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1 Introduction

Throughout this paper we use the following notation:

Notation 1.1. Let F be a field andMn(F ) be the algebra ofn × n matrices. LetGLn(F ) denote the

set of invertiblen × n matrices. LetOs
n(F ) andUs

n(F ) denote the set of s-orthogonal and s-unitary

matrices respectively.

Notation 1.2. The secondary transpose (conjugate secondary transpose) of A is defined byAs =
V AT V (AΘ = V A∗V ), where “V” is the fixed disjoint permutation matrix with units in its secondary

diagonal.

Definition 1.3. [4] Let A ∈Mn(F ).

i. The matrix A is calleds-symmetricif As = A.

ii. The matrix A is calleds-skew symmetricif As = −A.

iii. The matrix A is calleds-normalif AAΘ = AΘA

iv. The matrix A is calleds-orthogonalif AAs = AsA = I.

v. The matrix A is calleds-unitaryif AAΘ = AΘA = I.

Definition 1.4. [4] Let A ∈Mn(F ) andB ∈Mn(F ). A is said to bes-orthogonally similar(respectively

s-unitarily) to B if there exists a s-orthogonal matrixQ ∈Mn(F ) such thatA = QsBQ(A = QΘBQ).

Theorem 1.5.[1] Every square complex matrix is similar to a s-symmetric matrix.
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Theorem 1.6.[6] Let A ∈Mn(F ). Then

i. there exists an X ∈ GLn(F ) such that XAX−1 = As.

ii. there exists a s-symmetric X ∈ GLn(F ) such that XAX−1 = As.

iii. every X ∈ GLn(F ) with XAX−1 = As is s-symmetric if and only if the minimal polynomial of

A is equal to its characteristic polynomial.

2 Secondary Orthogonal similarity

Lemma 2.1 ([5]).A s-unitary matrix U is a product of a s-symmetric s-unitary matrix and s-orthogonal

matrix O. That is, U = eiSO. It is also true that U = O′eiS′
, where O′ is s-orthogonal and S′ is real

s-symmetric.

Theorem 2.2.A ∈Mn(C). The following assertions are equivalent.

i. A is s-unitarily similar to a complex s-symmetric matrix.

ii. There exists a s-symmetric s-unitary matrix U such that UAUΘ is s-symmetric.

iii. There exists a s-symmetric s-unitary matrix U and a s-symmetric matrix S such that A = SU.

iv. There exists a s-symmetric s-unitary matrix V such that V AV Θ = As.

Proof. (i) ⇒ (ii) : Suppose thatV ΘAV = S, whereV ∈ Us
n(F ) and S is s-symmetric. By Lemma

2.1, V = UO with U is s-symmetric s-unitary matrix andO ∈ Os
n(F ) We haveA = V SV Θ =

U(OSOs)UΘ and henceUΘAU = OSOs is s-symmetric.

(ii) ⇒ (iii) : Suppose thatUΘAU = S with U is s-symmetric s-unitary and S is s-symmetric. Then

A = USUΘ = (USU s)(UU s)Θ with USUΘ s-symmetric and(UU s)Θ s-symmetric s-unitary.

(iii)⇒ (iv) : Suppose thatA = SU with S s-symmetric and U s-symmetric s-unitary. ThenUAUΘ =
US = U sSs = As.

(iv) ⇒ (i) : SupposeV AV Θ = As for some V s-symmetric s-unitary, then there existsU ∈ Us
n(F )

such thatV = U sU. Now (U sU)A(U sU)Θ = As and henceUAUΘ = (U s)ΘAsU s = (UAUΘ)s,

which is s-symmetric.

Theorem 2.3.Let A ∈Mn(C) be non-singular. Then there are matrices R and E such that

i. If A is s-unitary then R is s-orthogonal.

ii. If A is s-unitary and s-symmetric then R is s-orthogonal and s-symmetric.
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Proof. (i) If A is s-unitary thenA
−1

A = AsA is s-symmetric and hence E is also s-symmetric. The

propertyEE = In and the s-symmetry implies that E is s-unitary. Finally,R = AE−1 is s-unitary and

real, so it is s-orthogonal.

(ii) If A is s-unitary and s-symmetric thenAA = I = AA and soA = ER = RE. It follows that

R = EA = AE and since E (and A) are s-symmetric we see thatRs = (EA)s = AsE
s = AE = R,

That is, R is s-symmetric.

Corollary 2.4. Let A,B ∈Mn(R) be given.

i. A,B are real s-orthogonally similar if and only if A,B are s-unitarily similar.

ii. A,B are similar via a real s-symmetric s-orthogonal matrix if and only if A, B are similar via a

s-symmetric s-unitary matrix.

We assume that all matrices are real for the rest of the paper. We use the notation Q,Ψ for arbitrary

matrices inOs
n(R), Ω for s-symmetric s-orthogonal matrices, S for a s-symmetric matrix, T for a s-skew

symmetric matrix, D for diagonal matrices andΣ for a real diagonal matrix withΣ2 = In.

We say that A has typeT + D if it is the sum of a s-skew symmetric and a diagonal matrix; and A is

of type QD if A is the product of an s-orthogonal and a diagonal matrix.

We write A ' B(respectivelyA 'S B)if there exists an s-orthogonal (respectively s-symmetric

and s-orthogonal) matrix Q withQAQs = B. The notation [A] denotes the equivalence class of A with

respect to'. The relation'S is not an equivalence relation.

