International Journal of Mathematics and Soft Computing Vol.2, No.1 (2012), 51 - 55.

Secondary orthogonal similarity of a real matrix and its secondary transpose

S.Krishnamoorthy

Government Arts College(Autonomous) Kumbakonam-612 001, Tamil Nadu, INDIA. E-mail: profkrishnamoorthy@gmail.com

K.Jaikumar

Dharmapuram Adhinam Arts College, Mayiladuthurai-609 001, Tamil Nadu, INDIA. E-mail: kjkdaac@gmail.com

Abstract

In this paper we present some extended results of Vermeer in the context of secondary orthogonal (respectively complex secondary unitary) Matrices.

Keywords: s-Orthogonal, s-Unitary Matrices, Similarity of Matrices, s-Orthogonal Similarity of Matrices.

AMS Subject Classification(2010): 15B99, 15A24, 15A54.

1 Introduction

Throughout this paper we use the following notation:

Notation 1.1. Let F be a field and $\mathcal{M}_n(F)$ be the algebra of $n \times n$ matrices. Let $\mathcal{GL}_n(F)$ denote the set of invertible $n \times n$ matrices. Let $\mathcal{O}_n^s(F)$ and $\mathcal{U}_n^s(F)$ denote the set of s-orthogonal and s-unitary matrices respectively.

Notation 1.2. The secondary transpose (conjugate secondary transpose) of A is defined by $A^s = VA^T V$ ($A^{\Theta} = VA^*V$), where "V" is the fixed disjoint permutation matrix with units in its secondary diagonal.

Definition 1.3. [4] Let $A \in \mathcal{M}_n(F)$.

- i. The matrix A is called *s*-symmetric if $A^s = A$.
- ii. The matrix A is called *s-skew symmetric* if $A^s = -A$.
- iii. The matrix A is called *s*-normal if $AA^{\Theta} = A^{\Theta}A$
- iv. The matrix A is called *s*-orthogonal if $AA^s = A^sA = I$.
- v. The matrix A is called *s*-unitary if $AA^{\Theta} = A^{\Theta}A = I$.

Definition 1.4. [4] Let $A \in \mathcal{M}_n(F)$ and $B \in \mathcal{M}_n(F)$. A is said to be *s*-orthogonally similar (respectively *s*-unitarily) to B if there exists a s-orthogonal matrix $Q \in \mathcal{M}_n(F)$ such that $A = Q^s BQ(A = Q^{\Theta} BQ)$.

Theorem 1.5. [1] Every square complex matrix is similar to a s-symmetric matrix.

Theorem 1.6. [6] Let $A \in \mathcal{M}_n(F)$. Then

- *i.* there exists an $X \in \mathcal{GL}_n(F)$ such that $XAX^{-1} = A^s$.
- ii. there exists a s-symmetric $X \in \mathcal{GL}_n(F)$ such that $XAX^{-1} = A^s$.
- iii. every $X \in \mathcal{GL}_n(F)$ with $XAX^{-1} = A^s$ is s-symmetric if and only if the minimal polynomial of A is equal to its characteristic polynomial.

2 Secondary Orthogonal similarity

Lemma 2.1 ([5]). A s-unitary matrix U is a product of a s-symmetric s-unitary matrix and s-orthogonal matrix O. That is, $U = e^{iS}O$. It is also true that $U = O'e^{iS'}$, where O' is s-orthogonal and S' is real s-symmetric.

Theorem 2.2. $A \in \mathcal{M}_n(\mathbb{C})$. The following assertions are equivalent.

- i. A is s-unitarily similar to a complex s-symmetric matrix.
- ii. There exists a s-symmetric s-unitary matrix U such that UAU^{Θ} is s-symmetric.
- iii. There exists a s-symmetric s-unitary matrix U and a s-symmetric matrix S such that A = SU.
- iv. There exists a s-symmetric s-unitary matrix V such that $VAV^{\Theta} = A^s$.

