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Abstract

A convolution is a mappingC of the setZ+ of positive integers into the setP(Z+) of all subsets

of Z+ such that for anyn ∈ Z+, each member ofC(n) is a divisor ofn. If D(n) is the set

of all divisors ofn, for anyn, thenD is called the Dirichlet’s convolution. IfU(n) is the set of

all unitary(square free) divisors ofn, for anyn, thenU is called unitary(square free) convolution.

Corresponding to any general convolutionC, we can define a binary relation≤C onZ+ by ‘ m ≤C n

if and only if m ∈ C(n) ’. In this paper, we characterize convolutionsC for which≤C is a partial

order onZ+ and discuss the various properties of the partial ordered set(Z+,≤C) in terms of the

convolutionC.
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1 Introduction

A convolution is a mappingC of the setZ+of positive integers into the setP(Z+) of subsets ofZ+ such

that for anyn∈ Z+, C(n) is a nonempty set of divisors ofn. If C(n) is the set of all divisors ofn for each

n∈ Z+, thenC is the classical Dirichlet convolution[5]. IfC(n)= {d / d|n and(d, n
d ) = 1}, thenC is

the Unitary convolution[2]. IfC(n)={d / d|n and mk doesnot divided for any m ∈ Z+} thenC
is called thek-free convolution.

Corresponding to any convolutionC we can define a binary relation≤C in a natural way by ’m ≤C n
if and only ifm ∈ C(n).’ ≤C is called the binary relation onZ+ induced by the convolutionC[6].

In this paper we consider convolutionsC for which≤C becomes a partial order onZ+ and prove

some results on the partial orders induced by convolutions. Throughout this paper,Z+ denotes the set

of all positive integers andN denotes the set of all nonnegative integers.

2 Preliminaries

For any nonempty setX, a binary relation≤ onX which is reflexive, transitive and antisymmetric is

called a partial order onX and the pair (X,≤) is called a partially ordered set (poset). IfA is a subset

of X andx ∈ X, x is called a lower bound (upper bound) ofA if x ≤ a (a ≤ x respectively) for all

a ∈ A. A lower bound (upper bound)x of A is called the greatest lower bound (least upper bound) ofA

if y ≤ x (x ≤ y respectively) of all lower bounds (upper bounds)y of A and is denoted by glbA (lubA
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respectively). IfA is a finite set{a1, a2 · · · , an} then the glbA and lubA are denoted respectively by

glbA = a1 ∧ a2 ∧ · · · ∧ an =
n∧

i=1

ai

lubA = a1 ∨ a2 ∨ · · · ∨ an =
n∨

i=1

ai

A partially ordered set (X,≤) is called ameet semi-latticeif any two-element subset and hence any

nonempty finite subset ofX has the greatest lower bound and is called ajoin semi-latticeif any two-

element subset ofX has the least upper bound inX.

If (X,≤) is ameet semi-latticeanda ∧ b is the greatest lower bound of{a,b} for anya,b ∈ X, then

∧ is an idempotent, associative and commutative binary operation onX. Conversely, if∧ is a binary

operation on a setX and if we definea ≤ b ⇔ a = a ∧ b for anya, b ∈ X, then (X,≤) is a meet

semi-latticein whicha ∧ b is the greatest lower bound of{a, b}.
A partially ordered set (X,≤) is called a lattice if any two-element subset ofX has both the greatest

lower bound and least upper bound inX. A nonempty subsetY of X is called a sublattice ofX if a∧ b
anda ∨ b ∈ Y for all a, b ∈ Y .

The binary relation| defined onZ+ by ’a|b if and only if a dividesb’ is a partial order onZ+ called

the division order onZ+ and the binary relation≤ defined onN by ’a ≤ b if and only if b − a ∈ N ’

is a partial order onN called the usual order. Clearly(Z+, |) is a lattice in which the least upper bound

a ∨ b and the greatest lower bounda ∧ b are given by

a ∨ b =The least common multiple ofaand b

anda ∧ b =The greatest common divisor ofaand b

Definition 2.1. Let P be the set of all prime numbers. For any mapping α : P → N , the support of α

is the set defined by |α| = {p ∈ P / α(p) 6= 0}.

The set of all mappings fromP intoN whose supports are finite is denoted by
∑
P

N ; that is ,
∑
P

N

= {α ∈ N P / |α| is finite}.