Lemma 2.5.Let A,B ∈Mn(R).

i. If A ' As and A ' B, then B ' Bs

ii. If A 'S As and A ' B, then B 'S Bs

iii. If Q ∈ On(R) and A = QAsQs, then A = QsAsQ.

iv. If A ' B, then A + As ' B + Bs and AAs ' BBs

Proof. (i) and (ii). If A = Q1BQs
1 andA = Q2A

sQ2(Q1, Q2 are s-orthogonal matrices) then

As = Q1B
sQs

1 and soB = Qs
1AQ1 = Qs

1Q2A
sQ2Q1 = Qs

1Q2Q1B
sQs

1Q2Q1, and we conclude

B ' Bs. If Q2 is s-symmetric thenQs
1Q2Q1 and soB 'S Bs.

(iii). A = QAsQs = QAsQ−1 ⇒ QsAQ = As, soA = (As)s = (QsAQ)s = QsAsQ.

(iv). Obvious.

Theorem 2.6.Let A ∈Mn(R). The following assertions are equivalent.

i. A is s-unitarily similar to a complex s-symmetric matrix.
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ii. A 'S As.

iii. A = ΩS, where Ω ∈ Os
n(R) is s-symmetric and S is real s-symmetric.

iv. A ' Ω′D, where Ω′ ∈ Os
n(R) is s-symmetric and D is real diagonal.

Proof. (i)⇒ (ii) : According to Theorem 2.1 there exists a s-unitary secondary symmetric matrix V

with V AV Θ = As. Corollary 2.4 now ensures thatA 'S As.

The equivalence of (i), (ii) and (iii) can be proved as in Theorem 2.2.

(iii) ⇒ (iv) : If A = ΩS, then writeS = QDQs and we obtainA = ΩQDQs ' QsΩQD = Ω′D.

(iv) ⇒ (i) If A ' Ω′D = B thenB 'S Bs and so by Lemma 2.5 we haveA 'S As.

Lemma 2.7.Let A ∈Mn(R). Then

i. A ' B, where B has type T + D.

ii. A ' B, where B has type QD.

Proof. (i). Consider the Toeplitz decompositionA = 1/2(A + As) + 1/2(A − As) and suppose

Q(A + As)Q−1 = 2D. ThenQsAQ = D + 1/2Qs(A − As)Q is the sum of a diagonal matrix and a

secondary skew-symmetric matrix.

(ii). Consider the singular value decompositionA = Q1DQs
2.

ThenA ' B = Qs
2AQ2 = (Qs

2Q1)D.

Lemma 2.8.Let A ∈ Mn(R) be a matrix of type T + D, where D =
⊕r

i=1 diIi with di 6= dj for

i 6= j and Ii the ki × ki identity matrix. If Q ∈ Os
n(R) and QAQs = As then Q =

⊕r
i=1 Qi, with

Qi ∈ Os
n(R).

Proof. By Lemma 3.1(3),QAQs = As impliesQAsQs = A and soQ(A + As)Qs = A + As, That is,

Q(2D)Qs = 2D. Hence Q commutes with the diagonal matrix 2D and this implies the result.

Theorem 2.9.Assume that A ∈Mn(R) satisfies one of the following properties

i. A has n different real eigenvalues

ii. A + As has n different eigenvalues

iii. A has n different singular values.

If there exists Q ∈ Os
n(R) with A = QAsQs, then Q is s-symmetric and there exist at most 2n such

matrices.

Proof. (i). The s-symmetry of Q is a direct corollary of Theorem 1.5. We have to check that there exist

at most2n such matrices Q. LetD ∈Mn(R) be a diagonal matrix whose diagonal entries are the eigen

values of A. SupposeP,R ∈ Mn(R) are nonsingular and diagonalize A. That is,A = PDP−1 =
RDR−1.
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Corresponding columns of P and R are non-zero vectors in the same one-dimensional eigen space of A

so there is a diagonal matrixC ∈ Mn(R) such thatR = PC. We fix one special matrixP ∈ Mn(R)
with A = PDP−1.

Now supposeQ,Ψ ∈ Os
n(R) are such thatA = QAsQs = ΨAsΨ, so

A = Q(PDP−1)sQs = (Q(P s)−1)D(Q(P s)−1)−1 and

A = Ψ(PDP−1)sΨs = (Ψ(P s)−1)D(Ψ(P s)−1)−1.

Note thatQ(P s)−1 = PC1 for some diagonal matrixC1 ∈ Mn(R), soQ = PC1P
s is s-symmetric.

Note thatQ(P s)−1 = Ψ(P s)−1C2 for some diagonal matrixC2 ∈ Mn(R), soP s(Ψ−1Q)(P s)−1 =
C2 and we have obtained a real diagonalization of the real s-orthogonal matrixΨ−1Q whose only

possible real eigen values are±1. ThusC2 = diag(±1, ...,±1) which shows that there are at most2n

choices forΨ, sinceΨ = Q(P s)−1C−1
2 P s.

(ii). If Q ∈ Os
n(R) andA = QsAsQ then by Lemma 2.5(iii),As = QAQs and soQ(A + As)Qs =

A + As = (A + As)s, the conclusion follows from part(i).

(iii). Fix Q ∈ Os
n(R) with the propertyA = QAsQs and consider a singular value decomposition

A = UDV s of A. ThenA = QAsQs = (QV )D(QU)s, so we have two singular value decomposition

of A. Distinct singular values and the uniqueness theorem for the singular value decomposition([3],

Theorem 3.1.1) ensure thatQV = UP andQU = V P for some diagonal real s-orthogonal matrix P.

ThenQ = UPV s = V PU s = Qs is s-symmetric and there are only2n choices for P.
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