Secondary orthogonal similarity of a real matrix and its secondary transpose

S.Krishnamoorthy
Government Arts College(Autonomous)
Kumbakonam-612 001, Tamil Nadu, INDIA.
E-mail: profkrishnamoorthy@gmail.com
K.Jaikumar
Dharmapuram Adhinam Arts College, Mayiladuthurai-609 001, Tamil Nadu, INDIA. E-mail: kjkdaac@gmail.com

Abstract

In this paper we present some extended results of Vermeer in the context of secondary orthogonal (respectively complex secondary unitary) Matrices.

Keywords: s-Orthogonal, s-Unitary Matrices, Similarity of Matrices, s-Orthogonal Similarity of Matrices.
AMS Subject Classification(2010): 15B99, 15A24, 15A54.

1 Introduction

Throughout this paper we use the following notation:
Notation 1.1. Let F be a field and $\mathcal{M}_{n}(F)$ be the algebra of $n \times n$ matrices. Let $\mathcal{G} \mathcal{L}_{n}(F)$ denote the set of invertible $n \times n$ matrices. Let $\mathcal{O}_{n}^{s}(F)$ and $\mathcal{U}_{n}^{s}(F)$ denote the set of s-orthogonal and s-unitary matrices respectively.

Notation 1.2. The secondary transpose (conjugate secondary transpose) of A is defined by $A^{s}=$ $V A^{T} V\left(A^{\Theta}=V A^{*} V\right)$, where " V " is the fixed disjoint permutation matrix with units in its secondary diagonal.

Definition 1.3. [4] Let $A \in \mathcal{M}_{n}(F)$.
i. The matrix A is called s-symmetric if $A^{s}=A$.
ii. The matrix A is called s-skew symmetric if $A^{s}=-A$.
iii. The matrix A is called s-normal if $A A^{\Theta}=A^{\Theta} A$
iv. The matrix A is called s-orthogonal if $A A^{s}=A^{s} A=I$.
v. The matrix A is called s-unitary if $A A^{\Theta}=A^{\Theta} A=I$.

Definition 1.4. [4] Let $A \in \mathcal{M}_{n}(F)$ and $B \in \mathcal{M}_{n}(F)$. A is said to be s-orthogonally similar (respectively s-unitarily) to B if there exists a s-orthogonal matrix $Q \in \mathcal{M}_{n}(F)$ such that $A=Q^{s} B Q\left(A=Q^{\Theta} B Q\right)$.

Theorem 1.5. [1] Every square complex matrix is similar to a s-symmetric matrix.

Theorem 1.6. [6] Let $A \in \mathcal{M}_{n}(F)$. Then
i. there exists an $X \in \mathcal{G} \mathcal{L}_{n}(F)$ such that $X A X^{-1}=A^{s}$.
ii. there exists a s-symmetric $X \in \mathcal{G} \mathcal{L}_{n}(F)$ such that $X A X^{-1}=A^{s}$.
iii. every $X \in \mathcal{G} \mathcal{L}_{n}(F)$ with $X A X^{-1}=A^{s}$ is s-symmetric if and only if the minimal polynomial of A is equal to its characteristic polynomial.

2 Secondary Orthogonal similarity

Lemma 2.1 ([5]). A s-unitary matrix U is a product of a s-symmetric s-unitary matrix and s-orthogonal matrix O. That is, $U=e^{i S} O$. It is also true that $U=O^{\prime} e^{i S^{\prime}}$, where O^{\prime} is s-orthogonal and S^{\prime} is real s-symmetric.

Theorem 2.2. $A \in \mathcal{M}_{n}(\mathbb{C})$. The following assertions are equivalent.
i. A is s-unitarily similar to a complex s-symmetric matrix.
ii. There exists a s-symmetric s-unitary matrix U such that $U A U^{\Theta}$ is s-symmetric.
iii. There exists a s-symmetric s-unitary matrix U and a s-symmetric matrix S such that $A=S U$.
iv. There exists a s-symmetric s-unitary matrix V such that $V A V^{\Theta}=A^{s}$.