Theorem 2.2.N P is a lattice under the point-wise ordering with respect to the usual order on N in

which, for any α, β ∈ N P , (α ∨ β)(p) = maximum of {α(p), β(p)} and (α ∧ β)(p) = minimum of

{α(p), β(p)} for any p ∈ P . Also,
∑
P

N is a sublattice of (N P ,≤).

Definition 2.3. Let {(Li,∨)}i∈I be a class of join semi-lattices indexed by a set I . A pair (L, {θi}i∈I)
is called a direct sum of {Li}i∈I if the following conditions are satisfied.

(1) L is a join semi-lattice.

(2) For each i ∈ I , θi : Li → L is a homomorphism of join semi-lattices.

and (3) If M is any join semi-latticeand for each i ∈ I , φi : Li →M is a homomorphism, then there

exists a unique homomorphism φ : L→M such that φoθi = φi for all i ∈ I .
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Theorem 2.4.Let (L, {θi}i∈I) be the direct sum of {Li}i∈I and M be any join semi-latticewhich is

isomorphic to L . If φ : L → M is an isomorphism, then (M, {φoθi}i∈I ) is also a direct sum of

{Li}i∈I . Conversely, if (M, {φi}i∈I ) is a direct sum of {Li}i∈I , then there exists a unique isomorphism

φ : L→M such that φoθi = φi for all i ∈ I .

A join semi-lattice(L,∨) is said to be with zero if there is an element, called zero denoted byo

such thato ∨ a = a for all a ∈ L. Note that(Z+,∨) is a join semi-latticewith zero, wherea ∨
b =l.c.m{a, b} and the integer 1 is the zero element. Also,(N ,∨) is ajoin semi-latticewith zero, where

a ∨ b =max{a, b} and the integer 0 is the zero element. If(L,∨) and(M,∨) are join semi lattices with

zero, then a mappingf : L→M is called a homomorphism iff(a ∨ b) = f(a) ∨ f(b) for all a, b ∈ L
andf(o) = o.

Theorem 2.5.Let P be the set of all prime numbers and NP = N for all p ∈ P . For any p ∈ P , define

θp : N → Z+ by θp(n) = pn for all n ∈ N . Then (Z+, {θp}p∈P ) is the direct sum of {Np}p∈P ,

where Z+ and NP are join semi-lattices with zero with respect to the division order and the usual order

respectively.
Proof. For any non-negative integersn,m and a prime numberp,

θp(n ∨m) = pn∨m

= pmax{n,m}

= l.c.m{pn, pm}

= θp(n) ∨ θp(m)

andθp(0) = p0 = 1, the zero element inZ+.

Thereforeθp : N → Z is a homomorphism for eachp ∈ P .

Let (L,∨) be anyjoin semi-latticewith zero and for eachp ∈ P , φp : N → L be a homomorphism.

Defineφ : Z+ → L by

φ(a) =


0 if a = 1
k∨

i=1
φpi(ni) if a = pn1

1 pn2
2 · · · pnk

k , pi ∈ P, ni ∈ N

Thenφ is well defined andφoθp = φp for all p ∈ P . Also φ(a ∨ b) = φ(a) ∨ φ(b) for anya, b ∈ Z+

andφ(1) = 0, the least element inL. Thereforeφ is a homomorphism.

If ψ : Z+ → L is any other homomorphism of join semi lattices with zero such thatψoθp = φp for

all p ∈ P , then it can be easily shown thatψ(a) = φ(a) for all a ∈ Z+. This proves the uniqueness of

φ.

Theorem 2.6.The lattices (Z+, /) and (
∑
P

N ,≤) are isomorphic .

Proof. Defineθ : Z+ →
∑
P

N by

θ(a)(p) =The largestn in N such thatpn dividesa for anya ∈ Z+ andp ∈ P . Then it can be easily

verified thatθ is an isomorphism.
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For any subsetsA andB of Z+, letAB denote the set of all productsab with a ∈ A andb ∈ B.

Definition 2.7. A mapping C : Z+ → P(Z+) is called a convolution if for any m ∈ Z+, C(m) is a

nonempty set of positive divisors of m.

A convolution C is said to be multiplicative if for any m and n ∈ Z+, C(mn) = C(m).C(n)
whenever (m,n) = 1.

C is said to be completely multiplicative if C(mn) = C(m).C(n) for all m and n ∈ Z+.

We observe that

• the Dirichlet convolutionD defined byD(n) = {d / d is a divisor ofn} is completely multi-

plicative

• the Unitary convolutionU defined byU(n) = {d / d is a divisor ofn and (d, n
d ) = 1} is

multiplicative but not completely multiplicative

• the k-free convolutionFk, defined byFk(n) = {d / d is a divisor ofn andmk does not

divided for anyn ∈ Z+} is multiplicative but not completely multiplicative.