Proof. $(i) \Rightarrow (ii)$: Suppose that $V^{\Theta}AV = S$, where $V \in \mathcal{U}_n^s(F)$ and S is s-symmetric. By Lemma 2.1, V = UO with U is s-symmetric s-unitary matrix and $O \in \mathcal{O}_n^s(F)$ We have $A = VSV^{\Theta} = U(OSO^s)U^{\Theta}$ and hence $U^{\Theta}AU = OSO^s$ is s-symmetric.

 $(ii) \Rightarrow (iii)$: Suppose that $U^{\Theta}AU = S$ with U is s-symmetric s-unitary and S is s-symmetric. Then $A = USU^{\Theta} = (USU^s)(UU^s)^{\Theta}$ with USU^{Θ} s-symmetric and $(UU^s)^{\Theta}$ s-symmetric s-unitary.

 $(iii) \Rightarrow (iv)$: Suppose that A = SU with S s-symmetric and U s-symmetric s-unitary. Then $UAU^{\Theta} = US = U^s S^s = A^s$.

 $(iv) \Rightarrow (i)$: Suppose $VAV^{\Theta} = A^s$ for some V s-symmetric s-unitary, then there exists $U \in \mathcal{U}_n^s(F)$ such that $V = U^s U$. Now $(U^s U)A(U^s U)^{\Theta} = A^s$ and hence $UAU^{\Theta} = (U^s)^{\Theta}A^sU^s = (UAU^{\Theta})^s$, which is s-symmetric.

Theorem 2.3. Let $A \in \mathcal{M}_n(\mathbb{C})$ be non-singular. Then there are matrices R and E such that

- i. If A is s-unitary then R is s-orthogonal.
- ii. If A is s-unitary and s-symmetric then R is s-orthogonal and s-symmetric.

Proof. (i) If A is s-unitary then $\overline{A}^{-1}A = A^sA$ is s-symmetric and hence E is also s-symmetric. The property $E\overline{E} = I_n$ and the s-symmetry implies that E is s-unitary. Finally, $R = AE^{-1}$ is s-unitary and real, so it is s-orthogonal.

(ii) If A is s-unitary and s-symmetric then $\overline{A}A = I = A\overline{A}$ and so A = ER = RE. It follows that $R = \overline{E}A = A\overline{E}$ and since E (and A) are s-symmetric we see that $R^s = (\overline{E}A)^s = A^s\overline{E}^s = A\overline{E} = R$, That is, R is s-symmetric.

Corollary 2.4. Let $A, B \in \mathcal{M}_n(\mathbb{R})$ be given.

- i. A,B are real s-orthogonally similar if and only if A,B are s-unitarily similar.
- *ii.* A,B are similar via a real s-symmetric s-orthogonal matrix if and only if A, B are similar via a s-symmetric s-unitary matrix.

We assume that all matrices are real for the rest of the paper. We use the notation Q, Ψ for arbitrary matrices in $\mathcal{O}_n^s(\mathbb{R})$, Ω for s-symmetric s-orthogonal matrices, S for a s-symmetric matrix, T for a s-skew symmetric matrix, D for diagonal matrices and Σ for a real diagonal matrix with $\Sigma^2 = I_n$.

We say that A has type T + D if it is the sum of a s-skew symmetric and a diagonal matrix; and A is of type QD if A is the product of an s-orthogonal and a diagonal matrix.

We write $A \simeq B$ (respectively $A \simeq_S B$) if there exists an s-orthogonal (respectively s-symmetric and s-orthogonal) matrix Q with $QAQ^s = B$. The notation [A] denotes the equivalence class of A with respect to \simeq . The relation \simeq_S is not an equivalence relation.

Lemma 2.5. Let $A, B \in \mathcal{M}_n(\mathbb{R})$.

i. If $A \simeq A^s$ and $A \simeq B$, then $B \simeq B^s$

- ii. If $A \simeq_S A^s$ and $A \simeq B$, then $B \simeq_S B^s$
- iii. If $Q \in \mathcal{O}_n(\mathbb{R})$ and $A = QA^sQ^s$, then $A = Q^sA^sQ$.
- iv. If $A \simeq B$, then $A + A^s \simeq B + B^s$ and $AA^s \simeq BB^s$