Proof. $(i) \Rightarrow(i i)$: Suppose that $V^{\Theta} A V=S$, where $V \in \mathcal{U}_{n}^{s}(F)$ and S is s-symmetric. By Lemma 2.1, $V=U O$ with U is s-symmetric s-unitary matrix and $O \in \mathcal{O}_{n}^{s}(F)$ We have $A=V S V^{\Theta}=$ $U\left(O S O^{s}\right) U^{\Theta}$ and hence $U^{\Theta} A U=O S O^{s}$ is s-symmetric.
(ii) $\Rightarrow(i i i)$: Suppose that $U^{\Theta} A U=S$ with U is s-symmetric s-unitary and S is s-symmetric. Then $A=U S U^{\Theta}=\left(U S U^{s}\right)\left(U U^{s}\right)^{\Theta}$ with $U S U^{\Theta}$ s-symmetric and $\left(U U^{s}\right)^{\Theta}$ s-symmetric s-unitary.
$(i i i) \Rightarrow(i v)$: Suppose that $A=S U$ with S s-symmetric and U s-symmetric s-unitary. Then $U A U^{\Theta}=$ $U S=U^{s} S^{s}=A^{s}$.
(iv) $\Rightarrow(i)$: Suppose $V A V^{\Theta}=A^{s}$ for some V s-symmetric s-unitary, then there exists $U \in \mathcal{U}_{n}^{s}(F)$ such that $V=U^{s} U$. Now $\left(U^{s} U\right) A\left(U^{s} U\right)^{\Theta}=A^{s}$ and hence $U A U^{\Theta}=\left(U^{s}\right)^{\Theta} A^{s} U^{s}=\left(U A U^{\Theta}\right)^{s}$, which is s -symmetric.

Theorem 2.3. Let $A \in \mathcal{M}_{n}(\mathbb{C})$ be non-singular. Then there are matrices R and E such that
i. If A is s-unitary then R is s-orthogonal.
ii. If A is s-unitary and s-symmetric then R is s-orthogonal and s-symmetric.

Proof. (i) If A is s-unitary then $\bar{A}^{-1} A=A^{s} A$ is s-symmetric and hence E is also s-symmetric. The property $E \bar{E}=I_{n}$ and the s-symmetry implies that E is s-unitary. Finally, $R=A E^{-1}$ is s-unitary and real, so it is s-orthogonal.
(ii) If A is s-unitary and s-symmetric then $\bar{A} A=I=A \bar{A}$ and so $A=E R=R E$. It follows that $R=\bar{E} A=A \bar{E}$ and since $\mathrm{E}($ and A$)$ are s-symmetric we see that $R^{s}=(\bar{E} A)^{s}=A^{s} \bar{E}^{s}=A \bar{E}=R$, That is, R is s-symmetric.

Corollary 2.4. Let $A, B \in \mathcal{M}_{n}(\mathbb{R})$ be given.
i. A, B are real s-orthogonally similar if and only if A, B are s-unitarily similar.
ii. A, B are similar via a real s-symmetric s-orthogonal matrix if and only if A, B are similar via a s-symmetric s-unitary matrix.

We assume that all matrices are real for the rest of the paper. We use the notation Q, Ψ for arbitrary matrices in $\mathcal{O}_{n}^{s}(\mathbb{R}), \Omega$ for s-symmetric s-orthogonal matrices, S for a s-symmetric matrix, T for a s-skew symmetric matrix, D for diagonal matrices and Σ for a real diagonal matrix with $\Sigma^{2}=I_{n}$.

We say that A has type $T+D$ if it is the sum of a s-skew symmetric and a diagonal matrix; and A is of type QD if A is the product of an s-orthogonal and a diagonal matrix.

We write $A \simeq B$ (respectively $A \simeq_{S} B$)if there exists an s-orthogonal (respectively s-symmetric and s-orthogonal) matrix Q with $Q A Q^{s}=B$. The notation [A] denotes the equivalence class of A with respect to \simeq. The relation \simeq_{S} is not an equivalence relation.

Lemma 2.5. Let $A, B \in \mathcal{M}_{n}(\mathbb{R})$.
i. If $A \simeq A^{s}$ and $A \simeq B$, then $B \simeq B^{s}$
ii. If $A \simeq_{S} A^{s}$ and $A \simeq B$, then $B \simeq_{S} B^{s}$
iii. If $Q \in \mathcal{O}_{n}(\mathbb{R})$ and $A=Q A^{s} Q^{s}$, then $A=Q^{s} A^{s} Q$.
iv. If $A \simeq B$, then $A+A^{s} \simeq B+B^{s}$ and $A A^{s} \simeq B B^{s}$