• The Trivial convolutionT defined byT (n) = {1, n} is not multiplicative.

Theorem 2.8.A Convolution C is multiplicative if and only if

C(pa1
1 p

a2
2 · · · par

r ) = C(pa1
1 ).C(pa2

2 ) · · · C(par
r )

for any distinct primes p1, p2, · · · , pr and non-negative integers a1, a2, · · · , ar.

Theorem 2.9.Let C be a multiplicative convolution. For each prime p and for each non-negative integer

a, let Cp(a) = {b ∈ N / pb ∈ C(pa)} Then, for any n = pa1
1 .p

a2
2 · · · par

r where p1 < p2 < · · · < pr

are primes and a‘
is are non-negative integers,

C(n) = {pb1
1 .p

b2
2 · · · pbr

r / bi ∈ Cpi(ai) for all 1 ≤ i ≤ r}.

Theorem 2.10.For each prime p, let Cp : N → P(N ) be a mapping such that Cp(a) is non-empty and

b ≤ a for any a ∈ N and b ∈ Cp(a). Define C : Z+ → P(Z+) by C(1) = {1} and C(
r∏

i=1
pai

i ) =

{
r∏

i=1
pbi

i / bi ∈ Cpi(ai) for all 1 ≤ i ≤ r} for any distinct primes p1, p2, · · · , pr and a1, a2, · · · , ar ∈

N . Then C is a multiplicative convolution.

3 Main Results

For any convolutionC we can define a binary relation≤C onZ+ by

m ≤C n if and only ifm ∈ C(n).

≤C is called the relation induced byC onZ+. If m ≤C n andn ≤C m, thenm andn are divisors of

each other and hencem = n. Therefore, the relation≤C is always antisymmetric.
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Theorem 3.1.Let C be a convolution and ≤C be the relation on Z+ induced by C. Then ≤C is a partial

order on Z+ if and only if the following conditions are satisfied for any n ∈ Z+.

(1) n ∈ C(n) and (2)
⋃

m∈C(n)

C(m) ⊆ C(n).

The proof of the theorem is trivial. The above two conditions are independent to each other. In the

presence of the first condition (1), the second condition (2) can be replaced by(2
′
)

⋃
m∈C(n)

C(m) = C(n).

However, the condition(2
′
) is not sufficient for≤C to be a partial order onZ+. The square-free

convolutionF2 defined byF2(n) = {d ∈ Z+ / d is a square-free divisor ofn} satisfies(2
′
) and since

4 /∈ F2(4),≤F2 is not a partial order.

Theorem 3.2.Let C be a convolution such that
⋃

m∈C(n)

C(m) = C(n)for all n ∈ Z+. For any n ∈ Z+,

define C′
(n) = C(n) ∪ {n}. Then C′

is a convolution and ≤C′ is a partial order on Z+.

Since we are interested only in convolutions which induce partial orders onZ+, we assume that a

convolution is a mappingC : Z+ → P(Z+) that satisfies the following conditions for anyn ∈ Z+.

(1) Every member ofC(n) is a positive divisor ofn

(2) n ∈ C(n)
and (3)C(n) =

⋃
m∈C(n)

C(m)

Non-trivial convolutions satisfying the above three conditions are given in Examples 3.3 and 3.4.

Example 3.3.Let C(n) = {1, 5, 10}, then the convolution C satisfies the above three conditions.

Example 3.4.For each n ∈ Z+, let T (n) = {n}. Then T is a convolution and ≤T is precisely the

trivial ordering defined by n ≤T m if and only if n = m.

Definition 3.5. Let C be a convolution and p a prime. For any a and b in N , define a ≤p
C b if and only

if pa ≤C pb. For any α and β in
∑
P

N , define α ≤p
C β if and only if α(p) ≤C β(p) for all p ∈ P .

Since
∑
P

N andZ+ are bijective by Theorem 2.6, there is no ambiguity in using the symbol≤C to

denote the relation defined above on
∑
P

N as well as the relation induced by the convolution onZ+.

Theorem 3.6.For any convolution C and for each prime p,≤p
C is a partial order onN and≤C is a partial

order on
∑
P

N .

Definition 3.7. LetX and Y be non-empty sets andR and S be binary relations onX and Y respectively.