Proof. (i) and (ii). If $A = Q_1 B Q_1^s$ and $A = Q_2 A^s Q_2(Q_1, Q_2 \text{ are s-orthogonal matrices) then <math>A^s = Q_1 B^s Q_1^s$ and so $B = Q_1^s A Q_1 = Q_1^s Q_2 A^s Q_2 Q_1 = Q_1^s Q_2 Q_1 B^s Q_1^s Q_2 Q_1$, and we conclude $B \simeq B^s$. If Q_2 is s-symmetric then $Q_1^s Q_2 Q_1$ and so $B \simeq_S B^s$. (iii). $A = Q A^s Q^s = Q A^s Q^{-1} \Rightarrow Q^s A Q = A^s$, so $A = (A^s)^s = (Q^s A Q)^s = Q^s A^s Q$. (iv). Obvious.

Theorem 2.6. Let $A \in \mathcal{M}_n(\mathbb{R})$. The following assertions are equivalent.

i. A is s-unitarily similar to a complex s-symmetric matrix.

- ii. $A \simeq_S A^s$.
- iii. $A = \Omega S$, where $\Omega \in \mathcal{O}_n^s(\mathbb{R})$ is s-symmetric and S is real s-symmetric.
- iv. $A \simeq \Omega' D$, where $\Omega' \in \mathcal{O}_n^s(\mathbb{R})$ is s-symmetric and D is real diagonal.

Proof. (i) \Rightarrow (ii) : According to Theorem 2.1 there exists a s-unitary secondary symmetric matrix V with $VAV^{\Theta} = A^s$. Corollary 2.4 now ensures that $A \simeq_S A^s$.

The equivalence of (i), (ii) and (iii) can be proved as in Theorem 2.2.

(iii) \Rightarrow (iv): If $A = \Omega S$, then write $S = QDQ^s$ and we obtain $A = \Omega QDQ^s \simeq Q^s \Omega QD = \Omega'D$. (iv) \Rightarrow (i) If $A \simeq \Omega'D = B$ then $B \simeq_S B^s$ and so by Lemma 2.5 we have $A \simeq_S A^s$.

Lemma 2.7. Let $A \in \mathcal{M}_n(\mathbb{R})$. Then

- i. $A \simeq B$, where B has type T + D.
- ii. $A \simeq B$, where B has type QD.

Proof. (i). Consider the Toeplitz decomposition $A = 1/2(A + A^s) + 1/2(A - A^s)$ and suppose $Q(A + A^s)Q^{-1} = 2D$. Then $Q^sAQ = D + 1/2Q^s(A - A^s)Q$ is the sum of a diagonal matrix and a secondary skew-symmetric matrix.

(ii). Consider the singular value decomposition $A = Q_1 D Q_2^s$. Then $A \simeq B = Q_2^s A Q_2 = (Q_2^s Q_1) D$.

Lemma 2.8. Let $A \in \mathcal{M}_n(\mathbb{R})$ be a matrix of type T + D, where $D = \bigoplus_{i=1}^r d_i I_i$ with $d_i \neq d_j$ for $i \neq j$ and I_i the $k_i \times k_i$ identity matrix. If $Q \in \mathcal{O}_n^s(\mathbb{R})$ and $QAQ^s = A^s$ then $Q = \bigoplus_{i=1}^r Q_i$, with $Q_i \in \mathcal{O}_n^s(\mathbb{R})$.

Proof. By Lemma 3.1(3), $QAQ^s = A^s$ implies $QA^sQ^s = A$ and so $Q(A + A^s)Q^s = A + A^s$, That is, $Q(2D)Q^s = 2D$. Hence Q commutes with the diagonal matrix 2D and this implies the result.

Theorem 2.9. Assume that $A \in \mathcal{M}_n(\mathbb{R})$ satisfies one of the following properties

- i. A has n different real eigenvalues
- ii. $A + A^s$ has n different eigenvalues
- iii. A has n different singular values.

If there exists $Q \in \mathcal{O}_n^s(\mathbb{R})$ with $A = QA^sQ^s$, then Q is s-symmetric and there exist at most 2^n such matrices.