Proof. (i) and (ii). If $A=Q_{1} B Q_{1}^{s}$ and $A=Q_{2} A^{s} Q_{2}\left(Q_{1}, Q_{2}\right.$ are s-orthogonal matrices) then $A^{s}=Q_{1} B^{s} Q_{1}^{s}$ and so $B=Q_{1}^{s} A Q_{1}=Q_{1}^{s} Q_{2} A^{s} Q_{2} Q_{1}=Q_{1}^{s} Q_{2} Q_{1} B^{s} Q_{1}^{s} Q_{2} Q_{1}$, and we conclude $B \simeq B^{s}$. If Q_{2} is s-symmetric then $Q_{1}^{s} Q_{2} Q_{1}$ and so $B \simeq_{S} B^{s}$.
(iii). $A=Q A^{s} Q^{s}=Q A^{s} Q^{-1} \Rightarrow Q^{s} A Q=A^{s}$, so $A=\left(A^{s}\right)^{s}=\left(Q^{s} A Q\right)^{s}=Q^{s} A^{s} Q$.
(iv). Obvious.

Theorem 2.6. Let $A \in \mathcal{M}_{n}(\mathbb{R})$. The following assertions are equivalent.
i. A is s-unitarily similar to a complex s-symmetric matrix.
ii. $A \simeq_{S} A^{s}$.
iii. $A=\Omega S$, where $\Omega \in \mathcal{O}_{n}^{s}(\mathbb{R})$ is s-symmetric and S is real s-symmetric.
iv. $A \simeq \Omega^{\prime} D$, where $\Omega^{\prime} \in \mathcal{O}_{n}^{s}(\mathbb{R})$ is s-symmetric and D is real diagonal.

Proof. (i) $\Rightarrow(i i)$: According to Theorem 2.1 there exists a s-unitary secondary symmetric matrix V with $V A V^{\Theta}=A^{s}$. Corollary 2.4 now ensures that $A \simeq_{S} A^{s}$.
The equivalence of (i), (ii) and (iii) can be proved as in Theorem 2.2.
(iii) $\Rightarrow(i v):$ If $A=\Omega S$, then write $S=Q D Q^{s}$ and we obtain $A=\Omega Q D Q^{s} \simeq Q^{s} \Omega Q D=\Omega^{\prime} D$.
(iv) \Rightarrow (i) If $A \simeq \Omega^{\prime} D=B$ then $B \simeq_{S} B^{s}$ and so by Lemma 2.5 we have $A \simeq_{S} A^{s}$.

Lemma 2.7. Let $A \in \mathcal{M}_{n}(\mathbb{R})$. Then
i. $A \simeq B$, where B has type $T+D$.
ii. $A \simeq B$, where B has type $Q D$.

Proof. (i). Consider the Toeplitz decomposition $A=1 / 2\left(A+A^{s}\right)+1 / 2\left(A-A^{s}\right)$ and suppose $Q\left(A+A^{s}\right) Q^{-1}=2 D$. Then $Q^{s} A Q=D+1 / 2 Q^{s}\left(A-A^{s}\right) Q$ is the sum of a diagonal matrix and a secondary skew-symmetric matrix.
(ii). Consider the singular value decomposition $A=Q_{1} D Q_{2}^{s}$.

Then $A \simeq B=Q_{2}^{s} A Q_{2}=\left(Q_{2}^{s} Q_{1}\right) D$.
Lemma 2.8. Let $A \in \mathcal{M}_{n}(\mathbb{R})$ be a matrix of type $T+D$, where $D=\bigoplus_{i=1}^{r} d_{i} I_{i}$ with $d_{i} \neq d_{j}$ for $i \neq j$ and I_{i} the $k_{i} \times k_{i}$ identity matrix. If $Q \in \mathcal{O}_{n}^{s}(\mathbb{R})$ and $Q A Q^{s}=A^{s}$ then $Q=\bigoplus_{i=1}^{r} Q_{i}$, with $Q_{i} \in \mathcal{O}_{n}^{s}(\mathbb{R})$.

Proof. By Lemma 3.1(3), $Q A Q^{s}=A^{s}$ implies $Q A^{s} Q^{s}=A$ and so $Q\left(A+A^{s}\right) Q^{s}=A+A^{s}$, That is, $Q(2 D) Q^{s}=2 D$. Hence Q commutes with the diagonal matrix 2 D and this implies the result.

Theorem 2.9. Assume that $A \in \mathcal{M}_{n}(\mathbb{R})$ satisfies one of the following properties
i. A has n different real eigenvalues
ii. $A+A^{s}$ has n different eigenvalues
iii. A has n different singular values.

If there exists $Q \in \mathcal{O}_{n}^{s}(\mathbb{R})$ with $A=Q A^{s} Q^{s}$, then Q is s-symmetric and there exist at most 2^{n} such matrices.

