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Abstract

A decomposition of a graph G is a collectioryp) = {Hy, Hs, ..., H;} of subgraphs o&&
such that every edge 6f belongs to exactly on#;. The decompositiot is called gpath decompo-
sition of GG if each H; is a path inG. Several studies have been undertaken on path decompositions
by imposing certain conditions on the paths considered in the decomposition of the graph where the
primary objective is to obtain the minimum number of paths required for a certain type of decompo-
sition for a given graph. A path decompositigrsuch that the paths i are induced as well as of
same parity is defined as aquiparity induced path decompositioFhe minimum number of paths
in such a decomposition of a graghis called theequiparity induced path decomposition number
of G and is denoted by,;(G). In this paper we determine the valuergf for trees of even size.

Keywords: Equiparity induced path decomposition, Equiparity induced path decomposition num-
ber.
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1 Introduction

Graph decomposition problems is the most prominent area of research in graph theory and combina-
torics and further it has numerous applications in various fields such as networking, engineering and
DNA analysis.

A decomposition of a grapl is a collection of its subgraphs such that every edgé; dies in
exactly one member of the collection. Various types of decompositions have been introduced and well-
studied by imposing conditions on the members of the decomposition. Harary introduced the notion
of path decomposition [5] which demands each member of a decomposition to be a path and it was
further studied by Schwenk, Peroche, Stanton, Cowan and James ([6], [7], [9]). Unrestricted path cover
[6], cycle decomposition [4], simple path cover [2] and graphoidal cover [1] are some variations of
decomposition. In this direction the notion of equiparity induced path decomposition was introduced
and some initial developments have been made in [8]. In this paper we determine the value of the
equiparity induced path decomposition number for the families of trees of even size.

2 Definitions and preliminary results

By a graphG = (V, E), we mean a non-trivial, finite, connected and undirected graph with neither
loops nor multiple edges. For the terms not defined here we refer to [3]. Throughout the paper the order
and size of7 are denoted by, andm respectively.
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Definition 2.1. [8] A decompositiorof a graphG is a collectiony = {H,, Ha, ..., H;} of subgraphs
of GG such that every edge @f belongs to exactly onél;. The decompositior is called arinduced
path decompositionf G if each H; is an induced path ig. Further, if the lengths of all the paths+n
are of the same parity then it is called aquiparity induced path decompositi@fiD). The minimum
cardinality of anED for a graphG is called theequiparity induced path decomposition numhbed is
denoted byr,; (G).

An £D of a graphG in which every path is of even length is called even parity induced path
decompositiof€ £D) and similarly arodd parity induced path decompositi@@ED) is defined.

If Pisau — v pathinG, the vertices ofP other thanu andwv are called thénternal verticesof P
while u andv are called respectively trerigin andterminalof the pathP. For an€D v of G, a vertex
is said to banterior if it is an internal vertex of an induced pathn otherwise it is called aexterior
vertexto ¢. Further, we define, = >_ . ¢(P) wheret(P) denotes the number of internal vertices
of the pathP and¢ = maxt,, here the maximum is taken over &ID, ¢) of G. An expression forr,,
in terms of the number of vertices of odd degree and the maximum number of interior vef€iods
derived in [8].

Theorem 2.2.[8] For any graph G, we have 7;(G) = m — t.

The following corollaries are immediate consequences of the above theorem.

Corollary 2.3. [8] If G is a graph withk vertices of odd degree, then

wpi(G)=§+ D {dQQgUJ—t.

veV(G)

Corollary 2.4. [8] For any graphG, m,;(G) > %.

3 m, fortrees

In this section we determine the equiparity induced path decomposition number for trees. First we prove
the following lemma. For this we define the terms smooth path and almost smooth path as follows.

A u — v path P such thatdegu > 3, degv = 1 and degree of each internal vertex/@fis exactly 2
is said to be amooth path based at If P is au — v path andw is an internal vertex of’ such that
the (w, u)-section and théw, v)-section of P are smooth paths based at the veriexhenP is called
analmost smooth path basedat Further, if P is au — v path and@ is av — w path, then the walk
consisting of the patl® followed by the pathQ is denoted byP o Q. Also, by P~! we mean the same
path P but reading from the vertexto w.

Lemma 3.1. Let T" be a tree other than a path. tf is a vertex of maximum eccentricity such that
degv > 3, then there exists a smooth path of even length or an almost smooth path of even length based
atv.
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Proof. Given thatT is a tree other than a path. Then there exists a vertex of degree at least three.
Among all the vertices of” with degree at least three, letbe a vertex having maximum eccentricity.
Hence, ad" has no cycle there exist at least two smooth paths basedsay P, and P,. Then either

P, and P, are of odd length or at least one of them is of even length. If one of them is of even length
there is nothing to prove, otherwigg ' o P, will be a desired almost smooth path of even length based
atv. ]

Theorem 3.2.Every tree of even size with k vertices of odd degree admits an EED of cardinality %

Proof. We prove the theorem by induction érthe number of pendant vertices’Bf If [ = 2, thenT

is a path of even length so that the result holds true. Assumeé thatand the result is true for any tree

with less that pendant vertices. Let be a vertex of degree greater than two such that the eccentricity

of y is maximum, where the maximum is taken over all vertices ofith degree greater than two. Then

by Lemma 3.1, there exists either a smooth path of even length or an almost smooth path of even length
based ay.

Case 1.7 contains a smooth path of even length based at

Let 7" be a tree obtained frof' by truncating the smooth pati. That is, the tred” is obtained
from T by removing all the vertices lying oR other than the vertey. ThenT” is a tree of even size
havingl — 1 pendant vertices. Lét' denote the number of odd verticesZih Consider the following
two possibilities.

Subcase 1.Hegry is odd.

Then,deg;y is even andi’ = k — 2. Therefore the induction hypothesis gives u€arD ' of T’
with cardinality’% =4 — 1. we haver,(T") < 552 = £ — 1. Now, ¢ = ¢/ U P will be a£ED for T
with cardinality .

Subcase 1.2legy y is even.

In this caseleg,y is odd so that’ = k. Applying the induction hypothesis we get 88D ¢’ for
T’ with cardinality% = % Choose a patl®’ in ¢/ havingy as an external vertex; this is possible as
deg vy is odd. If we assume that the path ends aty, then P’ o P will be an induced path of even
length inT" and thusy = {¢’ \ {P’}} U{P’ o P} yieldsEED for T which of course is ag£D with
cardinality%.Thus we have a6ED of cardinality% as desired.

Case 2.1 contains an almost smooth path of even length based at

Take P as such an almost smooth path based.afAs in Case 1, lefl” be the tree obtained by
removing the pathP? from 7. ThenT" is of even size having — 2 pendant vertices and — 2 odd
vertices. Therefore using induction hypothesis find€&rD ' of cardinality%/ = g — 1. Hencey’
together with? forms anED for T of cardinalityX. |
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Corollary 3.3. The value ofr,; for a tree of even size |§

Proof. For a treel” of even size , Theorem 3.2 guarantees the existence 8€@hof cardinalityg.
This meansry,; (1) < % Then Corollary 2.4 completes the proof. |
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