condition becomes
d(u,v) + |f(u) - f(v)| > 5
for every two distinct vertices, v € V(J23).
If the central vertex has labek, then asi(z,r) < 2,V r # z, so by Theorem 3.1.1 there are two
restricted labels associated with

Letz; be any vertex on the cycle and [&tr;) = x then taking into account the vertices at maximum
distance and the radio condition we see tha®, z+4, z+6, x+9, z+10, z+12, z+13, z+15
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andz + 16 are the restricted labels for all vertices.
Therefore, the allowed labels are « + 1,  +3, = +5, 2+ 7, 4+ 8, x + 11, = + 14

andz + 17. Hence,rn(J>3) =Total number of restricted labels + Total number of allowed labels
=11+10=21. |

Remark 2.5.1In a similar way as in Theorem 2.4, it can be shown that rn(Jz2) = 12, rn(Jo4) = 22,
rn(J275) = 28 and Tn(JQ’G) = 32.
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