A bijection f : X → Y is said to be a relation isomorphism of (X,R) into (Y, S) if aRb in X if and

only if f(a)Sf(b) in Y for all a, b ∈ X .
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Theorem 3.8.Let θ : Z+ →
∑
P

N be the bijection defined by

θ(n)(p) =The largest a in N such that pa divides n.

Then a convolution C is multiplicative if and only if θ is a relation isomorphism of (Z+,≤C) onto

(
∑
P

N ,≤C).

Proof. Suppose thatC is multiplicative.

To prove thatθ is a relation isomorphism, we have to prove that

m ≤C n⇐⇒ θ(m) ≤C θ(n) for anyn,m ∈ Z+.

Letm andn ∈ Z+ such thatm ≤C n.

We can writen = pa1
1 .p

a2
2 · · · par

r wherep1 < p2 < · · · < pr are primes anda1, a2, · · · , ar are non-

negative integers. Then|θ(n)| ⊆ {p1, p2, · · · , pn} andθ(n) is defined by

θ(n)(p) =

{
ai if p = pi

0 if p 6= pi, 1 ≤ i ≤ r

Now, sincem ≤ n we havem ∈ C(n) = C(
r∏

i=1
pai

i ) =
r∏

i=1
C(pai

i ) and hencem = m1.m2 · · ·mr, for

somemi ∈ C(pai
i ). So we have,m =

r∏
i=1

pbi
i for somepbi

i ∈ C(pai
i ).

Thereforeθ(m) is defined byθ(m)(p) =

{
bi if p = pi

0 if p 6= pi, 1 ≤ i ≤ r

Now, if p 6= pi, 1 ≤ i ≤ r, thenθ(m)(p) = 0 = θ(n)(p) and ifp = pi, thenθ(m)(pi) = bi ≤p
C θ(n)(p)

for all p ∈ P .

Therefore,θ(m)(p) ≤p
C θ(n)(p) for all p ∈ P and henceθ(m) ≤C θ(n) in

∑
P

N .

On the other hand, suppose thatθ(m) ≤C θ(n) in
∑
P

N .

Thenθ(m)(p) ≤p
C θ(n)(p) for all primesp ∈ P .

In particular,θ(m)(p) = 0 wheneverθ(n)(p) = 0, that is|θ(m)| ⊆ |θ(n)|.
Let |θ(n)| = {p1, p2, · · · , pr} andθ(n)(pi) = ai.

Then,pai
i is the largest power ofpi dividing n andθ(n)(p) = 0 for all p 6= pi, 1 ≤ i ≤ r. Therefore,

n = pa1
1 p

a2
2 · · · par

r . Sinceθ(m)(p) ≤C θ(n)(p) for all p ∈ P , we haveθ(m)(p) = 0 for all p 6= pi,

1 ≤ i ≤ r.

Let θ(m)(pi) = bi. Thenm = pb1
1 .p

b2
2 · · · pbr

r . Sinceθ(m) ≤C θ(n), we get

bi = θ(m)(pi) ≤pi

C θ(n)(pi) for all 1 ≤ i ≤ r and hencebi ≤pi

C ai. Thereforepbi
i ∈ C(pbi

i ).
This implies that

m = pb1
1 p

b2
2 · · · pbr

r ∈ C(pa1
1 )C(pa2

2 ) · · · C(par
r ) = C(pa1

1 p
a2
2 · · · par

r ) = C(n)

and hencem ≤ n in Z+.

Thus,m ≤C n in Z+ if and only if θ(m) ≤C θ(n) in
∑
P

N .

Hence,θ is a relation isomorphism of(Z+,≤C) onto(
∑
P

N ,≤C).
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Conversely, suppose thatθ is a relation isomorphism. Letp1, p2, · · · , pr be distinct primes anda1, a2, · · · , an

non-negative integers. Letn = pa1
1 p

a2
2 · · · par

r . Then

m ∈ C(n) ⇐⇒ m ≤C n in Z+

⇐⇒ θ(m) ≤C θ(n) in
∑
P

N

⇐⇒ θ(m)(p) ≤p
C θ(n)(p) for all p ∈ P

⇐⇒ θ(m)(pi) ≤pi

C θ(n)(pi) for all 1 ≤ i ≤ r

(sinceθ(m)(p) = 0 = θ(n)(p) for all p 6= pi, 1 ≤ i ≤ r)

⇐⇒ bi ≤pi

C ai for all 1 ≤ i ≤ r, where bi = θ(m)(pi)

⇐⇒ m = pb1
1 p

b2
2 · · · pbr

r ∈ C(pa1
1 ) · · · C(par

r )

Thus,C(
ai∏

i=1
) =

r∏
i=1

C(pai
i ) and hence by Theorem 2.8,C is multiplicative.