Proof. (i). The s-symmetry of Q is a direct corollary of Theorem 1.5. We have to check that there exist at most 2^{n} such matrices Q . Let $D \in \mathcal{M}_{n}(\mathbb{R})$ be a diagonal matrix whose diagonal entries are the eigen values of A. Suppose $P, R \in \mathcal{M}_{n}(\mathbb{R})$ are nonsingular and diagonalize A. That is, $A=P D P^{-1}=$ $R D R^{-1}$.

Corresponding columns of P and R are non-zero vectors in the same one-dimensional eigen space of A so there is a diagonal matrix $C \in \mathcal{M}_{n}(\mathbb{R})$ such that $R=P C$. We fix one special matrix $P \in \mathcal{M}_{n}(\mathbb{R})$ with $A=P D P^{-1}$.
Now suppose $Q, \Psi \in \mathcal{O}_{n}^{s}(\mathbb{R})$ are such that $A=Q A^{s} Q^{s}=\Psi A^{s} \Psi$, so
$A=Q\left(P D P^{-1}\right)^{s} Q^{s}=\left(Q\left(P^{s}\right)^{-1}\right) D\left(Q\left(P^{s}\right)^{-1}\right)^{-1}$ and
$A=\Psi\left(P D P^{-1}\right)^{s} \Psi^{s}=\left(\Psi\left(P^{s}\right)^{-1}\right) D\left(\Psi\left(P^{s}\right)^{-1}\right)^{-1}$.
Note that $Q\left(P^{s}\right)^{-1}=P C_{1}$ for some diagonal matrix $C_{1} \in \mathcal{M}_{n}(\mathbb{R})$, so $Q=P C_{1} P^{s}$ is s-symmetric. Note that $Q\left(P^{s}\right)^{-1}=\Psi\left(P^{s}\right)^{-1} C_{2}$ for some diagonal matrix $C_{2} \in \mathcal{M}_{n}(\mathbb{R})$, so $P^{s}\left(\Psi^{-1} Q\right)\left(P^{s}\right)^{-1}=$ C_{2} and we have obtained a real diagonalization of the real s-orthogonal matrix $\Psi^{-1} Q$ whose only possible real eigen values are ± 1. Thus $C_{2}=\operatorname{diag}(\pm 1, \ldots, \pm 1)$ which shows that there are at most 2^{n} choices for Ψ, since $\Psi=Q\left(P^{s}\right)^{-1} C_{2}^{-1} P^{s}$.
(ii). If $Q \in \mathcal{O}_{n}^{s}(\mathbb{R})$ and $A=Q^{s} A^{s} Q$ then by Lemma $2.5($ iii $), A^{s}=Q A Q^{s}$ and so $Q\left(A+A^{s}\right) Q^{s}=$ $A+A^{s}=\left(A+A^{s}\right)^{s}$, the conclusion follows from part(i).
(iii). Fix $Q \in \mathcal{O}_{n}^{s}(\mathbb{R})$ with the property $A=Q A^{s} Q^{s}$ and consider a singular value decomposition $A=U D V^{s}$ of A. Then $A=Q A^{s} Q^{s}=(Q V) D(Q U)^{s}$, so we have two singular value decomposition of A. Distinct singular values and the uniqueness theorem for the singular value decomposition([3], Theorem 3.1.1) ensure that $Q V=U P$ and $Q U=V P$ for some diagonal real s-orthogonal matrix P. Then $Q=U P V^{s}=V P U^{s}=Q^{s}$ is s-symmetric and there are only 2^{n} choices for P .

References

[1] Anna Lee, On s-Symmetric, s-Skewsymmetric and s-Orthogonal Matrices, Periodica Mathematica Hungarica, Vol.7, No.1(1976), 71-76.
[2] R. A. Horn, C. R. Johnson; Matrix Analysis, Cambridge University Press, (1985).
[3] R. A. Horn, C. R. Johnson, Topics in Matrix Analysis, Cambridge University Press,(1991).
[4] S. Krishnamoorthy, K. Jaikumar, On s-orthogonal Matrices, Global Journal of Computational Science \& Mathematics, Vol.1, No.1(2011), 1-8.
[5] S. Krishnamoorthy, K. Jaikumar, Exponential Representation of s-Orthogonal Matrices, International Journal of Mathematics Research, Vol.3, No.4(2011), 355-360.
[6] O. Taussky, H. Zassenhaus, On The Similarity Transformation Between a Matrix and its Transpose, Pacific J.Math.9(1959), 893-896.
[7] J. Vermeer, Orthogonal similarity of a real matrix and its transpose, Linear Algebra and its Applications, 428(2008), 382-392.