Proof. (i). The s-symmetry of Q is a direct corollary of Theorem 1.5. We have to check that there exist at most 2^n such matrices Q. Let $D \in \mathcal{M}_n(\mathbb{R})$ be a diagonal matrix whose diagonal entries are the eigen values of A. Suppose $P, R \in \mathcal{M}_n(\mathbb{R})$ are nonsingular and diagonalize A. That is, $A = PDP^{-1} = RDR^{-1}$.

Corresponding columns of P and R are non-zero vectors in the same one-dimensional eigen space of A so there is a diagonal matrix $C \in \mathcal{M}_n(\mathbb{R})$ such that R = PC. We fix one special matrix $P \in \mathcal{M}_n(\mathbb{R})$ with $A = PDP^{-1}$.

Now suppose $Q, \Psi \in \mathcal{O}_n^s(\mathbb{R})$ are such that $A = QA^sQ^s = \Psi A^s\Psi$, so

$$A = Q(PDP^{-1})^{s}Q^{s} = (Q(P^{s})^{-1})D(Q(P^{s})^{-1})^{-1}$$
 and

$$A = \Psi(PDP^{-1})^{s}\Psi^{s} = (\Psi(P^{s})^{-1})D(\Psi(P^{s})^{-1})^{-1}$$

Note that $Q(P^s)^{-1} = PC_1$ for some diagonal matrix $C_1 \in \mathcal{M}_n(\mathbb{R})$, so $Q = PC_1P^s$ is s-symmetric. Note that $Q(P^s)^{-1} = \Psi(P^s)^{-1}C_2$ for some diagonal matrix $C_2 \in \mathcal{M}_n(\mathbb{R})$, so $P^s(\Psi^{-1}Q)(P^s)^{-1} = C_2$ and we have obtained a real diagonalization of the real s-orthogonal matrix $\Psi^{-1}Q$ whose only possible real eigen values are ± 1 . Thus $C_2 = diag(\pm 1, ..., \pm 1)$ which shows that there are at most 2^n choices for Ψ , since $\Psi = Q(P^s)^{-1}C_2^{-1}P^s$.

(ii). If $Q \in \mathcal{O}_n^s(\mathbb{R})$ and $A = Q^s A^s Q$ then by Lemma 2.5(iii), $A^s = QAQ^s$ and so $Q(A + A^s)Q^s = A + A^s = (A + A^s)^s$, the conclusion follows from part(i).

(iii). Fix $Q \in \mathcal{O}_n^s(\mathbb{R})$ with the property $A = QA^sQ^s$ and consider a singular value decomposition $A = UDV^s$ of A. Then $A = QA^sQ^s = (QV)D(QU)^s$, so we have two singular value decomposition of A. Distinct singular values and the uniqueness theorem for the singular value decomposition([3], Theorem 3.1.1) ensure that QV = UP and QU = VP for some diagonal real s-orthogonal matrix P. Then $Q = UPV^s = VPU^s = Q^s$ is s-symmetric and there are only 2^n choices for P.

References

- [1] Anna Lee, *On s-Symmetric, s-Skewsymmetric and s-Orthogonal Matrices*, Periodica Mathematica Hungarica, Vol.7, No.1(1976), 71-76.
- [2] R. A. Horn, C. R. Johnson; Matrix Analysis, Cambridge University Press, (1985).
- [3] R. A. Horn, C. R. Johnson, Topics in Matrix Analysis, Cambridge University Press,(1991).
- [4] S. Krishnamoorthy, K. Jaikumar, On s-orthogonal Matrices, Global Journal of Computational Science & Mathematics, Vol.1, No.1(2011), 1-8.
- [5] S. Krishnamoorthy, K. Jaikumar, *Exponential Representation of s-Orthogonal Matrices*, International Journal of Mathematics Research, Vol.3, No.4(2011), 355-360.
- [6] O. Taussky, H. Zassenhaus, On The Similarity Transformation Between a Matrix and its Transpose, Pacific J.Math.9(1959), 893-896.
- [7] J. Vermeer, *Orthogonal similarity of a real matrix and its transpose*, Linear Algebra and its Applications, 428(2008), 382-392.