Definition 3.9. A poset is said to satisfy the Descending Chain Condition (D.C.C) if every non-empty

subset has a minimal element. Dually a poset is said to satisfy the Ascending Chain Condition (A.C.C)

if every non-empty subset has a maximal element.

Theorem 3.10.For any convolution C, the poset (Z+,≤C) satisfies the Descending Chain Condition.

Proof. Let C be a convolution and≤C be the partial order induced byC onZ+. LetX be a non-empty

subset ofZ+. Choosex1 ∈ X. If X has no minimal element, then we get a sequence{xn} of elements

in X such that

· · · · · · <C xn <C xn−1 <C · · · <C x3 <C x2 <C x1

which is a contradiction, since allxi’s must be inC(x1), which is a finite set.

Therefore,X has a minimal element.

The dual of Theorem 3.8 is not true. For, consider the Dirichlet convolutionD, defined byD(n) =
The set of all positive divisors ofn. Then for anyn ∈ Z+, we haven <D 2n and hence(Z+,≤D) has

no maximal elements.

There are convolutionsC such that(Z+,≤C) satisfy both the Ascending Chain Condition and De-

scending Chain Condition. The trivial convolutionT defined byT (n) = {n} is an example for that.

Now, we study certain elementary properties of the poset(Z+,≤C) using the notion of an initial

segment in posets.

Definition 3.11.Let (X,≤) be a poset. A non-empty subset I of X is called an initial segment if

a ∈ I, x ∈ X and x ≤ a⇒ x ∈ I .

Clearly, the classIn(X) of initial segments of any poset(X,≤) is closed under arbitrary unions in

the sense that for any class{Iα}α∈4 of initial segments,
⋃

α∈4
Iα is also an initial segment. However,
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In(X) need not be closed under arbitrary intersections. In fact, it can be easily proved thatIn(X) is

closed under arbitrary intersections if and only if the poset(X,≤) has a least element.

For any elementa in a poset(X,≤), let us define the set(a] as(a] = {x ∈ X | x ≤ a}. Clearly(a]
is an initial segment of(X,≤); in fact, it is the smallest initial segment containinga. It can be easily

proved that a subsetI ofX is an initial segment of(X,≤) if and only if I is an union of sets of the form

(a], a ∈ Y for some non-empty subsetY of X.

Though an intersection of initial segments may be empty in a general poset, it becomes an initial

segment if the intersection is non-empty. In the following, we obtain several equivalent conditions on

the poset(Z+,≤C) to satisfy the property that the intersection of any two (and hence any finite) initial

segments is non-empty. First, let us recall that a poset(X,≤) is said to be directed below if, for anya

andb ∈ X, there existsx ∈ X such thatx ≤ a andx ≤ b.

Theorem 3.12.Let C be a convolution and ≤C be the partial order induced by C on Z+. Then the fol-

lowing are equivalent to each other.

(1) (Z+,≤C) is directed below

(2) 1 ∈ C(n) for all n ∈ Z+

(3) (Z+,≤C) has least element

(4) Intersection of any class of initial segments in (Z+,≤C) is an initial segment

(5) I ∩ J 6= ∅ for any initial segments I and J of (Z+,≤C)
(6) C(m) ∩ C(n) 6= ∅ for all m and n ∈ Z+.

Proof. (1)⇒ (2) Suppose that(Z+,≤C) is directed below .

Let n ∈ Z+. Choose a primep that does not dividen. There existsm ∈ Z+ such thatm ≤C n and

m ≤C p. Thenm is a divisor ofp. Sincep is a prime, eitherm = 1 orm = p. Sincep does not divide

n andm dividesn, we getm 6= p. Therefore,m = 1 and hence1 ≤C n so that1 ∈ C(n).

(2)⇒(3) is obvious.

(3)⇒(4) follows from the fact that any initial segment is non-empty and hence contains the least element

of the poset, so that the intersection of any class of initial segments is non-empty.

(4)⇒(5) also follows from the fact that every initial segment is non-empty.

(5)⇒(6) is obvious sinceC(n) (= (n]) is an initial segment of(Z+,≤C) for anyn ∈ Z+.

(6)⇒(1) is a consequence of the definition of≤C .
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